
AC 2010-1557: PRISM: THE REINCARNATION OF THE VISIBLE COMPUTER

Anne Clark, USAF Academy, CO

Brian Peterson, United States Air Force Academy

© American Society for Engineering Education, 2010

P
age 15.982.1

PRISM: The Reincarnation of the Visible Computer

Abstract

For over thirty years, the United States Air Force Academy (USAFA) has used training aids to

help students in our introductory digital course visualize computer architecture concepts by

showing the inner workings of a simple microprocessor made primarily of the SSI and MSI chips

which they were already familiar with. The original “EDUcational COMPuter” or EDUCOMP

was replaced with a more visual and improved version, the “VISIble COMPuter” or VISICOMP

in 1996
3
. Today, we have transitioned these hardware training aids to a hardware description

language (HDL) implementation called the Programmable Reconfigurable Informational Simple

Microcomputer or PRISM. PRISM is implemented on a Field-Programmable Gate Array

(FPGA) while still retaining the original strengths of the EDUCOMP/VISICOMP computer

architecture.

PRISM is partitioned into the main subsystems of a computer (ALU, controller, memory, and

input/output (I/O)). The controller is implemented as a simplistic, mealy state machine which

allows students to see each step of the instruction cycle as an assembly language program is

executed. PRISM’s operation is visual to the student since: (1) each subsystem is built with

small-scale-integration (SSI) and medium-scale-integration (MSI) components which the

students have already learned in our course; (2) the status of the registers, signals, and busses are

displayed directly on seven-segment displays; and (3) the students manually build and test each

subsystem before integrating them into the final PRISM core to observe how each one works.

After understanding the basics of the computer subsystems, the students then write their own

assembly programs and translate them into machine code. They can then simulate their program

running ahead of time or implement and run their programs in real time.

This paper will discuss the features of PRISM and how it is used in the classroom.

Introduction

Many years ago, the Department of Electrical Engineering at the United States Air Force

(USAFA) and others
1,2

 recognized the importance of training aids in teaching students the inner

workings of a basic computer. As a result, professors developed first the “EDUcational

COMPuter” or EDUCOMP and then a “VISIble COMPuter” or VISICOMP
3
 as part of a

concerted effort to introduce student-centered tools into our digital systems track of courses
4
.

In the spring of 1996, VISICOMPs were introduced to students in the final portion of the

sophomore introductory digital systems course after they had already been exposed to the design

of combinational and sequential digital logic circuits. The underlying premise of both

EDUCOMP and VISICOMP was that, by combining the small-scale-integration (SSI) and

medium-scale-integration (MSI) chips that students were already familiar with into a simple

computer, students would find it easier to understand how a computer works.

The VISICOMP, shown in Figure 1, was comprised of five subsystems, each on a separate

printed circuit board: the controller, the arithmetic logic unit (ALU), the input/output (I/O)

P
age 15.982.2

subsystem, the memory subsystem, and a motherboard. Each board was populated with MSI

integration components as well as light emitting diodes (LED) and seven-segment displays to

help students follow the computer’s operation. The VISICOMP featured a fully visible data bus,

address bus, and control bus as well as visible indicators of key register contents, control signal,

and the controller states. Finally, it contained 256 nibbles (4-bit data words) of memory and 16

operation codes.

Figure 1. VISICOMP

Shortly after VISICOMP’s introduction, USAFA added a computer engineering degree,

graduating its first class in 2001, and the department became the Department of Electrical and

Computer Engineering. In 2004, the IEEE Computer Society and the Association of Computing

Machines (ACM) published guidelines for computer engineering curricula
5
 which highlighted

the need to introduce our students, particularly our computer engineers, to a hardware description

language. The department decided that the best place to introduce this language was in our

introductory digital systems course and in the fall of 2004, the course was revised to include

VHDL programming as a core component. We began moving from VISICOMP to the

Programmable Reconfigurable Informational Simple Microcomputer (PRISM) in the spring of

2005 and, by the spring of 2006, had settled on the version reported on in this paper.

PRISM’s Design

PRISM was implemented using the same small and simple architectural design that had been so

successful with EDUCOMP/VISICOMP. The distinct subsystems shown in Figure 2 allow

students to see the orchestration required by even the most basic computer while the 16

instructions described in Table 1 provide a complete set of arithmetic, logic, and branching

instructions without getting too complicated. As can be seen from the ADDI and ADDD, as well

as the LDAI and LDAD instructions, there’s even room to implement two addressing modes

(immediate and direct).

P
age 15.982.3

Controller

Datapath

Memory

Input/Output (I/O)

Address Bus

Data Bus

Control Bus

8

4

Figure 2. PRISM Top-Level Diagram.

