
AC 2010-2338: ON MAPLET DEVELOPMENT AND PROGRAMMING TUTORIAL
FOR SCIENCE AND ENGINEERING STUDENTS

Aarti Narayanan, Magnificat High School

Ganapathy Narayanan, The University of Toledo

© American Society for Engineering Education, 2010

P
age 15.921.1

On Maplet Development and Programming Tutorial

for Science and Engineering Students

Abstract

The information contained in this paper is of an introductory nature a tutorial on the ‘Maplet

Development and Programming’ for selected science and engineering students. The knowledge

gained by the authors is documented here to help students who are interested in pursuing science

and/or engineering for their degree, and who have a keen interest in a hands-on experience for

solving selected science/engineering problems using MAPLE. As a part of this tutorial,

technical how-to details are given to help the student develop simple maplets with simple

programming constructs that are needed to solve these selected problems. The process of

developing Maplets demonstrated within this tutorial will provide a hands-on experience using

MAPLE. The authors believe that this paper will engage engineering and science students to

create or modify existing Maplets for their other college course activities. The tutorial assumes a

familiarity with basic programming constructs, and would be appropriate after an introductory

programming course, one year of the calculus and one year of any physical science.

Introduction

The content of this paper serves as an introduction to ‘Maplet Development and Programming’.

The hands-on Maplet examples given in this paper may serve as the first GUI (Graphical User

Interface) programming experience for the high school or college student, and are directed

towards students pursuing a first science and/or an engineering degree. A minimum of the

calculus, science, the use of computers, and the use of MAPLE is expected to appreciate the

application details given in this paper to develop simple Maplets with its programming

constructs. Any student can easily create these Maplet examples given in this paper with

minimum effort.

The body of the paper starts with the motivation discussion section with an explanation for a

need to teach this introductory MAPLE programming language and the creation of Maplets for

high school/college science and engineering students to help solve science or engineering

problems encountered in their coursework. The reminder of the paper deals with the actual

demonstration of the Maplet tutorial starting with a discussion on ‘What is a Maplet?’, then

proceeds with the detailed discussion on MAPLE programming language constructs and the two

methods to create Maplets in MAPLE. In short, one way to create Maplets is by using MAPLE

programming constructs, and the other method is to use ‘Maplet Builder’ assistant that MAPLE

provides to create MAPLE program constructs for building the corresponding Maplets

interactively.

P
age 15.921.2

Motivation for a need to teach Maplets

The MAPLE software provides an opportunity for students to develop a GUI interface to a

powerful math solving program. While many engineering curricula include programming

languages, the MAPLE software provides an easier entry into the problem solving possibilities

with Maplet programming. Let us see why MAPLE provides an easier entry for students.

It is a well known fact that most high schools and colleges help students to learn the basic

symbolic analysis (Algebra, Trigonometry, Geometry and Calculus) and numeric procedures

(Plot of functions, Solution of Algebraic Equations, Series, Finding Roots of Equations, and so

on). These learning subject materials form the basis to help student to solve science and

engineering problems of today. However, just knowing the subject material to solve a particular

science or engineering problem is not enough for a modern student of today. The ability to

automate the solution process or the student ability to produce the answer ‘quickly’ is becoming

a norm in the scientific community and in the workplace. The invention of computers and its

successive developments have helped tremendously in terms of automation of performing

numerical, symbolic and other mundane calculations.

In the age of working with and using computers for solving everyday problems, it is imperative

that the young ‘motivated’ students are taught the ‘computer languages’ to develop the computer

programs. There are a number of computer languages that have been developed for use in

automating sequence of ‘computations’. Some older computer languages such as FORTRAN &

BASIC (developed in 1950’s) have given understanding to the development of modern object-

oriented languages such as Visual Basic, C++ and JAVA. Of course, these are not the only

known exhaustive set of computer languages. There are many other computer languages of

special purpose significance and are used in select scientific environment.

In particular, the students today are taught some computer language programming constructs and

the associated program creation to help solve science and engineering problems, with some built-

in graphical user interface convenience. In fact, many schools and college curricula have this

mind. Most high schools teach either MS Quick Basic or some advanced scientific and graphic

calculator like TI-83 or TI-89. Many colleges teach C or Visual Basic or C++ or JAVA as part

of programming constructs learning for automation or graphical user interface creation. In all

these languages, the general programming constructs are the same with subtle differences,

namely consider programming constructs for decision making (if-then-else), for loops (do-loops

or for-next loops), for limits within (while or until), and for break/or pause or stop statements.

These Visual Basic or C++ or JAVA based developed programs are just sequence of

computational steps for the computer with the ‘knowledge base’ that must be provided by the P
age 15.921.3

programmer (student) to solve only that particular science or engineering problem. Of course,

the program will depend on a specific knowledge base that the program is designed for.

The MAPLE computer program is a powerful symbolic and numerical software developed by

professional programmers with ‘built-in math knowledge’ of Algebra, Trigonometry, Calculus,

Functions, Differential Equations, Plot capability, and in addition, the well-known computer

programming constructs of other above languages. Thus, a program constructed using MAPLE

can use the Math knowledge base in addition to providing the automation steps to solve for a

powerful science or engineering problem. In addition, the authors found that MAPLE

programming construct is far superior and ‘easy to learn’ in terms of creating automated

programs with graphical user interfaces. Please note that ‘easy to learn’ term is used when one

compares the program constructs ‘easiness’ of other languages including Visual Basic, C++ or

JAVA for developing GUI programs with that of the facility provided by MAPLE.

