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An Engineering Modeling Self-Efficacy (EMSE) Scale  

 

Abstract 

 

Self-efficacy is defined as personal judgments of one’s capabilities to organize and execute 

courses of action to attain designated goals. Self-efficacy is shown to be a significant predictor of 

academic performance, academic motivation, students’ participation in activities, rate of solution 

of arithmetic problems, and use of learning strategies. Students with high self-efficacy are likely 

to deal better with the challenges they face and develop strategies to solve them compared to 

students with low self-efficacy. In engineering education, there is a growing interest in self-

efficacy due to its relationship to learning and future success. 

Modeling is a fundamental aspect of engineering that is used to address complex problems. 

Particularly in engineering, modeling requires a process of abstraction where only the important 

details are represented via tools such as mathematical and computational languages. In the 

context of modeling, self-efficacy corresponds to one’s perception of his or her modeling 

capabilities. When students are working on a modeling task, they normally encounter challenges 

resulting in iterations and updates to their solution methodology (process). A student with high 

levels of self-efficacy should, in theory, persist longer in modeling iterations and perform better 

in creation of conceptual and calculational models. In contrast, low self-efficacy may inhibit the 

student’s effort even when the skill is present leading to discouragement.  

A common approach to measure self-efficacy, particularly in the context of student work, has 

been to ask students to what extent they believe they can perform a certain task.  However, as 

self-efficacy is task dependent and there is no common single method to measure it, we propose 

that a separate scale needs to be developed for modeling.  This is particularly true for 

engineering students; as how self-efficacy beliefs impact their modeling abilities remains largely 

unknown. 

In this study, we create an instrument to measure self-efficacy for modeling based on previous 

self-efficacy scales created for engineering design. The design scale was chosen for several 

reasons. First, it was developed for measuring self-efficacy of engineers specific to an important 

engineering capability. Second, it is a tested scale with high content and construct validity. In 

developing our modeling scale, we have used a similar approach: the subtasks of the modeling 

process are identified and listed and then students are asked how capable they believe they are in 

carrying each task. We have tested the scale using data from undergraduate engineering students.  

This paper serves as the first report of the results.  

 

Introduction  

Suppose two engineering students were given the same problem of creating a model of how the 

light switch works: one was able to do it, and the other could not. You observe that both students 
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had the same level of schooling, achieved similar grades, and had similar experiences. Yet, what 

explains the unexpected difference in the outcome?  

  

As educational psychology advances and engineering education research matures, we find that 

the differences in learning outcomes of students do not always stem from the controllable and 

observable attributes such as the courses taken, the assignments given, etc., but rather from 

students’ hard to observe internal mechanisms. Such mechanisms regulate the extent to which 

students can comprehend the complexities of a real system and how much of this complexity 

they can reflect in a conceptual and calculational model.  

 

Self-efficacy is one such mechanism that has been shown to regulate learning, motivation and 

academic performance of students. It is defined as personal judgments of one’s capabilities to 

organize and execute courses of action to attain designated goals 
[1]

. Individuals have high self-

efficacy for a task when they believe they possess the capabilities necessary to successfully 

perform the task and low self-efficacy if they believe that they do not have the necessary 

capabilities. Hence, measuring self-efficacy of one’s modeling ability is important in 

understanding the outcomes of the modeling task. Self-efficacy measurements are domain-

specific; and, as noted above, there are no self-efficacy measurement instruments specific to 

engineering modeling currently available.  

Here, we describe the development of a scale for the measurement of modeling self-efficacy. We 

provide a theoretical framework to show the predicted effects of self-efficacy on engineering 

modeling outcomes, and describe our process for the scale’s development.  Finally we provide 

pilot results of the self-efficacy scale and explain the implications and the limitations. 

 

Background  

a. Self-efficacy 

Self-efficacy is a measure of performance capabilities rather than one’s physical or psychological 

characteristics. It is important to focus on specific tasks and to assess efficacy perceptions and 

performance over a range of increasing task difficulty 
[2]

. Self-efficacy arises from the gradual 

acquisition of complex cognitive, social, linguistic, and/or physical skills through experience 
[3]

. 

One’s self-efficacy beliefs are multidimensional and can vary based on the task that is assumed. 

