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Increasing Technological Literacy through Improved  

Understanding of Technology Emergence and Diffusion  

 

Abstract 

 

Understanding technology change and how to influence the process has been identified as a 

critical societal problem, and efforts to define and increase technological literacy have been 

underway as an approach to solving the problem.  Technological literacy cannot be complete, 

therefore, without an understanding of major processes of technological and social change.    

 

Contrary to popular wisdom and belief, the emergence and diffusion of new technology is a 

relatively orderly and predictable process.  Successful results in the forecasting of technological 

change have given fresh perspectives on acceptance criteria and adoption rates of new 

technology.  Quantitative technology forecasting studies have proven reliable in projecting in 

time technological and social change using relatively simple models such as logistic growth and 

substitution patterns, precursor relationships, constant performance improvement rates of change, 

and the identification of anthropologically invariant behaviors.  In addition, extensive studies of 

the evolution of patents have uncovered not a series of breakthrough discoveries or creations, but 

predictable trends of incremental technological innovation, governed by a short list of parametric 

variations.  

 

This paper presents an overview of the major processes describing technological change 

indentified through quantitative technology forecasting techniques, and the author provides 

several examples of his experiences researching and applying the methodologies.  The author 

shares his experience introducing the concepts and sample studies in discussions of career and 

personal technology choices with undergraduate students in introduction to engineering and 

engineering technology courses.  

 

Introduction 
 

Literacy in technology, including knowledge of technological and social change, has been cited 

in various organization and research publications
1,2,3 

 as cornerstone to maintaining social, 

cultural, and economic progress in the United States and around the world.  The means to model 

and project technological and social change has been improving over the years.  Reliable 

quantitative forecasting methods have been developed that project the growth, diffusion, and 

performance of technology in time, including projecting technology substitutions, saturation 

levels, and performance improvements. These forecasts can be applied at any stage of a 

technology lifecycle to better predict future technology performance, assess the impact of 

technological change, and improve technology planning and investment. Knowledge of such 

means to understand and project paths of technology and innovation would constitute important 

content in a technology literacy program. 

 

Often what is published as a technology forecast is simply scenario planning, usually made by 

extrapolating current trends into the future, with perhaps some subjective insight added.  

Typically, the accuracy of such predictions falls rapidly with distance in time.  Quantitative 
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technology forecasting (QTF), on the other hand, includes the study of historic data to identify 

one of or a combination of several recognized universal technology diffusion or substitution 

patterns. In the same manner that quantitative models of physical phenomena provide excellent 

predictions of system behavior, so do QTF models provide reliable technological performance 

trajectories. 

 

In practice, a quantitative technology forecast is completed to ascertain with confidence when the 

projected performance of a technology or system of technologies will occur.  Such projections 

provide reliable time-referenced information when considering cost and performance trade-offs 

in maintaining, replacing, or migrating a technology, component, or system. 

 

Quantitative Technology Forecasting 

 

Quantitative technology forecasting is the process of projecting in time the intersection of social 

needs and technological capabilities using quantitative methods.  For the purposes of forecasting, 

technology is defined as any human creation that provides a compelling advantage to sustain or 

improve that creation, such as materials, methods, or systems that displace, support, amplify, or 

enable human activity.  It has been shown that rates of new technology adoption and rates of 

change in technology performance take on characteristic patterns in time.   

 

A quantitative technology forecast includes the study of historic data to identify one of several 

common technology diffusion or substitution models.  Patterns to be identified include constant 

percentage rates of change (so-called “Moore‟s Laws”), logistic growth (“S”- curves), logistic 

substitution, performance envelopes, anthropological invariants, lead/lag (precursor) 

relationships, and other phenomena.  These quantitative projections have proven accurate in 

predicting technological and social change in thousands of diverse applications, on time scales 

covering only months to spanning centuries.   

 

Invariant, or well-bounded, human individual and social behavior, and fundamental human 

agency and evolutionary drives, underlie technological change.  In essence, humans and 

technology co-evolve in an ecological system that includes the local environment, our internal 

physiology, and technology that can be considered simply external physiology.  

 

Carrying out a quantitative technology forecast includes selecting a strategically important 

technology, gathering historic data related to change or adoption of that technology, identifying 

candidate “compelling advantages” that appear to be drivers of the technology change, and 
comparing the rate of technology change over time against the natural characteristic patterns of 

technology change and diffusion.   

 

QTF Methodologies 

 

Quantitative technology forecasting has been applied successfully across a broad range of 

technologies including communications, energy, medicine, transportation, and many other areas.  