Mnemonic Encoding Operation
NOP 0000 Do no operation.

NEG 0001
Takes 2's complement of the number in

the accumulator.

NOT 0010
Takes 1's complement of the number in

the accumulator.

ROR 0011
Rotates the accumulator data one bit to

the right (with wrap-around).

OUT 0100 aaaa
Transfers the data from the accumulator

to the selected output port.

IN 0101 aaaa
Loads the data from the selected input

port into the accumulator.

ADDI 0110 vvvv
Adds the value of the operand to the

number in the accumulator.

LDAI 0111 vvvv
Loads the value of the operand into the

accumulator.

AND 1000 aaaa aaaa

ANDs the value stored at the operand

address with the accumulator and stores

the results in the accumulator.

JMP 1001 aaaa aaaa
Jump unconditionally to the operand

address.

JZ 1010 aaaa aaaa
Jump to the operand address if the

accumulator is zero.

JN 1011 aaaa aaaa
Jump to the operand address if the

accumulator has a negative number.

OR 1100 aaaa aaaa

ORs the value stored at the operand

address with the accumulator and stores

the results in the accumulator.

STA 1101 aaaa aaaa
Store the contents of the accumulator

into the operand address.

ADDD 1110 aaaa aaaa
Add the value stored at the operand

address to the accumulator.

LDAD 1111 aaaa aaaa
Load the value stored at the operand

address into the accumulator.

Table 1. PRISM Instruction Set.

P
age 15.982.4

Register-transfer-logic (RTL) design techniques were used to devise the controller’s and

datapath’s functionality. The controller, shown in Figure 3, is a fairly simple mealy state

machine which clearly demonstrates a standard instruction execution cycle of fetch-decode-

execute while showing the complex orchestration between the datapath, memory, and I/O

subsystems required to implement even a basic instruction set. A control bus, consisting of

control signals from the controller and status signals from the datapath, allows students to view

these signals as individual instructions are executed.

Figure 3. PRISM Controller State Diagram

The datapath, shown in Figure 4, uses both combinational and sequential logic components. An

arithmetic logic unit (ALU) performs both arithmetic and logic operations when program

instructions (and therefore the controller) demand them. The datapath also contains multiplexers

to determine which data is loaded into a variety of 4-bit and 8-bit registers or placed on the

address and data buses. Control signals from the controller implement the instruction set in

single clock-cycle operations while status signals based on a single accumulator and instruction

register help the controller decide how to proceed. P
age 15.982.5

IRLd

1 0

4-bit Register
IR

D3-0

Q3-0

Load

Clear

Clk

4-bit Register
MARHi

D3-0

Q3-0

Load

Clear

Clk

4-bit Register
MARLo

D3-0

Q3-0

Load

Clear

Clk

8

4

4

MARHiLd

MARLoLd

8-bit Register

PC

D7-0

Q7-0

Load

Clear

Clk

8 8-bit Increment

8

8

PCLd

1 0

8 8

AddrSel

JmpSel

Address Bus

8

7 6 5 4 3 2 1 0

4-bit Register

Accumulator

D3-0

Q3-0

Load

Clear

Clk

ANDNEGNOTRORORINADDLDA

Data Bus

Accumulator Data

4

4

AccLd

ENB

4

4

EnAccBuffer

4

(A=0)

(A<0)

Q3
OpSel

Reset

Clk

3

IR
4

Figure 4. PRISM Datapath Block Diagram

PRISM’s memory subsystem consists of one read-only memory (ROM) and five random-access

memory (RAM) chips plus address decoding circuitry. With an 8-bit address bus, the PRISM

address space consists of 2
8
 (256) 4-bit wide memory locations. These correspond to hex

addresses 0016 to FF16. The system ROM is located at memory addresses 0016 to AF16 and holds

the program to be executed by PRISM. Students are able to modify these memory locations

through their HDL code before implementing their PRISM. RAM consists of five 16 x 4-bit

RAM chips from B016 to FF16.

PRISM’s I/O subsystem provides the necessary interface to enter operands and return the results

of program execution. PRISM has 4 input and 4 output I/O mapped addresses (known as ports).

P
age 15.982.6

The I/O map in Figure 5 lists the port addresses and their function. This subsystem provides our

students’ primary interface to PRISM after the computer is implemented onto FPGAs.