Self-efficacy has three dimensions 
[4]

: magnitude (level of task difficulty that a person believes 

he or she can attain); strength (whether the conviction regarding magnitude is strong or weak) 

and generality (the degree to which the expectation is generalized across situations). All three 

dimensions can influence the modeling abilities of students in different ways. Thus a self-

efficacy instrument should be able to (1) break down the overall task into levels or subtasks; (2) 

obtain the degree of strength with which the subject believes she can accomplish the task and (3) 

have validity in various settings. Further, a student’s modeling self-efficacy should be different 

from his self-efficacy in, say, problem solving. For our work, since we are primarily interested in 

classroom outcomes, the testing of the modeling self-efficacy instrument has been limited to 

engineering education environments.  
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The magnitude and strength of self-efficacy can influence one's choice of settings and activities, 

skill acquisition, effort expenditure, and the initiation and persistence of coping efforts in the 

face of obstacles 
[3]

.  In cases of higher self-efficacy, students have been shown to engage more 

frequently in task-related activities and to persist longer in coping efforts leading to more 

mastery experiences, whereas those with low self-efficacy give up more easily 
[2,3]

, ascertaining 

that self-efficacy can be a significant predictor of academic performance 
[5]

 , academic 

motivation 
[1]

, students’ participation in activities 
[6]

 , rate of solution of arithmetic problems 
[7]

, 

and use of learning strategies 
[8]

. Students with high self-efficacy are thus likely to better deal 

with the challenges they face and develop resolution strategies compared to students with low 

self-efficacy 
[9, 10]

.  These findings suggest that higher self-efficacy should be indicative of better 

modeling skills and outcomes in modeling.   

In the context of modeling, self-efficacy beliefs correspond to one’s perception of his or her 

modeling capability; i.e., the capability to create an abstraction of real world through use of 

natural (e.g. English) and / or symbolic languages (e.g. algebra, computer codes). Modeling in 

engineering requires development of a further set of skills that, to the novice user, at least, may 

be daunting. Obtaining higher modeling capabilities is a complex and somewhat troublesome 

process of integrating multidisciplinary engineering knowledge with creativity and 

implementation skills. These include establishing and maintaining a robust understanding of 

math and science, learning how to include the approximations of real life, searching for relevant 

information, creating a conceptual and subsequent mathematical model, using data within the 

model, testing the model results and further, and providing insight and validation on the obtained 

test results. It is expected that a particular level of self-efficacy is essential in overcoming the 

fear or anxiety that novice modelers experience in approaching an assigned task.  

b. Modeling in Engineering  

Broadly defined, the term model refers to a simplified or idealized description or conception of a 

particular system, situation, or process, often in mathematical terms, that is put forward as a basis 

for theoretical or empirical understanding, or for calculations, predictions, etc.; as well as a 

conceptual or mental representation of something.  The term modeling also refers to devise a 

model or simplified description of a phenomenon or system 
[11]

. Modeling is the essence of 

thinking and working scientifically 
[12]

. In cognitive science, models, and in particular mental 

models, refer to “representations of objects, processes or events that capture structural, 

behavioral, or functional relations significant to understanding these interactions 
[13]

. 

Models are built to construct, describe or explain single or integrated systems. Narrowing the 

definitions for engineering, modeling here will refer to: (i) a conceptual system for describing or 

explaining the relevant mathematical objects, relationships, actions, patterns, and regularities that 

are attributed to the problem solving situation, and (ii) accompanying procedures for generating 

useful constructions, manipulations, or predictions for achieving clearly recognized goals 
[14]

. An 

engineering model is comprised of fragments; in other words, abstractions of some physical 

system, mechanism, structure that lead to inclusion of constraints to the overall model behavior.  

The selection of model fragments and the way to compose small fragments into bigger model 

fragments is what creates the aggregate model 
[15]

. P
age 15.1050.4



The modeling process is defined as ‘to specify a description of a device and its operating 

environment that can be used to infer some information about the device’ 
[16]

, sometimes given 

the name modeling cycle 
[17]

.  The modeling process involves making decisions about relevant 

physical domains, abstractions, approximations, and other assumptions 
[16]

 .Thus modeling is a 

search of a space defined by multiple criteria.  The modeling process is a constructive process 

since it involves putting together partial solutions under constraints and explicitly representing 

the information used to select, assemble, and evaluate the model. Depending on the purpose and 

focus of the research, modeling processes might look different 
[18]

. For instance, Lesh and Harel 
[14]

 focus on the transitions from one stage within the modeling process and define the stages as 

quantifying, organizing, systematizing, dimensionalizing, coordinatizing, and (in general) 

mathematizing objects, relations, operations, patterns, or rules that are attributed to the modeled 

system. Among the studies that address modeling process, Tsang’s 
[19]

 is well suited to the 

modeling process in engineering.  His steps of a modeling process are given in Table 1.  

 

Table 1. Tsang’s Description of Modeling Process  

Step Description  

Review and 

Evaluation of Data  

Searching a database to obtain numbers necessary to calculate results 

of a model; trying to obtain as good as data as possible to represent the 

overall picture of the site and relevant processes occurring.  