A second view point is that high school or undergraduate students do spend a semester or more

in learning programming constructs of any language, either directly as in an introductory

programming course or in conjunction with another introductory course learning to solve

problems using programming constructs on computers. Today, these courses are in the curricula

of major engineering or science programs in many well known schools, in some format or

another. The authors believe that instead of Visual Basic or C++ or JAVA language

programming constructs, each school should consider such a programming construct tool that is

not only useful to write the regular textual programs on computers, but also the tool chosen

should help the students to create sophisticated, powerful, math-oriented, general purpose, web-

convertible programs, and be able to create a Graphical User Interface (GUI) for these programs.

Many such tools exist today for such teaching purpose, and one such tool is the MAPLE

Software. The second author contends that the programming tool must also include more

sophisticated and symbolic/numerical oriented mathematical analysis capability that a student of

science and engineering would use, and that the MAPLE software tool provides this ability.

In fact, MAPLE is a powerful and sophisticated symbolic tool with advanced numerical facilities

that are not available in the Basic or C or C++ or Java languages. MAPLE has all the usual (if-

the-else, do-loops, while-loops, break-pause-stop) programming constructs that these other

languages provide. But the power to easily create the GUI programs in MAPLE along with the

background math (knowledge base) kernel is far superior in comparison to the other

programming languages.

One specific example of the easiness of GUI program development in MAPLE is given here.

GUI programs are event-based programs that require both the placement of graphical objects that

the user sees on screen and the development of the necessary event action routines. With

MAPLE software, these GUI programs are only a few lines (long) for simple programs, and

P
age 15.921.4

MAPLE takes care of most of the graphical object creations with one line per object. Also, the

associated event actions are also very short. Such GUI programs are either impossible (like the

case of programs that can perform 100 digit computations in a symbolic manner) or very long

(100 lines or more for even simple GUI programs) in Visual Basic or C++ or Java, with specific

object type specification being important.

The reasons cited above lead the authors of this paper to provide a hands-on basic tutorial as a

way of demonstrating the ease and power of creating GUI programs with MAPLE programming

constructs. The paper assumes knowledge of the usual (if-then-else, do-loops, while-loops)

program constructs in MAPLE, but the paper focuses its discussion on the powerful GUI

program creation within MAPLE as a hands-on tutorial. The usual program constructs are well

discussed within the MAPLE software under help or an introductory MAPLE programming

book
1
 can be read.

A word of caution is in order for the effective learning of the Maplets creations and the

associated MAPLE program constructs discussed in this paper. Since the paper is written with

examples with minimal information on MAPLE program constructs
2
, it is essential for the

student, or the reader of this paper, to type the GUI programs in this paper on a computer with

MAPLE installed to fully appreciate the easiness of MAPLE GUI programs creation, and to

become fully acquainted with the associated ‘Maplets program constructs’. The Maplets

elements table provided in this paper for such Maplet constructs may be used as a reference

guide for creating other Maplet programs. In addition, if more help on performing calculus

within MAPLE is needed for using MAPLE statements within Maplets or its modules, Ref 3 may

give a helping hand in learning MAPLE for its general use.

What is a Maplet?

A Maplet is a Graphical User Interface (GUI) application for and written in the MAPLE software

and a Maplet can be launched from a MAPLE session. In short, a Maplet allows a MAPLE

software user to combine MAPLE math libraries and user procedures with ‘Interactive Windows

and Dialogs’.

To understand Maplets and their creation in the MAPLE software, one needs to understand the

creation of a ‘Graphical User Interface’ (GUI) application in general. A GUI application is a

combination of ‘Graphical User Interface Elements’ and of a set of ‘Procedures’ needed to carry

out ‘Actions’ associated with the ‘User’ requests through the ‘Clicks’ of ‘GUI Elements’. In this

paper, the discussion will be limited to the specific Maplet ‘GUI’ elements and to the simple

‘Action’ procedures needed for the Maplets created for the paper. No attempt has been made in

this paper to be exhaustive in order to explain all the programming options to write complex and

advanced procedures or advanced Maplets in MAPLE. However, this paper does explain the

P
age 15.921.5

major concept details of the ‘Maplet Application Development(MAD)’ in MAPLE, and simple

Maplet examples are given to give hands-on experience in learning and creating Maplets in

MAPLE.

There are two approaches to creating Maplets within the MAPLE software: (1) First is the

‘Maplet Creation using Command lines’. This approach is a bit more involved than the second

interactive Maplets build approach to create Maplets. (2) The second is the ‘Maplet Creation

using the ‘Maplet Builder Assistant’; the MAPLE Command approach (the first approach) is far

more powerful and more flexible than using the Maplet Builder Assistant. Hence, the first

command lines approach is discussed before the second approach. However, either approach can

be used for Maplet creation.

Maplet Creation using Command lines

A Maplet command construct is easy enough to ‘understand’ by looking at a very simple ‘Hello

World!’ Maplet (this is the usual first program one created when learning C or C++ or Java

language, hence this paper follws the tradition. Figure 1 shows the one line (second line)

MAPLE statement to construct this Maplet. The first line in Figure 1 is always needed in any

Maplet to load the ‘Maplet Elements’ before using the Maplets elements on the following

command lines of the Maplet statements. There are several things to take notice of in this Maplet

construct. All other Maplets have a very similar construct except for the list element ‘[“Hello

World!”]’, and each Maplet has a different particular Maple List instead of the list element

‘[“Hello World!”]’.