 Address Input Output

0H External Input Port External Output Port

1H External Input Port External Output Port

2H External Input Port External Output Port

3H External Input Port External Output Port

Figure 5. I/O Address Map

How PRISM is Used in the Classroom

The goal of the last third of the introductory digital systems course is to pull the combinational

and sequential design concepts introduced previously in the course into a single capstone

example that will also help prepare students for follow-on digital courses. Through a series of

lessons which combine lecture with lab time, the students begin to understand how PRISM

works. In order to fully appreciate PRISM, students must first be introduced to assembly

language programming and so they start by writing some simple assembly language programs

which they then can run on a PRISM simulator (though this was originally a VISICOMP

simulator since the architectures are the same).

Once they have mastered basic assembly language programming, students begin to implement

PRISM in a series of structured lab events. They are first asked to write the hardware description

language code for PRISM’s ALU, using combinational circuit implementation skills learned

earlier in the semester. They are then given a skeleton of PRISM’s datapath and required to

complete its functionality, including instantiating and interfacing their ALU code. This lab event

culminates with a reverse-engineering exercise. A testbench is provided that exercises the

datapath as if the controller was running a simple assembly language program that ends in an

infinite loop. Students must simulate their datapath and use clues from incoming control signals

and bus information to rewrite the assembly language program.

Students then begin an integrative exercise where they interface their datapath with provided

code for the controller, memory, and I/O subsystems. They are asked to write a fairly

complicated assembly language program implementing a stopwatch consisting of both minutes

and seconds. This task mimics an earlier lab where students built the same stopwatch from

modulo-16 counters. In order to complete the lab, they must fully implement PRISM with their

program stored in the ROM memory segment, download it to Xilinx Spartan 2E demonstration

boards, and demonstrate a working stopwatch using the switches and seven-segment displays

provided on the boards.

Results

The introductory digital systems class that uses PRISM has a course objective that students be

able to “apply the previous skills to analyze the various control signals and operation of a basic

computer.” We assess this course objective using questions on a final exam that remains

relatively static from year to year. We do not have data going back to 1996 when VISICOMP

P
age 15.982.7

was introduced but students generally did very well in this area (with 2003 being an excursion).

Initially, when PRISM was introduced in 2005, we saw a dip in the course objective’s

assessment with the course just barely reaching a “marginal” level (a rating assigned to

assessment between a 70% and 77%). We believe this drop was due both to an immature

implementation as well as the addition of HDL programming into the mix. Before PRISM,

students were able to completely focus on the workings of a computer. The PRISM activities are

much more stringent set of exercises requiring them to demonstrate competency in HDL

programming and simulations before they can understand the details of how the computer is

behaving. We have invested significant effort into upgrading the maturity of PRISM as well as

building tools to help students more efficiently visualize what is happening. The results of this

work are documented in a separate paper
6
 but student performance has returned to fully meeting

our course objective.

Figure 6. Student Performance on Computer Operations Course Objective Assessment

While it has taken a few years to gain a mature product that support students in learning how a

basic computer works, the USAFA now has a training aid that provides a single capstone

example that will also help prepare students for follow-on digital courses in more than just

computer operation. PRISM exercises help to hone their HDL programming skills and give

them added experience using simulation/implementation tools.

Conclusion

The USAFA continues to see the need for training aids to help students visualize and understand

computer architecture concepts. PRISM provides a link between combinational and sequential

logic circuits and computers while also giving students an integrative capstone experience in

HDL programming and the use of simulation/implementation tools. Students’ understanding of

basic computer operations dropped off immediately after its introduction but has returned to fully

satisfactory levels.

P
age 15.982.8

Bibliography

1. Moser, A. T., “Animated Simulator for 68000 Microcomputer Architecture,” ASEE Annual Conference

Proceedings, June 1995, pp 179 - 181.

2. Henderson, W. D., “Animated Models for Teaching Aspects of Computer Systems Organization,” IEEE Trans.

On Education, Vol. 37, No. 3, pp. 247 - 256, August 1994.

3. York, George, Fogg, Ruth D., “VISICOMP: The Visible Computer,” ASEE Annual Conference Proceedings,

June 1996.

4. Barrett, S. F., Pack, D. J., York, G. W. P., Neal, P. J., Fogg, R. D., Doskocz E. K., Stefanov, E. K., Neal, P. C.,

Wright, C. H. G. and Klayton, A. R., “Student-Centered Educational Tools for the Digital Systems Curriculum,”

ASEE Computers in Education Journal, Vol. IX, pp. 6 - 11, Jan - Mar 1999.

5. IEEE Computer Society, Association of Computing Machines (ACM), “Computer Engineering 2004:

Curriculum Guidelines for Undergraduate Degree Programs in Computer Engineering.” 12 December 2004.

6. Peterson, B. and Clark, A., “PRISM: A Simple Simulation for Introduction of Assembly Language and

Computer Architecture,” submitted to ASEE Annual Conference Proceedings, June 2010.

P
age 15.982.9

