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PRISM: The Reincarnation of the Visible Computer  
 

 

Abstract 

 

For over thirty years, the United States Air Force Academy (USAFA) has used training aids to 

help students in our introductory digital course visualize computer architecture concepts by 

showing the inner workings of a simple microprocessor made primarily of the SSI and MSI chips 

which they were already familiar with.  The original “EDUcational COMPuter” or EDUCOMP 

was replaced with a more visual and improved version, the “VISIble COMPuter” or VISICOMP 

in 1996
3
.  Today, we have transitioned these hardware training aids to a hardware description 

language (HDL) implementation called the Programmable Reconfigurable Informational Simple 

Microcomputer or PRISM.  PRISM is implemented on a Field-Programmable Gate Array 

(FPGA) while still retaining the original strengths of the EDUCOMP/VISICOMP computer 

architecture. 

 

PRISM is partitioned into the main subsystems of a computer (ALU, controller, memory, and 

input/output (I/O)).  The controller is implemented as a simplistic, mealy state machine which 

allows students to see each step of the instruction cycle as an assembly language program is 

executed. PRISM’s operation is visual to the student since: (1) each subsystem is built with 

small-scale-integration (SSI) and medium-scale-integration (MSI) components which the 

students have already learned in our course; (2) the status of the registers, signals, and busses are 

displayed directly on seven-segment displays; and (3) the students manually build and test each 

subsystem before integrating them into the final PRISM core to observe how each one works. 

After understanding the basics of the computer subsystems, the students then write their own 

assembly programs and translate them into machine code. They can then simulate their program 

running ahead of time or implement and run their programs in real time. 

 

This paper will discuss the features of PRISM and how it is used in the classroom. 

 

Introduction 

 

Many years ago, the Department of Electrical Engineering at the United States Air Force 

(USAFA) and others
1,2

 recognized the importance of training aids in teaching students the inner 

workings of a basic computer.  As a result, professors developed first the “EDUcational 

COMPuter” or EDUCOMP and then a “VISIble COMPuter” or VISICOMP
3
 as part of a 

concerted effort to introduce student-centered tools into our digital systems track of courses
4
.   

In the spring of 1996, VISICOMPs were introduced to students in the final portion of the 

sophomore introductory digital systems course after they had already been exposed to the design 

of combinational and sequential digital logic circuits.  The underlying premise of both 

EDUCOMP and VISICOMP was that, by combining the small-scale-integration (SSI) and 

medium-scale-integration (MSI) chips that students were already familiar with into a simple 

computer, students would find it easier to understand how a computer works.   

The VISICOMP, shown in Figure 1, was comprised of five subsystems, each on a separate 

printed circuit board: the controller, the arithmetic logic unit (ALU), the input/output (I/O) 
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subsystem, the memory subsystem, and a motherboard.  Each board was populated with MSI 

integration components as well as light emitting diodes (LED) and seven-segment displays to 

help students follow the computer’s operation.  The VISICOMP featured a fully visible data bus, 

address bus, and control bus as well as visible indicators of key register contents, control signal, 

and the controller states.  Finally, it contained 256 nibbles (4-bit data words) of memory and 16 

operation codes. 

 

 

Figure 1. VISICOMP 

Shortly after VISICOMP’s introduction, USAFA added a computer engineering degree, 

graduating its first class in 2001, and the department became the Department of Electrical and 

Computer Engineering.  In 2004, the IEEE Computer Society and the Association of Computing 

Machines (ACM) published guidelines for computer engineering curricula
5
 which highlighted 

the need to introduce our students, particularly our computer engineers, to a hardware description 

language.  The department decided that the best place to introduce this language was in our 

introductory digital systems course and in the fall of 2004, the course was revised to include 

VHDL programming as a core component.  We began moving from VISICOMP to the 

Programmable Reconfigurable Informational Simple Microcomputer (PRISM) in the spring of 

2005 and, by the spring of 2006, had settled on the version reported on in this paper. 