Development of 

Conceptual Model 

and Potential 

Scenarios 

Abstracting the essence of the database to construct the structure of the 

physical model, to identify the physical and chemical processes 

involved in the system, and to determine the appropriate boundary and 

initial conditions.  

Establishment of 

Performance Criteria 

Modifying the performance criteria for something plausible yet still 

acceptable for the problem on hand; where a performance criterion is 

defined as the quantity of interest that the model is asked to predict. 

Construction of 

Calculational Models 

and Determination of 

the Associated 

Lumped Parameters 

 Creating simplified models using the conceptual models (author refers 

them as calculational models) and defining lumped parameters 

(parameter values averaged over spatial regions, and elementary 

parameters) 

Modeling 

Calculations, 

Sensitivity Analysis, 

and Uncertainty 

Analysis  

Calculations (author considers computer runs), creating tables of 

results and graphical outputs.  Studying the sensitivity of the results on 

parameter or data uncertainties.  

Results Evaluation Understanding and evaluating the calculational results.  The results, 

including the estimated uncertainties are evaluated according to the 

performance criteria; where uncertainties may arise from data and the 

steps preceding, such as choice of a calculational model.  After the 

evaluation, if uncertainty in results is too large, the modeler should go 

back to the beginning and proceed again, if it is possible to obtain 

further data and update calculational models. If not, or the model 
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Step Description  

provides good enough results, modeler can stop.  

Validation Ensuring that the model provides good enough reasons. 

 

c. Model Eliciting Activities 

Applications of modeling practices are increasing in engineering curricula. In particular, recently 

special modeling exercises entitled ‘Model Eliciting Activities’ (MEAs) have been introduced 

into the classroom 
[20]

.  MEAs offer significant benefits to engineering students in development 

of modeling and problem solving skills. In this work we take advantage of classroom 

implementation of MEAs to measure students’ modeling self-efficacy.  

 

As MEAs represent an increasing part of the engineering modeling literature, we provide some 

background below.  An MEA is a thought-revealing, model-eliciting, open-ended, real-world, 

client-driven problem and a learning and assessment tool that is adapted to engineering 
[21]

. 

MEAs were originally developed by mathematics education researchers to better understand and 

promote problem solving processes by encouraging students to build mathematical models in 

order to solve complex problems. MEAs were also created to provide a means for educators to 

better understand students’ thinking.  MEAs are built on the six principles given in Table 2.  

Table 2. MEA Construction Principles
[20,22]

. 

Principle Description 

Model Construction: Student team must create a mathematical model (system) that addresses 

the needs of a given client.  A mathematical model: a system used to describe another system, 

make sense of a system, explain a system, or to make predictions about a system 

Reality: The activity is set in a realistic, authentic engineering context and requires the 

development of a mathematical model for solution.  A well-designed MEA requires students to 

make sense of the problem context by extending their existing knowledge and experience.  The 

MEA should create the need for problem resolution, ideally making the student team behave 

like engineers working for the particular organization. 

Self Assessment: As the model develops, students must perform self-evaluation of their work.  

The criterion for ‘goodness of response’ is partially embedded in the activity by providing a 

specific client with a clearly stated need. The criterion should also encourage students to test 

and revise their models by pushing beyond initial ways of thinking to create a more robust 

model that better meets the client’s needs. 

Model Documentation: The model must be documented; typically students write a memo to 

the client describing their model.  The MEA is not only model-eliciting, but thought-revealing; 

i.e., the team’s mathematical approach to the problem is revealed in the client deliverable.  This 

process enables students to examine their progress, assess the evolution of the mathematical 

model, and reflect about the model. It provides a window into students’ thinking, which can 

inform instruction. 

Generalizability: The created model must be sharable, transferable, easily modifiable, and/or 

reusable in similar situations.  It must be generally useful to the client and not just apply to the 

particular situation; i.e., it must be capable of being used by other students in similar situations, 

and robust enough to be used repeatedly as a tool for some purpose. 
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Effective prototype: The solution to an MEA provides a useful prototype, or metaphor, for 

interpreting other situations. The activity needs to encourage the students to create simple 

models for complex situations.  The underlying concepts must be important ideas. Students 

should be able to think back on a given MEA when they encounter other, structurally similar 

situations. 

We are using these six principles to improve an engineering student’s understanding of 

engineering concepts, problem solving skills, as well as ethical reasoning and the ability of 

working in teams. The emphasis on building, expressing, testing and revising conceptual models 

is the most important difference between MEAs and ‘textbook’ problem-solving activities. Other 

differing characteristics of MEAs include the length of time required for solution, access to 

different information resources, number of individuals involved in the problem-solving process, 

and type of documentation required to solve an MEA. Since a typical MEA is implemented by a 

team of students as opposed to individuals (although some MEAs may be suitable for 

implementation by a single student), it therefore provides students with an opportunity to 

improve teamwork skills, which also reflects on their episode of learning. Finally, certain 

engineering MEAs may have an ethical dilemma embedded within the problem context, 

providing students with an opportunity to recognize and resolve ethical dilemmas. 