Parts of a Maplet Application Program Construct

There are two parts to a Maplet Application Program statement construct, as seen in the above

‘Hello World’ example:

(1) First is the Maplet creation in the MAPLE software by using the ‘Maplet’ command with a

list of Maplet elements within it as an input argument (see second line in Figure 1). In the ‘Hello

World’ Maplet of Figure 1, we used only one argument (Maplet ‘LABEL’ Element) within the

‘Maplet(…)’ argument of the ‘Maplet Command’, and this ‘LABEL’ element needs some text as

the list of ‘ONE’ Maplet element. Every (and all) list of Maplet elements is represented within

With(Maplets[Elements]);

Maplets[Display] (Maplet([“Hello World!”]));

Figure 1: Hello World Maplet Example 1

P
age 15.921.6

square brackets (“[]”) as shown in the ‘Hello World’ example. One could use as many elements

within the Maplet input list as is needed by the application program construct. The other

application examples given below in this paper show the Maplet input list containing many other

Maplets elements.

(2) Second item to notice of a Maplet construct is the ‘Maplets[Display]’ action verb needed to

request that the MAPLE kernel to display this particular Maplet. This action verb

‘Maplets[Display]’ is ALWAYS needed in the MAPLE software environment to display any of

Maplets created using the MAPLE software. The input argument to this Maplet action verb

‘[Display]’ is the particular Maplet that needs to be displayed on the screen for the user. Please

note the letter ‘s’ on ‘Maplets’ at the end of ‘Maplet’ word while using the action verb ‘Display’

procedure of ‘Maplets’ library. Of course, one could define the Maplet with a variable name

and use this name as input to the action verb ‘Maplets[Display]’. The result of such a Maplet

screen display of the GUI window created after execution of the Maplet command within

MAPLE is shown on the left side of Figure 1. That is it in terms of the concept of the Maplets

creation, and one needs to understand the various Maplet elements (arguments) for other uses.

Maplets Elements

The first line of the ‘Hello World’ Maplet example (see Figure 1) is mandatory to load the

Maplets library of ‘Elements’ before any Maplet can be constructed by the MAPLE kernel with

the use of Maplet statement. The description and the use of other Maplet elements of this library

are discussed through the hands-on development of several Maplets Examples. A list of select

and important Maplet elements is defined under Table 1.

Before the other Maplet elements are discussed in the Maplets application examples, it is

important to understand how a ‘LIST’ can be constructed in MAPLE. The MAPLE software

uses one ‘List’ or ‘Nested List’ as the input argument to any ‘Maplet(…)’ command for its

creation. A LIST in MAPLE is an ordered sequence of comma-delimited ‘MAPLE expressions

or Maplet Elements’ that is enclosed in square brackets ‘[]’. For example, ‘[expr1, expr2,

expr3]’ is a list of three expressions ‘expr1, expr2 & expr3’. Of course, one could have any

numbers or text or any appropriate Maplet elements in any of these expressions, and the list may

consist of any number of expressions within the ‘[]’ square brackets. A ‘Nested List’ is also an

ordered sequence of expressions enclosed in ‘[]’ square brackets in which any one or more of

these expressions is itself a list. For example, ‘[expr1, [expr2, expr3], expr4]’ is a nested list

with the list ‘[expr2,expr3]’ inside the outer list.

Within any Maplet application programs, the text string used as a Maplet ‘Label’ element,

‘TextBox’ element used for ‘User Prompts’, ‘TextField’ element for user input of fields and

other Maplet elements are defined as the expressions in the ‘Maplet List’ constructed as an input

P
age 15.921.7

argument to the Maplet command. The main Maplet Window GUI definition includes the main

list (the outermost list) of the nested list used as input argument to the Maplet Command. The

other lists within the main list are an ordered sequence of Maplet elements needed as part the

Maplet Application Design. Many of these selected Maplet elements are defined in Table 1.

Table 1: Twenty important sample Maplets Elements

Serial Number Maplet Element

Name

myMapletList Expression

#1 “OK” Button Button(“OK”, ‘action verb’)

#2 “Clear” Button Button(“Clear”, ‘action verb’)

#3 “Cancel” Button Button(“Cancel”, ‘action verb’)

#4 “Text” Label “Enter some Text:”

#5 “Text Field” Input TextField[‘TextFieldName’] ()

#6 “Shutdown” Action

Verb

Shutdown()

#7 Set Option SetOption(‘TextField’ = “ “)

#8 Window Window()

#9 “Text Input” Box TextBox[‘TextFieldName’] ()

#10 “Plotter” Plotter[‘PlotHandleName’] ()

#11 “Evaluate” myProc Evaluate(‘TextOutFieldName’ = “myProc”)

#12 “Evaluate”

int(f(x),x)

Evaluate(‘TextOutFieldName’ = ‘int(TFN1,TFN2)’)

#13 “Evaluate” plot() Evaluate(‘PlotHandleName’ =’plot([TF1,TB1],

TF2=0..SL1)

#14 “CheckBox” CheckBox[‘CBname’] (‘value’ = ‘true’)

#15 “ComboBox” ComboBox[‘CoBname’](‘value’=”red”, [“blue”,

“green”, “yellow”])

#16 “Label” Label(“Text”)

#17 “ListBox” ListBox[‘LBname’](‘value’=”Lvalue1”,

[“Lvalue2”,”Lname3”])

#18 “MathMLViewer” MathMLViewer[‘MMLVname’](‘value’=x^2 – 4*x

+5)

#19 “RadioButton” (set

of two radio buttons)

[RadioButton[‘RBname1’](“first”, true,

‘group’=”’BG1),

RadioButton[‘RBname2’](“second”,’group’=’BG1’)]

#20 “Slider” Slider[‘SLname’](10, 0..20, ‘majorticks’=10,

‘minorticks’=2, ‘showticks’)

P
age 15.921.8

Putting together one or more of these Maplet elements in Table 1 as an appropriate list within the

‘Maplet command’ can produce many of the simpler Maplet Applications, as shown below.