A quantitative technology forecast will include the study of historic data to identify one of or a 

combination of several recognized universal technology diffusion or substitution trends.  Rates 

of new technology adoption and rates of change of technology performance characteristics take 
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on common patterns.  The discovery of such a pattern indicates that a fundamental trajectory or 

envelope curve has been found and that reliable forecasts then can be made.   

 

The quantitative forecasting techniques are, to use the words of mathematician and theorist 

Gregory Bateson
4
 “explanatory principles”, that is, their applicability is sufficient by their 

reliability for the purposes of modeling technology diffusion patterns and forecasting technology 

adoption.  Many researchers have attempted to substantiate the commonly found patterns 

through application of systems kinematics and other advanced systems theories, to varying 

success and acceptance in the field.  The ubiquity of the various patterns has been studied also 

using information theory, process ecology, systems theory, and complexity modeling, such as 

complex adaptive systems.   

 

Several of the many techniques in quantitative technology forecasting are ideally suitable for 

projecting technological change and technology sustainability in early stage practicality and 

affordability studies are introduced here in more detail and illustrated with examples, including 

possible topics for space-related studies. 

 

Logistic Growth Projection  

 

Forecasters had their first significant successes in predicting technological change when they 

used exponential models to project new technological and social change (see, for example, 

Malthus
5
).  It was deemed only logical that a new technology at first would be selected by one, 

than perhaps two others, and these people in turn, two others each, and so on, in a pattern of 

exponential growth.  Ultimately however, as in any natural system, a limit or bound on total 

selections would be reached, leading early researchers next to the logistic (or so-called S-curve) 

to model technology diffusion.   

 

In the late 20
th

 Century, researchers in the United States such as Lenz
6
, Martino

7
, and Bright

8
, 

and others around the world [e.g., the very prolific Marchetti
 
(see, for example, Marchetti

9
) 

refined forecasting methods and showed that the logistic model was an excellent construct for 

forecasting technological change with virtually universal application for technology adoption and 

many other individual and social human behaviors.  Figure 1 illustrates the idealized logistic 

curve of technology adoption or diffusion.  Figure 2 shows the logistic growth of the supertanker 

of maritime fleets presented in a popular format developed by Fisher and Pry
 
that renders the 

logistic curve linear
10

.  
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Figure 1.  Ideal logistic growth curve
 
(Adapted from Meyer, et al

11
). 

 

 
 

Figure 2.  Logistic growth of the supertanker
 
(Adapted from Modis

12
). 
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Figure 3 shows the growth pattern of a recent computer virus that infected computers on 

worldwide networks. 

 

 
 

Figure 3. Logistic growth of a network computer virus
 
(Data from Danyliw and Householder

13
). 

 

Constant Rate of Change (Performance Envelope) 

 

Technology change occurs within dynamic and complex systems of human behavior.  The 

growth and diffusion of technology influences and is influenced by the activities of humans as 

individuals and groups at varying scales.  The adoption of new technology requires intellectual, 

material, energy, and other resources to be redirected, increased, and otherwise managed as 

required in the implementation of the new technology.   

 

When a new technology emerges having the substantive compelling advantage such that it will 

successfully substitute for the incumbent technology at some higher, but practical, performance 

level, humans tend to go about the changeover in a methodical way, managing to maintain 

equilibrium in the vast array of a culture‟s interacting and interdependent social, material, and 
economic systems.   

 

The result is that the adoption and change of substitute technologies is far from random and 

rarely sudden, and usually follows a smooth transition, at a rate either consciously or 

unconsciously maintained by individual and collective forces for equilibrium.   

 

Forecasters call the curve of sequential performance levels of adopted technologies a 

performance characteristic curve, and search for its telltale shape in the history of a 

technological area of interest.   
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Figure 4 shows an example of the performance characteristic curve for transistor density on a 

microprocessor chip, the popular “Moore‟s Law”.  Figure 5 shows the performance envelope of 
industrial energy substitution, pointing to the high-efficiency fuel cell as the next candidate for 

leading energy conversion technology. 
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Figure 4.  Moore‟s Law - Performance envelope of microchip transistor density

 
(Data from Intel 

Corp.
14

) 

 

 
 

Figure 5. Performance envelope of industrial energy conversion technology, with projection to 

2050 (Adapted from Ausubel and Marchetti
15

). 
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Logistic Substitution 

 

Transitions from one technology or performance level to the next tend to follow neat, 

manageable patterns.  In the 1960‟s, Fisher and Pry
 
analyzed hundreds of technological 

substitutions in history and devised a method to graph the substitution patterns in linear fashion, 

thus giving us the popularly applied Fisher-Pry projection of technology substitution. 