MEAs have been used and tested in previous studies. For example, Diefes-Dux et al. 
[22]

 describe 

how to construct an MEA. Diefes-Dux and her colleagues introduced Purdue’s first-year 

engineering to MEAs, and demonstrated that not only could they be effectively used to introduce 

concepts in engineering contexts. Ahn and Leavitt 
[23]

 summarize their experiences with MEA 

implementations and give recommendations to other educators. Diefex-Dux et al. 
[24]

 suggest 

using MEAs to advance the interest and persistence of female students in engineering. The 

authors point out that MEAs provide a learning environment that is tailored to a more diverse 

population than typical engineering course experiences as they allow students with different 

backgrounds and values to emerge as talented. Chamberlin and Moon 
[25]

 used MEAs as a tool to 

develop creativity and identify creatively gifted students in mathematics. They assert that the use 

of MEAs “provide students with opportunities to develop creative and applied mathematical 

thinking; and [enable instructors to] analyze students' mathematical thinking when engaged in 

creative mathematical tasks, aiding in the identification of those students who are especially 

talented in domain-specific, mathematical creativity” which is another potential benefits of 

MEAs.  

Creation of a Modeling Self-efficacy Scale  

Several overall self-efficacy scales have been created, under the name of general self-efficacy 

(GSE). GSE scales intend to measure belief in one’s overall competence or “individuals’ 

perception of their ability to perform across a variety of different situations” 
[26]

. Yet, such 

overall instruments have proved to be insufficient for measurement of beliefs belonging to 

different tasks. Bandura 
[27]

, in his resource for researchers interested in creating a self-efficacy 

scale, states that “there is no all-purpose measure of perceived self-efficacy […] because most of 

the items in an all-purpose test may have little or no relevance to the domain of functioning”. 

Despite the wide use of GSE scales, in light of Bandura’s guidelines, we have not considered a 

GSE for measuring of modeling self-efficacy.  In building our self-efficacy scale, we followed 
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two essentials: first, we investigated other relevant scales in fields that are close to engineering 

modeling and academic setting, and second, we observed the guidelines suggested by Bandura.  

Pajares 
[28]

 provides a comprehensive list of the relevant efficacy scales for academic settings. 

We used his list of scales and added other available scales to create a comparison list of scales. 

This list is provided in Table 3.  

 

Table 3. Major Self-efficacy Scales for Various Academic Tasks  

 

Source Sample Question or Direction Answer Options 

Teaching Efficacy  
[29]

 

How much can you …? [Completed by various teaching 

related tasks Influence the decisions that are made in 

your school] 

1-9 Likert scale 

with 1=lowest 

Mathematics 

problem solving 

self-efficacy  
[30]

 

How confident are you that you that you would give the 

correct answer to the following problem without using a 

calculator…? [a sample math problem] 

1-6 Likert scale 

with 1=lowest 

Self-Efficacy for 

self-regulated 

learning 
[31]

  

How well can you …? [completed by 11 self regulatory 

tasks] 

1-7 Likert scale 

with 1=lowest 

Self-efficacy for 

writing skills 
[32]

 

How confident are you that you can perform each of the 

following skills? [8 skills presented-e.g., "correctly spell 

all words in a one-page passage"] 

Scale of 0 to 

100- student 

writes the exact 

number 

Mathematics 

courses self-

efficacy 
[33] 

 

How much confidence do you have that you could 

complete the following course with a final grade of B or 

better? 

0 to 9 Likert 

scale 

Collective 

efficacy 
[29]

  

Please indicate your confidence that you can attain the 

following gains with the students in your class this year. 

[gains in 2-month presented] 

0 to 10 Likert 

scale 

Self-efficacy for 

performance 

division problems 
[34]

                        

[Division problem shown for 2 seconds] Circle the 

number on the matches how sure you are that you could 

work problems like those shown and get the right 

answers. 

Scale of 10 to 

100- in intervals 

of 10 

Self-efficacy for 

reading tasks 
[35]

 

How confident are you that you can perform each of the 

following tasks? [18 tasks presented-e.g., "read a letter 

from a friend"] 

1 to 5 Likert 

scale 

Self-efficacy for 

academic 

achievement
[31]

 

How well can you ... ? [completed by 9 academic 

domains-e.g. general mathematics, learn reading and 

writing language skills" 

 

1 to 7 Likert 

scale 

Self-efficacy for 

learning 
[36]

 

 

[Students are presented with sample mathematics 

problems or reading/ writing tasks for a brief time. They 

are asked to provide a confidence judgment to correctly 

solve the problems, perform paragraph writing tasks, 

etc.]  