Several of these simpler Maplet applications are developed below using the Maplets command

lines approach before showing how to use the Maplets Builder Assistant.

Maplets Application Examples

Of course, only select application examples using powerful MAPLE Calculus commands and

using powerful MAPLE Student Tutors are given in this paper. Similar Maplets with other

MAPLE commands and other MAPLE tutors can be easily constructed by the student following

the given hands-on Maplet Application Examples.

Maplet Example 2-A: ‘Hello World’ Example

“Hello World” with one Button Element is developed using Maplet command line approach

consisting of ‘Button’ element along with the ‘Label’ or ‘Text’ Element, as shown in Figure 2-A

Maplet Example 2-B: ‘myMapletList’ Maplet

The above Maplet Example 2-A can be rewritten in a more generic form of ‘myMapletList’

variable as input argument to the Maplet command (as shown below in Figure 2-B), where

‘myMapletList’ expression for this example is the same as the Maplet List consisting of two

Maplet elements, the “Text” element with the “Button” element: ‘[“Hello World”, Button(“OK”,

Shutdown())]’.

With(Maplets[Elements]);

Maplets[Display] (Maplet([

[“Hello World”, Button(“OK”, Shutdown())]

]));

Figure 2-A: Hello World Maplet with one Button

With(Maplets[Elements]);

myMapletList:= [“Hello World”, Button(“OK”, Shutdown())]:

Maplets[Display] (Maplet([myMapletList]));

Figure 2-B: ‘myMapleList’ Maplet

P
age 15.921.9

P
age 15.921.10

How to construct more general and useful Maplet?

Now, with the above Maplet command construct and twenty important Maplet Elements given

under Table 1, we can construct various ‘powerful’ Maplets that are very useful in mathematics,

engineering and sciences. Of course, the power of the Maplets in mathematics, science and

engineering is due the power of Maple kernel library and associated commands in mathematics

and its use in science or engineering problems. So, the application (student) developer can

combine one or many Maplet elements of Table 1 with one or many of its occurrences in the

Maplets list, arranged sequentially in a nested list as ‘myMapleList’, and use Figure 2-B or 2-C

like Maplet Command lines construct to create any sort of useful and general purpose

mathematical or or science or engineering Maplet.

It is worth noting that any Maple procedure or function can be used within the ‘Evaluate’ Maplet

element to make the user constructed Maplet as powerful as the MAPLE software permits the

user, with very minimal limitations. All MAPLE built-in and user defined MAPLE procedures

and functions, using the usual, if-then-else or do-loops or while-loops, program constructs, are

allowed to be used within Maplet command, as needed user triggered action control that perform

certain work within the Maplet GUI program. Due to this reason, a MAPLE user can construct

very useful and powerful Maplet programs, in mathematics, engineering or sciences, even with

few powerful MAPLE commands like ‘plot’, ‘dsolve’, ‘int’, ‘diff’ and so on. It is shown below

how some of these useful and powerful Maplets are constructed with a combination of Maplet

elements from Table 1, as part of ‘myMapletList’ in the Maplet Command construct. For these

examples, ‘myMapletList’ variable is not defined at all, but the Maplet list is defined explicitly

as input argument to the Maplet command. The Maplet construct of Figure2-C for defining a

‘Maplet first with a window title’ is used in these examples, and the Maplets Display verb uses

the Maplet variable name to display it.

Maplet Example 3: ‘Integrate’ Maplet

There are many powerful MAPLE commands for use in Calculus, and here in this example, the

integrate ‘int’ command is used to develop an ‘Integrate’ Maplet. Other similar Maplets for

other powerful Calculus commands including ‘diff’, ‘AproximateInt’, ‘dsolve’ can be developed

following this Maplet example. For any such Maplet (application) development, it is best to

design the placements of all needed graphical Maplet elements first, and then construct the

Maplet elements List using Table 1. For the ‘Integrate’ Maplet, the Maplet elements to be used

are ‘Labels’, two ‘TextField’elements, three ‘Button’ elements, and one ‘TextBox’ element

needed for resulting output of the integrated expression. Figure 3-A shows the ‘Integrate’

Maplet (Application) command lines. Figure 3-B displays the on-screen window of the

‘Integrate Maplet’ with a sample User function entered for integration and its result as seen in the

output TextBox.