 

Figure 6 illustrates the typical logistic substitution pattern.  Studies have shown this remarkable 

logistic substitution pattern in technologies as diverse as the substitution of automobiles for 

horses in personal travel and the substitution of latex for oil based paints.  In the maritime 

industry, published reports show the logistic substitution of motor-over-steam-over-sail in ship 

propulsion technology (see Figure 7).  

 

 
 

Figure 6. Typical logistic technology substitution (Fisher-Pry display format). 

 

Precursor (Lead-Lag) Growth  

 

The implementation or adoption of a technology has been shown to vary logistically.  When one 

technology is dependent on or otherwise closely related to a previous development, the two 

trajectories are usually linked in a steady lead-lag relationship (see Figure 8). 

 

Studies have shown that the worldwide discovery of petroleum resources has led the production 

of oil by a fixed period over many decades (see Modis
17

).  Studies have shown also that the 

diffusion in USA industry of networked desktop personal computers followed the same shape 

logistic trajectory as the precursor technology, stand-alone PCs (see Poitras and Hodges
18

). 
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Figure 7. Substitution of US maritime propulsion technology
 
(Adapted from Modis

16
). 
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Figure 8. Constant lead-lag logistic relationship. 

 

Anthropological Invariants 

 

In the grand history of the progression of technological change, one of the striking results is 

evidence, otherwise not identified or identifiable, of the invariance of human behavior in many 

areas.  While technologies offer many and perhaps infinite varieties of how to get things done, 
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the things humans do want to get done, generally, have remained the same for hundreds and 

thousands, and perhaps millions of years.   

 

For example, travel and communication patterns, depicted in broad averages of commuting or 

foraging times, or in numbers of human exchanges, have been shown to be constant across time 

and cultures.  The anthropological benefits in applications of technologies can be viewed as 

artifacts of unchanging human behavioral preferences.  As an example, Figure 9 shows the more 

or less constant accepted (and, by implication, engineered and designed) risk of death by 

automobile in the United States over nearly an entire century. 

 

 
 

Figure 9. Risk of having a fatal automobile accident in the US (Adapted from Marchetti
19

). 

 

Technology and Innovation Process 

 

The concept of the „disruptive‟ nature of innovation or technology has been popular in business 

and technology articles and books (see, for example, Christensen
20

).  The history of 

technological change, however, is shown to be a series of incremental changes or combinations 

of existing technology.  While a new or overtaking technology might disrupt a business or 

business network, the technology itself, viewed historically and within a progressive, quantitative 

model can be shown to be – in retrospect or prospect – still only an incremental change.  

According to Marchetti, “Show me a „disruptive‟ technology, and I will show you its logistic 

[growth] curve
21”. 

 

Also a popular story is that of the lone inventor tinkering in isolation to unveil to the world 

marvelous new inventions.  The myth is not supported by the record of technological change.  

Inventions are born of a combination of human need and private (or collective) agency or 

ambition, and are cobbled together from known techniques and materials.  Beginning with one 

technological platform, the directions of innovation are finite.  One can alter the mass, or size, or 
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some other measurable performance criteria, but within a finite space.  In fact, forty such 

directions have been identified by analyzing and identifying trends in patent claims and are used 

in a systematic approach or algorithm to problem solving and invention called the TRIZ method, 

from the Russian acronym for “Algorithm of Inventive Problem Solving”. (See, for example, 

Altshuller
22

). 

 

The TRIZ algorithm can indicate in what directions innovation can or will take place, providing 

insight and guidance to technology creators and users alike. 

 

Technology Emergence 

 

QTF techniques are especially useful after the chaotic sorting out of concepts and ideas in 

research and development stage, and after the technology as taken on a form and seen some 

absorption in its general use population.  However, not every innovation or new technology 

emerges to becomes a commercial success.  Research has focused on the earlier technology path 

from concept to product from a variety of approaches to better understand the process and to 

possibly accelerate or make the process more efficient, and perhaps more predictable.  

 

The first attempts looked for linear or deterministic patterns but the chaos typical of early 

development, the unpredictability of the future states in which the technology will fill a need, 

and the extreme number and non-linearity of variables, made the task impossible. 

 

Viewing technology progress in terms such as „survival‟, „filling a niche‟, or „sustainability‟ led 
to thinking about technological change as an evolutionary process.  This approach has not been 

an entirely satisfactory model still, for various reasons, but mostly because technologies have no 

„agency‟ as do living things23
. 

 

Some of the latest thinking suggests a process ecology approach to technology emergence and 

change.  Ecology is more a study of process than organism.  That technological change can be 

predicted, as, for example, along a performance trajectory, yet the technological form might not 

be, process ecology modeling shows promise to model the emergence, growth, and survival of 

innovation and technological change
24

. 