PRISM’s Design 

 

PRISM was implemented using the same small and simple architectural design that had been so 

successful with EDUCOMP/VISICOMP.   The distinct subsystems shown in Figure 2 allow 

students to see the orchestration required by even the most basic computer while the 16 

instructions described in Table 1 provide a complete set of arithmetic, logic, and branching 

instructions without getting too complicated.  As can be seen from the ADDI and ADDD, as well 

as the LDAI and LDAD instructions, there’s even room to implement two addressing modes 

(immediate and direct). 
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Figure 2. PRISM Top-Level Diagram. 

Mnemonic Encoding Operation 
NOP 0000 Do no operation. 

NEG 0001 
Takes 2's complement of the number in 

the accumulator. 

NOT 0010 
Takes 1's complement of the number in 

the accumulator. 

ROR 0011 
Rotates the accumulator data one bit to 

the right (with wrap-around). 

OUT 0100 aaaa 
Transfers the data from the accumulator 

to the selected output port. 

IN 0101 aaaa 
Loads the data from the selected input 

port into the accumulator. 

ADDI 0110 vvvv 
Adds the value of the operand to the 

number in the accumulator. 

LDAI 0111 vvvv 
Loads the value of the operand into the 

accumulator. 

AND 1000 aaaa aaaa 

ANDs the value stored at the operand 

address with the accumulator and stores 

the results in the accumulator. 

JMP 1001 aaaa aaaa 
Jump unconditionally to the operand 

address. 

JZ 1010 aaaa aaaa 
Jump to the operand address if the 

accumulator is zero. 

JN 1011 aaaa aaaa 
Jump to the operand address if the 

accumulator has a negative number. 

OR 1100 aaaa aaaa 

ORs the value stored at the operand 

address with the accumulator and stores 

the results in the accumulator. 

STA 1101 aaaa aaaa 
Store the contents of the accumulator 

into the operand address. 

ADDD 1110 aaaa aaaa 
Add the value stored at the operand 

address to the accumulator. 

LDAD 1111 aaaa aaaa 
Load the value stored at the operand 

address into the accumulator. 

Table 1. PRISM Instruction Set. 
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Register-transfer-logic (RTL) design techniques were used to devise the controller’s and 

datapath’s functionality.  The controller, shown in Figure 3, is a fairly simple mealy state 

machine which clearly demonstrates a standard instruction execution cycle of fetch-decode-

execute while showing the complex orchestration between the datapath, memory, and I/O 

subsystems required to implement even a basic instruction set.  A control bus, consisting of 

control signals from the controller and status signals from the datapath, allows students to view 

these signals as individual instructions are executed. 

 
Figure 3.  PRISM Controller State Diagram 

 

The datapath, shown in Figure 4, uses both combinational and sequential logic components.  An 

arithmetic logic unit (ALU) performs both arithmetic and logic operations when program 

instructions (and therefore the controller) demand them.  The datapath also contains multiplexers 

to determine which data is loaded into a variety of 4-bit and 8-bit registers or placed on the 

address and data buses.  Control signals from the controller implement the instruction set in 

single clock-cycle operations while status signals based on a single accumulator and instruction 

register help the controller decide how to proceed. P
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Figure 4.  PRISM Datapath Block Diagram 

 

PRISM’s memory subsystem consists of one read-only memory (ROM) and five random-access 

memory (RAM) chips plus address decoding circuitry.  With an 8-bit address bus, the PRISM 

address space consists of 2
8
 (256) 4-bit wide memory locations.  These correspond to hex 

addresses 0016 to FF16.  The system ROM is located at memory addresses 0016 to AF16 and holds 

the program to be executed by PRISM.  Students are able to modify these memory locations 

through their HDL code before implementing their PRISM.  RAM consists of five 16 x 4-bit 

RAM chips from B016 to FF16. 

 

PRISM’s I/O subsystem provides the necessary interface to enter operands and return the results 

of program execution.  PRISM has 4 input and 4 output I/O mapped addresses (known as ports).  
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The I/O map in Figure 5 lists the port addresses and their function.  This subsystem provides our 

students’ primary interface to PRISM after the computer is implemented onto FPGAs. 