P
age 15.921.11

Maplet Example 4: ‘Plot’ Maplet

Next hands-on example is a Maplet ‘plot’ application that will allow the user to graphically

visualize the 2-D plot of ANY mathematically consistent continuous (one-to-one transformation)

function y=f(x). The user has the desire to have a slider input for the x-variable values say

between -20 to 20 (this can be changed for other ‘Plot’ Maplets). Thus, this Maplet (GUI)

Application requires many Maplet elements, including (1) one or many user “TextField” Input

Box for input of function, and/or variable limits, (2) one plot output box using the ‘Plotter’

element, (3) one or more Buttons like ‘PLOT’, ‘Cancel’, ‘Close’ etc. The Maplet Application

design consists of arranging these elements on various rows (inner Lists) and columns (elements

of inner list) of the window, and thus, the ‘myMapletList’ construct, to be used in the Maplet

Command construct, is as shown in Figure 4-A. Figure 4-B displays an on-screen window with

the plot output result of ‘Plot Maplet’ constructed for the ‘Plot’ application. With a bit of work,

‘Plot-3D’ Maplet can be developed by the student.

restart;

with(Maplets[Elements]):

myIntMaplet := Maplet(Window('title'="MyIntMaplet", [

["Integrand: ", TextField['TF1']()],

 ["Variable of integration: ", TextField['TF2'](3)],

 TextBox['TB1']('editable' = 'false', 3..40),

 [Button("Integrate", Evaluate('TB1' = 'int(TF1,TF2)')),

 Button("OK", Shutdown(['TF1', 'TF2', 'TB1'])),

 Button("Clear", SetOption('TF1' = ""))]])):

Maplets[Display](myIntMaplet);

Figure 3-A: ‘Integrate’ Maplet Application

Figure 3-B: ‘Integrate’ Maplet (on-screen display)

P
age 15.921.12

Pre-calculus Geometry Example 5: ‘Triangle’ Third Side Length Compute Maplet

A pre-calculus geometry example 5 is the ‘Triangle’ Maplet construct that can compute the third

side length of a triangle using the cosine law. Figure 5-A shows the ‘Triangle Maplet’

application command lines, and the on-screen display is on Figure 5-B. There are many such

pre-calculus geometry problems that a high school or college student encounters in his/her

mathematics course. Most such pre-calculus geometry or trigonometric problems can follow this

hands-on example to yield a variety of pre-calculus geometry or trigonometric Maplets. Of

restart;

with(Maplets[Elements]):

myPlotMaplet := Maplet(Window('title'="myPlotMaplet",[

 ["Enter Function to Plot", TextField['TF1']()],

 ["Function of Variable, x or t ", TextField['TF2'](3)],

 Plotter['PL1'](),

 Slider['SL1'](0..20, 5, 'showticks', 'majorticks'=5, 'minorticks' = 1, 'visible' = 'true'),

 [Button['B1']("Plot", Evaluate('PL1' = 'plot([TF1], TF2=-SL1..SL1)')),

 Button("OK", Shutdown(['TF1', 'TF2'])),

 Button("Clear", SetOption('TF1'= ""))]])):

Maplets[Display](myPlotMaplet);

Figure 4-A: ‘Plot’ Maplet Application

Figure 4-B: ‘Plot’ Maplet (On-Screen Display)

P
age 15.921.13

course, with a bit of work, this Maplet can be more generalized for solving any number of

geometry problems in pre-calculus.

First Order Differential equation Solver Maplet Example 6: ‘dsolve’ Maplet

One of the important areas of mathematical study is the understanding of solving the first and

second order Differential Equations (DE) that occurs in sciences and in engineering. Once

having understood the how-to of determining the DE solution, one could use the MAPLE

‘dsolve’ command to solve most DE’s that occur in sciences and engineering. So, instead of the

long hand approach of typing in the ‘dsolve’ command, it would help to develop a ‘dsolve’

Maplet for solving the physical problem. Figure 6-A shows the powerful and useful ‘dsolve’

Maplet application commands lines for this First Order DE Maplet development. A similar

second order DE ‘dsolve’ Maplet can be easily developed by the student following Figure 6-A.

The on-screen display of the ‘dsolve’ Maplet is shown as Figure 6-B. The ‘dsolve’ Maplet

Figure 5-B: ‘Triangle’ Geometry Maplet Application (on Screen display)

restart;

with(Maplets[Elements]):

myTriangleMaplet := Maplet(Window('title' = "myTriangleMaplet", [

 ["Enter One Side Length of Triangle", TextField['TS1']()],

 ["Enter Second Side Length of Triangle", TextField['TS2']()],

 ["Enter Included Angle (in Degrees)", TextField['TIA']()],

 ["Computed Third Side Length of Triangle", TextField['TS3']()],

 [Button['B1']("Compute Third Side Length",

 Evaluate('TS3' = 'sqrt('TS1'^2+'TS2'^2-2*'TS1'*'TS2'*cos((1/180)*'TIA'*Pi))')),

 Button("OK", Shutdown('TS1', 'TS2', 'TIA')),

 Button("Clear", SetOption('TS1' = ""))]])):

Maplets[Display](myTriangleMaplet);

Figure 5-A: ‘Triangle’ Geometry Maplet Application

P
age 15.921.14

application can also be modified for other similar symbolic solution commands available in

MAPLE.

Maplet Example 7: Call MAPLE Tutors under Student Package

The Student package wthin the MAPLE software is a collection of sub packages designed to

assist with the teaching and learning of standard undergraduate mathematics. There are many

routines for displaying functions, computations, and theorems in various ways. There is also

support for stepping through important computations. The Student package is also designed to

provide an introduction to the power of the full MAPLE system. The Student package contains

the following sub packages: precalculus(Precalculus sub-package), linear algebra (Linear

Algebra sub-package), single-variable calculus (Calculus1 sub-package), multiple-variable

calculus (Multivariate Calculus), and vector calculus(VectorCalculus sub-package).