 

Sample Technology Forecasts 

 

Us Navy Destroyer Warship 

 

The first problem considered was the future of shipbuilding resource allocation to the US Navy 

class of warship, the destroyer, in the context of evolving national defense needs and seafaring 

technologies.  Analysis involved plotting the cumulated destroyer launches per date from the 

warship‟s arrival in the late 1890‟s through its present production.  Figure 10 shows the raw data 

and the best-fit logistic curve.  An excellent fit to the common logistic diffusion pattern resulted, 

with two above-the-trend spikes reflecting intense production rates during each of the two world 

wars.  The logistic pattern flattens out beginning around 1975.  As seen in Figure 11, where the 

Fisher-Pry transform renders the curving logistic pattern linear, the threshold of 90% of final or 

saturation growth had been attained by around that year.  This indicates that we are well into the 

last stage of new destroyer production.  Now that we are nearly thirty years out from the onset of 

decreasing cumulative growth, any new spike in growth is extremely unlikely.  The clear logistic 
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diffusion pattern found is typical of other historical comings and goings of warships and warship 

classes (see, for example, Marchetti
25

).   

 

     

         Figure 10. Cumulative Production of US Navy Destroyers (Data from US Navy). 

 

     Figure 11. Fisher-Pry transform presentation of the same data used in Figure 10. 

 

Not lost in this analysis is the analogy of the evolution of species with the idea of considering 

destroyers as a species.  The destroyer filled a niche, so to speak, and grew in a larger ecosystem 
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of ecological processes and evolutionary change encompassing global power dynamics and 

major technological advances.  As species do in nature, the niche affected local niches, and by 

various feedback and self-modifying loops the niches affected higher levels of organization in 

the ecosystem.  This emerging interdependency drove the co-evolution of several species of 

warships, warfare, and war strategy, even on a global scale.   

 

Species come and species go in the complex and chaotic world of natural selection, ecological 

change, and expanding diversity.  These process and systems are becoming better understood 

and modeled, and the future of these studies should shed more light on the „lives‟ of warships 
and other complex technological platforms and systems. 

 

Commercial Lighting Efficiencies 

 

A forecast of the efficiency of commercial lighting technology is presented (see Figures 12 and 

13) by assuming continued logistic growth in the adoption of increasingly efficient lighting 

sources.  The logistic, or s-curve, pattern is typical of other historical progressions of 

efficiencies, such as in the production of ammonia and in energy converting prime movers (see, 

for example, Marchetti
26).  “Moore‟s Law”, which has accurately projected the doubling of 

microprocessor chip density every 18-24 months for several decades, is a popular example of 

this phenomenon. 

 

The data for the years 1800 through 1950 were taken from Marchetti.  The efficiency of 160 

lumens/watt by 2007 was taken from Schubert
27

.  The balance of the projection through 2100 

was made by fitting the logistic function through the Marchetti and Schubert data.  An excellent 

fit is achieved for the saturation level of 200 lumens/watt.  This efficiency is about half the 

maximum theoretical efficiencies of known LED technologies (see, for example, Savage
28

).  

Through approximately 10-90 percent of its growth, lighting efficiency doubles about every 25 

years. 
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Figure 12. Logistic growth of lighting technology efficiency. 
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Figure 13. Fisher-Pry transform presentation of the same data used in Figure 12. 

Technological Literacy and Career Guidance 

 

The author shared teaching in a Professional Development course to undergraduate engineering 

and engineering technology major midshipmen at a US maritime academy.  The goal of the 

course segment on technology forecasting was to encourage students to consider not only the 

business status of a future employer but also its technological status.   

 

Students were introduced to the fundamentals of technology change and substitution, as outlined 

in this paper.  The students were encouraged to identify and study the trends of technology in 

their own career paths and to be strategic in their choice of employers.  Students were introduced 

to the levels of technological risk in job choices, e.g., a high-employment, mature-technology 

company might be a greater long-term risk than a low-employment, new-technology company.  

The level of career technological risk was a new concept to them, but they were given means to 

begin to assess the technological risk in future employment, and to consider the amount of risk 

they were willing to accept.  

 

Conclusion 

 

Understanding technology change and how to influence the process has been identified as a 

critical societal problem, and efforts to define and increase technological literacy have been 

underway as an approach to solving the problem.  Technological literacy cannot be complete, 

therefore, without an understanding of major processes of technological and social change.  

Knowledge of means to understand and project paths of technology and innovation would 

constitute important content in a technology literacy program. 

    

This paper has presented an overview of the major processes describing technological change 

indentified through quantitative technology forecasting techniques, and provided examples of the 
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author‟s experiences researching and applying the methodologies.  The author shared his 

experience introducing the concepts and sample studies in discussions of career and personal 

technology choices with undergraduate students in introduction to engineering and engineering 

technology courses.  
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