Scale of 10 to 

100- in intervals 

of 10 
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An investigation of these self-efficacy scales reveals a few issues and generalizations available in 

the literature. First, as noted in the Table, all these scales are domain specific and serve distinct 

purposes; each is created to measure self-efficacy of a certain academic task. We conclude that a 

separate self-efficacy for modeling scale should be built. Second, almost all academic self-

efficacy scales include a measurement of a task by providing immediate examples or a 

measurement content (i.e., they provide material for measuring the task). In the case of reading 

self-efficacy, students are asked to read a text; in the case of writing self-efficacy, they are asked 

to write one. Thus, we conclude that when measuring self-efficacy of modeling, a relevant 

modeling task should be provided to the students beforehand.   Third, there is no agreement on a 

universal measurement option (i.e., some researchers use a 0-100 interval scale; others prefer a 

Likert scale, etc.). Bandura 
[27]

 suggests in his guide that a 0-100 interval is indeed beneficial; 

however, current scales available in the literature do not seem to necessarily follow this 

suggestion. We determined that a modeling self-efficacy scale can be developed using 1-5 Likert 

scale.   

A particularly relevant self-efficacy scale to engineering modeling is an engineering design scale 

based on the scale of Carberry et al. 
[37]

. This scale has provided an immediate relevant example 

for us in our creation of an engineering modeling self-efficacy scale and was chosen for several 

reasons. First, it is created for measuring self-efficacy of engineers, in the relevant concept of 

engineering design. Design of a system includes modeling abilities as well as problem solving 

skills. Second, this is a newer scale, ensuring that certain problems with older self-efficacy scales 

would not be repeated. Finally, it is a tested scale with high content and construct validity.  

Similar to the design scale, the subtasks of modeling process are identified and listed and 

students are asked how capable they believe they are in carrying out each task. In identifying the 

subtasks of engineering modeling, we utilized Tsang’s adjusted modeling process definition. The 

scale that is created for engineering modeling, with the directions given to students while 

implementing the scale, is given in Appendix A. There are 36 items in the scale and it takes 

approximately 15 minutes to administer.  

In the engineering modeling self efficacy scale, we asked students how well they think they 

could carry out the subtasks involved in modeling. We used a 1-5 Likert scale where “1” equals 

the lowest level of belief in one’s skills for a particular modeling subtask and “5” the highest.  

 

Testing of Modeling Self-efficacy Scale  

 

a. Data collection 

 

In this study, the data to test the Engineering Modeling Self-Efficacy (EMSE) scale was 

collected from a cohort of graduating senior and beginning sophomore engineering students. All 

students were chosen from undergraduates of Industrial Engineering field and they were varied 

in gender and academic skills as measured by their GPAs.  

 

As mentioned, to test the scale, students engaged in a modeling exercise in concert with taking 

the self-efficacy instrument.  Students were asked to solve two MEAs (i.e., Tire Reliability and 

CNC Machine Purchase MEAs, see www.modelsandmodeling.net for a copy) in teams of three 

to four students.   
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In addition to the student sample, for test purposes, we collected data from another 54 working 

engineering individuals, through online surveys of professional engineering organizations like 

ASME and ASCE. Seven data points of this second sample were deleted as they were 

incomplete. Thus, an overall sample of 67 was obtained.  An initial analysis showed that the data 

from students and the working individuals both had similar factor structures. 

 

b. Item and Factor Analysis 

We followed Crocker’s and Algina’s 
[38]

 recommendations for scale
 
reduction. The distributions 

(i.e., mean, standard deviation,
 
skewness, and kurtosis) were examined for each of the 36 items 

of EMSE, which is given in Table 4. In EMSE, there are seven subscales that refer to Tsang’s 

modeling process stages (Review and Evaluation of Data, Development of the Conceptual Model 

and Potential Scenarios, Establishment of Performance Criteria, Construction of the 

Calculational Models and Determination of the Associated Lumped Parameters, Modeling 

Calculations, Sensitivity Analysis, and Uncertainty Analysis, and Validation). We have 

determined, based on the definition of each stage described by Tsang, activities that fall under 

each of the stage and created the 36 items on EMSE. The stages and to which stage each items 

belong to are noted in Appendix A.  

Items one to six pose questions related to review and evaluation of data that is to be used in 

modeling. These include deciding what data is necessary to test and evaluate the model, 

searching a database to find data to use in the model or  to find other exemplary models to use as 

a starting point, determining whether the data on hand or found from the literature search is 

representative of the entire system the student is building the model for, deciding whether or not 

data on hand is coming from a reliable source and the sample size is large enough, identifying 

whether the data is relevant/ irrelevant for the model (and then clean the dataset accordingly) and 

develop a methodology to fill in the missing data where needed.  