Figure 6-B: ‘dsolve’ First Order Differential Equation Solver Maplet

restart;

with(Maplets[Elements]):

mydSolveMaplet := Maplet(Window('title' = "mydSolveMaplet", [

 ["Enter First Order Differential Equation", TextField['TS1']()],

 ["Enter Independant Variable, x or t", TextField['TS2']()],

 ["Enter Initial Condition y(0) = ", TextField['TIC']()],

 ["Solution y(x) = ", TextField['TS3']()],

 [Button['B1']("dSolve", Evaluate('TS3' = 'dsolve({'TS1', 'TIC'})')),

 Button("OK", Shutdown('TS1', 'TS2', 'TIA')),

 Button("Clear", SetOption('TS1' = ""))]])):

Maplets[Display](mydSolveMaplet);

Figure 6-A: ‘dsolve’ First Order Differential Equation

S l

P
age 15.921.15

A ‘call MAPLE Tutor’ Maplet to access or use any of these sub-packages under the Student

package is created using a Combo-Box Maplet element. Figure 7-A shows the ‘Call MAPLE

Tutor’ Maplet application command lines. The combo box element helps the Maplet user in

either choosing the two sub-packages already in the drop-down list or in editing the MAPLE

Tutor names in the sub-packages. The names of the sub-packages and the names of all the

available MAPLE Tutors under the Student package can be listed by choosing either the

‘with(Student)’ or by editing ‘with(Student[sub-package-name])’ as the value of the ComboBox

before clicking the Button ‘Call MAPLE Tutor’ inside the GUI screen. The onscreen window,

as shown in Figure7-B, is displayed when the Maplet command is executed.

Maplet Creation using the ‘Maplet Builder Assistant’

There is an alternate way to design and create Maplets in the MAPLE software. This is an

interactive and visual form of creating each of the Maplets elements in the associated Maplet

designed for a particular application. This ‘Maplet Builder’ is a Maplet itself provided by the

MAPLE software under the ‘Tools’ menu as one of the many ‘Assistant’ maplets. Once all the

elements of a Maplet is created interactively and placed visually in its place within a Maplet

Window, the element properties are inserted for the Maplets elements used for the particular user

defined Maplet applicaton. There are one or many properties for each of these Maplet Elements.

Here, the paper discusses only the main properties that are essential for the Maplet working.

The two most important properties of Maplets elements are the ‘Caption’ property for the

Button, and the ‘OnClick’ property for the specification of the action expression to be executed

on a change or on a click of the Maplets element during the ‘Run’ of the Maplet by the user.

So, these two steps of the interactive approach of creating the Maplet application using the

‘Maplet Builder’ is discussed below:

myTutorCallMaplet := Maplet(Window('title' = "myTutorCallMaplet", [

 ["Choose or Modify Tutor Name in BoxValue:",

 ComboBox['CoB1']('value' = "Student[Calculus1][DiffTutor]()",

 ["Student[Calculus1][DiffTutor]()",

 "Student[Precalculus][ConicsTutor]()",

 "with(Student)", "with(Student[Calculus1]), "with(Student[Precalculus])"])],

 ["End Result of Last Tutor Call", TextBox['Tresult'](3..40)],

 [Button['B1']("Call Maple Tutor", Evaluate('Tresult' = 'CoB1')),

 Button("OK", Shutdown('Tresult', ['CoB1'])),

 Button("Clear", SetOption('Tresult' = ""))]])):

Maplets[Display](myTutorCallMaplet);

Figure 7-A: ‘myTutorCall’ under Student Package Maplet Application

P
age 15.921.16

Step 1: Place each of the Maplet Elements on the ‘Layout’ pane, as is needed for design of the

Maplet application, within its window;

Step 2: Modify the properties of each of the Maplet Elements, as placed, for its proper working

during the ‘Run’ of the Maplet by the ‘User’.

Before discussing the two hands-on examples, a short discussion about the ‘Maplet Builder’

access and its desktop window GUI is given here. A detailed and exhaustive discussion on the

‘Maplet Builder’ can be obtained in MAPLE using ‘Help’ facility. It is to be noted that the

‘Maplet Builder’ is itself an advanced Maplet created by the MAPLE software vendor to help the

MAPLE application (program) user-developer to create the various other Maplets. The ‘Maplet

Builder’ Maplet can be run on the MAPLE desktop within the MAPLE environment by choosing

the ‘Maplet Builder’ under the ‘Assistants’ sub-menu of the ‘Tools’ menu on the menu bar of the

MAPLE desktop.

Maplet Builder Interface

The Maplet Builder contains four panes.

 The ‘Palette’ pane displays several palettes, which contain Maplet elements, organized by

category. The Maplet Builder contains Body, Dialog, Menu, ToolBar, Other, Layout, and

Command element palettes. For a detailed description of the elements, please read the

‘Overview of the Maplet Builder Palette Pane’ help page by clicking the ‘help’ menu inside

the ‘Maplet Builder’.

 The ‘Layout’ pane displays the visual elements that are added to the Maplet. The Layout

pane is the focal point of the Maplet Builder because it shows the visual layout of the Maplet.

The Maplet Builder indicates BoxColumn and BoxRow elements in the Layout pane using

borders.