 

       Address                      Input     Output 

0H  External Input Port   External Output Port 

1H  External Input Port  External Output Port 

2H  External Input Port  External Output Port  

3H  External Input Port  External Output Port 

Figure 5. I/O Address Map 

 

How PRISM is Used in the Classroom 

 

The goal of the last third of the introductory digital systems course is to pull the combinational 

and sequential design concepts introduced previously in the course into a single capstone 

example that will also help prepare students for follow-on digital courses.  Through a series of 

lessons which combine lecture with lab time, the students begin to understand how PRISM 

works.  In order to fully appreciate PRISM, students must first be introduced to assembly 

language programming and so they start by writing some simple assembly language programs 

which they then can run on a PRISM simulator (though this was originally a VISICOMP 

simulator since the architectures are the same). 

 

Once they have mastered basic assembly language programming, students begin to implement 

PRISM in a series of structured lab events.  They are first asked to write the hardware description 

language code for PRISM’s ALU, using combinational circuit implementation skills learned 

earlier in the semester.  They are then given a skeleton of PRISM’s datapath and required to 

complete its functionality, including instantiating and interfacing their ALU code.  This lab event 

culminates with a reverse-engineering exercise.  A testbench is provided that exercises the 

datapath as if the controller was running a simple assembly language program that ends in an 

infinite loop.  Students must simulate their datapath and use clues from incoming control signals 

and bus information to rewrite the assembly language program. 

 

Students then begin an integrative exercise where they interface their datapath with provided 

code for the controller, memory, and I/O subsystems.  They are asked to write a fairly 

complicated assembly language program implementing a stopwatch consisting of both minutes 

and seconds.  This task mimics an earlier lab where students built the same stopwatch from 

modulo-16 counters.  In order to complete the lab, they must fully implement PRISM with their 

program stored in the ROM memory segment, download it to Xilinx Spartan 2E demonstration 

boards, and demonstrate a working stopwatch using the switches and seven-segment displays 

provided on the boards. 

 

Results 

 

The introductory digital systems class that uses PRISM has a course objective that students be 

able to “apply the previous skills to analyze the various control signals and operation of a basic 

computer.”  We assess this course objective using questions on a final exam that remains 

relatively static from year to year.  We do not have data going back to 1996 when VISICOMP 

P
age 15.982.7



was introduced but students generally did very well in this area (with 2003 being an excursion).  

Initially, when PRISM was introduced in 2005, we saw a dip in the course objective’s 

assessment with the course just barely reaching a “marginal” level (a rating assigned to 

assessment between a 70% and 77%).  We believe this drop was due both to an immature 

implementation as well as the addition of HDL programming into the mix.  Before PRISM, 

students were able to completely focus on the workings of a computer.  The PRISM activities are 

much more stringent set of exercises requiring them to demonstrate competency in HDL 

programming and simulations before they can understand the details of how the computer is 

behaving.  We have invested significant effort into upgrading the maturity of PRISM as well as 

building tools to help students more efficiently visualize what is happening.  The results of this 

work are documented in a separate paper
6
 but student performance has returned to fully meeting 

our course objective.   

 

 
Figure 6.  Student Performance on Computer Operations Course Objective Assessment 

 

While it has taken a few years to gain a mature product that support students in learning how a 

basic computer works, the USAFA now has a training aid that provides a single capstone 

example that will also help prepare students for follow-on digital courses in more than just 

computer operation.   PRISM exercises help to hone their HDL programming skills and give 

them added experience using simulation/implementation tools.   

 

Conclusion 

 

The USAFA continues to see the need for training aids to help students visualize and understand 

computer architecture concepts.  PRISM provides a link between combinational and sequential 

logic circuits and computers while also giving students an integrative capstone experience in 

HDL programming and the use of simulation/implementation tools.  Students’ understanding of 

basic computer operations dropped off immediately after its introduction but has returned to fully 

satisfactory levels. 
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