Items seven to 13 pose questions related to establishing a conceptual model and the relationships 

between parameters of the model. Under establishment of a conceptual model, we imply creation 

of the representational relationships between the variables and processes within the system. The 

relevant tasks for creating a representation of the system are developing a schematic 

representation of the system, identifying the (e.g. physical, biological or chemical) processes that 

are involved within the system, specifying the inputs and outputs of the system, finding out the 

relationships between processes within the system (create the conceptual model), determining the 

external conditions that can influence the system, determining the necessary conditions for a 

system to exist or function normally, and establishing the extreme cases of how the system 

function. 

Items 14 - 16 relate to student’s comprehension of what is to be measured quantitatively using 

the model (referred to as the performance criteria), such as determining how to make the 

performance criteria better. Items 17 - 22 pose questions related to the tasks of developing 

calculational or computational models to estimate the performance criteria, such as writing a 

computer program, planning out hand calculations, identifying the constraints, boundary 

conditions, etc. Items 23 - 27 relate to carrying out the actual calculations, checking out 
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reliability and error of the calculations, and sensitivity analysis, 28 - 32 relate to transfer of the 

numerically found results back to qualitative information, or interpretation of the results, and 

finally 33 - 36 relate to validation of the overall model that is established.  

Table 4. Review of Self-efficacy Item Scores  
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1 Decide what data is necessary to use in the model 3.85 0.95 1 5 0.90 -0.86 

2 Search databases to find necessary data 4.13 0.75 2 5 -0.43 -0.44 

3 Determine whether the collected/ found data 

(sample) is representative of the population 

3.91 0.81 1 5 1.34 -0.70 

4 Decide whether the data is reliable and size is large 

enough 

3.85 0.83 1 5 1.24 -0.81 

5 Identify which parts of the dataset is irrelevant to 

the model 

3.92 0.80 1 5 1.55 -0.76 R
ev

ie
w

 a
n

d
 

E
v

a
lu

a
ti

o
n

 o
f 

D
a
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6 Develop/use a method to estimate missing data 3.77 0.73 2 5 -0.67 0.14 

7 Create a schematic representation of the system in 

two or three dimensions (create a prototype) 

3.61 0.87 1 5 0.26 -0.42 

8 List the sub-processes that within the system (e.g. 

physical, biological, and/or chemical, economical 

relationships, etc.) 

3.58 1.00 1 5 -0.63 -0.09 

9 Identify the relationships between sub-

processes(how changes in one effects another) 

3.90 0.89 2 5 -0.47 -0.45 

10 
Identify inputs and outputs of the system 

3.82 0.78 2 5 -0.56 -0.07 

11 Determine the (initial and boundary) conditions for 

the system to start/ stop functioning 

3.55 0.93 1 5 0.34 -0.27 

12 Determine the necessary conditions for a system to 

exist/ survive once working 

3.70 0.77 2 5 -0.23 -0.21 
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13 
Predict how the system will function in extreme 

cases 

3.53 0.92 1 5 0.37 -0.58 

14 

Determine the performance criteria to decide if the 

model is good enough 

3.71 0.98 1 5 0.24 -0.59 

15 
Determine whether the performance criteria chosen 

is appropriate for the system 

3.70 0.80 1 5 1.00 -0.51 
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16 

Find ways to modify the performance criteria to 

make it better 

3.78 0.87 1 5 0.54 -0.55 

17 Quantify the impact of subprocesses on the 

performance criteria. 

3.66 0.98 1 5 0.84 -0.86 

18 Simplify the relationships that exist in the system 

(make assumptions to simplify the relationships) 

3.84 0.93 1 5 0.17 -0.60 
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19 

Identify the variables and parameters in the model 

3.43 0.91 1 5 0.29 -0.36 
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20 
Identify the constraints of the model 

3.61 0.89 1 5 0.04 -0.22 

21 
Write a computer program to calculate the 

outcomes of the model 

3.27 1.08 1 5 -0.37 -0.41 

22 Choose a mathematical/ statistical model to 

calculate the performance criteria/ results of a 

developed model 

3.60 1.03 1 5 0.09 -0.48 

23 

Calculate the outcomes of the model by hand 

3.52 1.03 1 5 -0.41 -0.36 

24 Calculate the outcomes of the model using a 

computer code 

3.36 1.04 1 5 -0.66 -0.19 

25 Creating tables and graphs of the results (manual or 

computerized) 