 The ‘Command’ pane displays actions, commands and menu items that you have created for

the Maplet.

Figure 7-B: ‘myTutorCall’ Maplet for Student Package Maple tutor Call

P
age 15.921.17

 The ‘Properties’ pane displays the properties of an instance of an element in the Maplet. The

Properties pane allows you to set properties for the elements in the Maplet. For example,

the properties of a Button include: the ‘foreground’ property to set the color of the button

caption (double-click the black foreground color region, which launches a color dialog); the

‘onclick’ to set the action that the Maplet performs when the user clicks the button (from the

‘onclick’ drop-down menu, and select one of the available ‘Action’ elements); the ‘caption’

to set the label on the button (in the ‘caption’ text field, enter a string);

Saving, Opening, and Running a Maplet

The three most important operations on any Maplet are the ‘open’, the ‘save’ and the ‘Run’

operations within the ‘Maplet Builder’. A short description of how-to of these operations is

given below.

 To open a .maplet file within the Maplet Builder, select ‘Open’ from the ‘File’ menu. Please

note that opening a .maplet file edited outside of the Maplet Builder may not work properly.

 To save a Maplet designed with the ‘Maplet Builder’, select ‘Save’ or ‘Save As’ from the

‘File’ menu. This will save the Maplet as a .maplet file.

 To run (execute) a Maplet designed with the Maplet Builder, select ‘Run’ from the ‘File’

menu.

Maplet Example 8: ‘Plot’ Maplet using the Maplet Builder

All of the previous Maplets can be recreated using the ‘Maplet Builder’. However, in this paper,

Figure 4-B is recreated interactively using the Maplet Builder. The other Maplets can be

recreated in a similar manner. The following is the descriptive steps to create the ‘Plot’ Maplet

interactively using the Maplet Builder.

1) Open a MAPLE session on the computer (assuming the MAPLE software can be

accessed locally on the computer or by using the MapleNet);

2) Click the ‘Maplet Builder’ under the ‘Assistants’ sub-menu located under the ‘Tools’

menu. The Maplet Buider interface window opens up under the MAPLE Desktop;

3) To start a new Maplet definition, select ‘New’ from the ‘File’ menu;

4) Divide the Maplet window in the ‘Layout’ pane into several boxes for holding and

displaying the arrangement of each of the Maplets Element to be added; (a) To add

multiple rows to the Maplet Window in the layout pane, click the layout pane Maplet

window, and enter ‘4’ in the numrows property; Four boxes appear inside the outer box

on the ‘Layout’ Pane; (b) Click row 1 ‘Box’ in the layout pane, and enter ‘2’ in the

numcolumns property; (c) Next, click row 2 ‘Box’ in the layout pane, and enter ‘2’ in

P
age 15.921.18

the numcolumns property; (d) Next, click row 4 ‘Box’ in the layout pane, and enter ‘3’

in the numcolumns property;

5) Drag the appropriate Maplet elements in each of these boxes, one or more per box seen in

the Maplet layout window; (a) Drag the ‘Label’ element to row 1, column 1 box; (b)

Drag another ‘Label’ element to row 1 column 2 box; (c) Drag the ‘TextField’ element to

row 2, column 1 box; (d) Drag another ‘TextField’ element to row 2, column 2 box; (e)

Drag the ‘Plotter’ element to row 3 box; (f) Drag the ‘Slider’ element under the ‘Plotter’

element in row 3 box; (g) Drag one ‘Button’ each to row 4, columns 1, 2 & 3 boxes;

6) Change the properties of these Maplets elements as needed and designed for the Maplet;

(a) Click ‘Label1’ element, change the caption property to the string, ‘Enter a function of

x or t to Plot:’; (b) Click ‘Label2’ element, change the caption property to the string, ‘Is

it a function of x or t? Enter x or t symbol:’; (c) Click ‘Plotter’ element, double-click the

background property, and in the Color dialog that appears, click the white font in the

top-left corner of the color palette, and then click OK; (d) Click ‘Button1’ element,

change the caption property to the string ‘Plot’, and change the onclick property

dropdown value to select <Evaluate>. An Evaluate Expression window appears. The

Target menu lists the available target elements. The Option menu lists the available

elements for the target selected. The List group box lists the available elements to retrieve

the information from. In the Evaluate Expression dialog window, ensure the Target is

set to Plotter1, and enter the expression to evaluate as ‘plot(TextField1, x = -

slider1..slider1)’. Ensure that a semi-colon (;) is not included at the end of the plot

command. Lastly, click Ok in the Evaluate Expression window to return to the Maplet

Builder. (e) Next, click ‘Button2’ element, change the caption property to the string

‘OK’, and change the onclick property dropdown values to select <Shutdown>. In the

Shutdown Event dialog, click OK to return to the Maplet Builder. (f) Next, click

‘Button3’ element, change the caption property to the string ‘Clear Plot’, and change the

onclick property dropdown value to select <Set Option>. In the <set Option> dialog

window, ensure that the Target is set to ‘Plotter1’, and choose the value to blank. (g)

Lastly, click on the ‘Slider1’ element and change ‘filled’ to ‘true’ value; change ‘upper’

to value ‘20’; change the ‘majorticks’ to value ‘5’; change ‘Onchange’ to ‘Button1’

referencing ‘Plot’ button.

7) Save the Maplet as ‘myPlotMaplet2’ by choosing ‘Save As’ from the ‘File’ menu;

8) Run ‘myPlotMaplet2’ Maplet by choosing ‘Run’ from the ‘File’ menu.