3.81 0.97 1 5 1.24 -0.92 

26 Determine the uncertainty in the parameters and 

data 

3.66 0.91 1 5 0.64 -0.48 
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27 
Conduct a sensitivity analysis of the results 

3.49 0.96 1 5 0.48 -0.72 

28 Understand / evaluate the results of the calculated 

numbers 

3.60 0.87 1 5 1.11 -0.80 

29 
Determine if the results indicate an error 

3.58 0.94 1 5 0.31 -0.41 

30 
Use the results to predict future behavior of the 

system 

3.66 0.77 1 5 2.72 -0.96 

31 

Determine if the uncertainty in results indicates a 

need for an update or redesign of the model 

3.30 0.85 1 5 -0.13 -0.17 
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32 

Explain the results 

3.46 0.79 1 5 0.61 -0.46 

33 Determine qualitatively if the developed model 

looks ‘alright’ 

3.81 0.91 1 5 0.50 -0.73 

34 

Determine numerically if the model results are valid 

3.70 0.87 2 5 -0.42 -0.37 

35 Determine ways to measure if the created model 

generates results in line with the actual system 

3.75 0.80 2 5 -0.57 -0.04 

V
a
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d

a
ti

o
n

 

36 
Determine how the model developed compares to 

other models of the same system 

3.59 0.84 1 5 1.53 -0.88 

For retaining items, a common rule of thumb is to have standard deviations be approximately 1 

or smaller; and kurtosis and skewness within the +2 to -2 range (some authors also allow -3 to 3 

range) 
[39]

. These are standard in item reduction. Table 4 provides an initial indication that our 

items are normally distributed.  Table 4 demonstrates that there are no items with very low or 

very high standard deviations, high kurtosis or skewness. Thus, no one item can be eliminated 

based on this analysis. The Cronbach’s alpha for the 36 item scale is 0.95, which confirms a high 

level of consistency (the commonly accepted level is 0.7 or higher).  

Principal component analysis with orthogonal (varimax) rotation was used to examine the factor 

structures of the items. Orthogonal rotation was chosen because the correlations between factors 

calculated from the component correlation matrix were relatively low (r < 0.30) allowing the 

researchers in this study to assume independence of the factors.  The number of factors extracted 
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was based on three criteria: (a) the eigenvalue, (b) the percentage of variance, and (c) a scree test 
[40]

. The decision to retain an item was based on the following two criteria: (a) an item-structure 

coefficient greater than 0.40 and (b) a minimum gap of 0.10 between salient coefficients on 

multiple factors 
[41]

. 

Accordingly, three factors were retained. This factor solution explained 20% of the total 

variance. Item 25 was removed from the analysis as it failed to load on any of the three factors 

(highest loading was 0.37). This indicates that there is an overall modeling self-efficacy factor 

(i.e., factor 1), and that the two other main factors in EMSE are “use of data” (i.e., factor 2) and 

“determination of data and system conditions” (i.e., factor 3). As the determination of the factors 

was conducted based on pilot data, further analysis of the factors will be conducted after more 

data collection. The factor loadings for the 36 items are given in Table 5.   

Table 5. Factor loadings for the EMSE Scale (loadings greater than 0.4 are highlighted) 

ITEM 

NO ITEM  Factor 1   Factor 2   Factor 3  

1 Decide what data is necessary to use in the model 

  
          

0.54  
12 Determine the necessary conditions for a system to exist/ survive 

once working 

  0.55 

2 Search databases to find necessary data 

           0.67   

3 Determine whether the collected/ found data (sample) is 

representative of the population 

           0.54   

5 Identify which parts of the dataset is irrelevant to the model 

           0.55   

4 Decide whether the data is reliable and size is large enough 

          0.50    

6 Develop/use a method to estimate missing data 

          0.53    

7 Create a schematic representation of the system in two or three 

dimensions (create a prototype) 

          0.66    

8 List the sub-processes that within the system (e.g. physical, 

biological, and/or chemical, economical relationships, etc.) 

          0.59    

9 Identify the relationships between sub-processes(how changes in 

one effects another) 

          0.49    

10 Identify inputs and outputs of the system 

          0.52    

11 Determine the (initial and boundary) conditions for the system to 

start/ stop functioning 

          0.74    

13 Predict how the system will function in extreme cases 
          0.67    

P
age 15.1050.13



14 Determine the performance criteria to decide if the model is good 

enough 
          0.73    

15 Determine whether the performance criteria chosen is appropriate 

for the system 
          0.75    

16 Find ways to modify the performance criteria to make it better 
          0.68    

17 
Quantify the impact of subprocesses on the performance criteria. 

          0.72    

18 Simplify the relationships that exist in the system (make 

assumptions to simplify the relationships) 
          0.47    

19 Identify the variables and parameters in the model 
          0.68    

20 Identify the constraints of the model 
          0.61    

21 
Write a computer program to calculate the outcomes of the model 

          0.61    

22 Choose a mathematical/ statistical model to calculate the 

performance criteria/ results of a developed model 
          0.64    

23 Calculate the outcomes of the model by hand 
          0.68    

24 
Calculate the outcomes of the model using a computer code 

          0.57    

25 Creating tables and graphs of the results (manual or computerized) 
          0.37    

26 Determine the uncertainty in the parameters and data 
          0.63    

27 Conduct a sensitivity analysis of the results 
          0.62    

28 Understand / evaluate the results of the calculated numbers 
          0.63    

29 Determine if the results indicate an error 
          0.67    

30 
Use the results to predict future behavior of the system 

          0.62    

31 Determine if the uncertainty in results indicates a need for an update 

or redesign of the model 
          0.69    

32 
Explain the results 

          0.76    

33 Determine qualitatively if the developed model looks ‘alright’ 
          0.70    

34 
Determine numerically if the model results are valid 

          0.71    

35 Determine ways to measure if the created model generates results in 

line with the actual system 
          0.75    

36 Determine how the model developed compares to other models of 

the same system 
          0.62    
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Content validity of the instrument is carried out by asking two experts to review the scale (i.e. 

Carberry and Zimmerman 
[42]

). Both reviewers independently provided a positive feedback along 

with suggestions for change which were taken into account.  

 

 

Discussion 

This paper reports on an in-progress study to develop a self-efficacy scale for engineering 

modeling. With the help of existing literature, we developed and pilot tested a scale to measure 

the beliefs towards engineering modeling. The pilot testing with the scale demonstrated that scale 

items could be reduced to three primary factors.    

Many students express finding modeling puzzling and challenging. Self-efficacy has been 

suggested as an important construct in
 
students’ academic achievements and an investigation for 

the role of self-efficacy in modeling should also be conducted. The present study provides a first 

step in this direction: we create and test a scale for engineering modeling self-efficacy.  We thus 

extend the findings of previous research in engineering education and self-efficacy.
 
In contrast to 

the global measures of self-efficacy suggested, the current scale provides detailed information 

about a set of engineering modeling tasks.  
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Appendix A.  Scale for Engineering Modeling Self-Efficacy (EMSE) 
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(5
) 

1 Decide what data is necessary to use in the model 
     

2 Search databases to find necessary data 
     

3 
Determine whether the collected/ found data 

(sample) is representative of the population 

     

4 
Decide whether the data is reliable and size is large 

enough 

     

5 
Identify which parts of the dataset is irrelevant to 

the model 
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6 Develop/use a method to estimate missing data 
     

7 
Create a schematic representation of the system in 

two or three dimensions (create a prototype) 

     

8 

List the sub-processes that within the system (e.g. 

physical, biological, and/or chemical, economical 

relationships, etc.) 

     

9 
Identify the relationships between sub-

processes(how changes in one effects another) 

     

 

10 
Identify inputs and outputs of the system 

     

11 
Determine the (initial and boundary) conditions for 

the system to start/ stop functioning 

     

 

12 

Determine the necessary conditions for a system to 

exist/ survive once working 
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13 

Predict how the system will function in extreme 

cases 
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14 
Determine the performance criteria to decide if the 

model is good enough 

     

15 
Determine whether the performance criteria chosen 

is appropriate for the system 
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16 
Find ways to modify the performance criteria to 

make it better 

     

17 
Quantify the impact of subprocesses on the 

performance criteria. 

     

18 
Simplify the relationships that exist in the system 

(make assumptions to simplify the relationships) 

     

19 Identify the variables and parameters in the model 
     

20 Identify the constraints of the model 
     

21 
Write a computer program to calculate the 

outcomes of the model 
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22 

Choose a mathematical/ statistical model to 

calculate the performance criteria/ results of a 

developed model 

     

23 Calculate the outcomes of the model by hand 
     

24 
Calculate the outcomes of the model using a 

computer code 

     

25 
Creating tables and graphs of the results (manual or 

computerized) 

     

26 
Determine the uncertainty in the parameters and 

data 
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27 Conduct a sensitivity analysis of the results 
     

28 
Understand / evaluate the results of the calculated 

numbers 

     

29 Determine if the results indicate an error 
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30 
Use the results to predict future behavior of the 

system 
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31 
Determine if the uncertainty in results indicates a 

need for an update or redesign of the model 

     

32 Explain the results 
     

33 
Determine qualitatively if the developed model 

looks ‘alright’ 
     

34 Determine numerically if the model results are valid 
     

35 
Determine ways to measure if the created model 

generates results in line with the actual system 
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36 
Determine how the model developed compares to 

other models of the same system 
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