Maplet Example 9: ‘UsingmyIntProcMaplet’ Maplet using the Maplet Builder

Instead of sidetracking the student with a very advanced MAPLE procedure development and its

use in a Maplet, the ‘Integrate’ Maplet example 3-A is modified to show how a simple

‘myIntProc’ MAPLE procedure is used in the ‘UsingmyIntProcMaplet’ Maplet shown in Figure

8. This simple ‘myIntProc’ MAPLE procedure checks the user expression string for correct

P
age 15.921.19

syntax in input for use in the ‘int’ MAPLE command. The ‘myIntProc’ MAPLE procedure is

used in the expression for the Button ‘Integrate’ used in the Maplet.

An interesting combination Maplet can be easily created using the ‘myIntProc’ MAPLE

procedure, and the ‘myPlotMaplet2’ Maplet example 8 done previously using the Maplet

Builder. The combination Maplet can result by modifying ‘myPlotMaplet2’ Maplet example 8

to create an new application showing two plots, one of a given function and second of its

integrated function. Such activity is a minimal work by changing the ‘plot’ expression in the

<Evaluate> action of the ‘Plot’ Button ‘OnClick’ property. Such an exercise is left as an exercise

for the student.

An advanced Maplet Example 10: ‘BeamDeflection’ Maplet

Instead of giving descriptive steps to create the ‘BeamDeflection’ Maplet, the on-screen display

of this advanced Maplet is shown in Figure 9. This example is an advanced Maplet that is useful

either in Civil or Mechanical Engineering courses. The Maplet Application Developer student

can choose either the commands lines approach or the Maplet Builder to create this advanced

‘BeamDeflection’ Maplet. The Maplet elements used in this Maplet are the following: (1)

Several Labels; (2) Several Text Fields; (3) Four Buttons; (4) One Plotter; (5) One output TextBox.

restart;

with(Maplets[Elements]);

myIntProc := proc()

 local integrand, var;

 use Maplets[Tools] in

 integrand := Get('TF1'::algebraic);

 var := Get('TF2'::name);

 end use;

 int(integrand, var);

end proc:

myIntProcMaplet := Maplet(Window('title'="MyIntProcMaplet", [

["Integrand: ", TextField['TF1']()],

 ["Variable of integration: ", TextField['TF2'](3)],

 TextBox['TB1']('editable' = 'false', 3..40),

 [Button("Integrate", Evaluate('TB1' = "myIntProc")),

 Button("OK", Shutdown(['TF1', 'TF2', 'TB1'])),

 Button("Clear", SetOption('TF1' = ""))]])):

Maplets[Display](myIntProcMaplet);

Figure 8: ‘UsingMyProc’ Maplet Application

P
age 15.921.20

Conclusions

A motivational discussion is given to state the importance of teaching the MAPLE software tool

for Maplet programming and construction within MAPLE. A simplified view of how to create

Figure 9: ‘BeamDeflectionProc’ Maplet Application

P
age 15.921.21

Maplets within the MAPLE destop work environment through hands-on Maplets examples is

discussed in this paper. The essential concepts of such Maplets creation is outlined and

emphasized. No attempt in this paper is made to be exhaustive on the subject. The ‘Introduction

to Programming
1
’ MAPLE guide has one chapter devoted to the Maplets building though the

‘Commands lines’ approach to help the application user in terms of writing out the ‘Body’ of the

Maplets elements. However, no attempt is made in the ‘Introduction to Programming’ guide to

give realistic hands-on Maplet examples creation pertinent to engineering or sciences. This

paper is an attempt to fill this gap along with the teaching of Maplet Creation through hands-on

examples to the high school or college student of engineering, mathematics or sciences.

Also, though it is very important to understand the usual ‘Procedural’ programming constructs in

advanced Maplets creation, no attempt has been made in this paper to teach the ‘Procedural’

programming to create the MAPLE procedures or functions that can be used within the Maplet to

create more advanced and sophisticated Maplets. The one very simple example number 10

shows how an outside user defined procedure can be used with the Maplet. The ‘Advanced

Programming
2
’ MAPLE guide has an exhaustive and detailed discussion on the creation of

MAPLE procedures and functions. However, the advanced programming guide also details

many of the internal workings of MAPLE that may prove to be difficult for the MAPLE student,

especially one who wishes to learn limited procedures or functions of MAPLE quickly.

Many advanced procedures or functions or Maplets are available, either free or at a low cost, on

the MAPLE website. If the student has an interest in learning such advanced procedures,

Maplets or functions, he or she can open and examine any of these advanced Maplets or

procedures within MAPLE or in any text editor, as per the saved file extensions dictate.

Please note that MAPLE is very sensitive to text characters, and traps any wrongly typed

MAPLE statement, either mistyped syntax or an incorrect use of MAPLE command. This is

both good and bad for the Maplet designer, good in the sense of catching mistyped wrong syntax,

and bad in the sense of expecting the MAPLE user to be completely familiar with any MAPLE

or Maplet statement that are used in the Maplet. This causes some frustration, and consumes

additional time to develop medium to advanced Maplets. One way to speed up learning the

application of any MAPLE command or the correct use of Maplet elements is to read on how

these MAPLE commands or Maplet elements are used in the available working medium-to-

advanced Maplets. Of course, a certain minimum detailed understanding of the use of MAPLE

commands is necessary for any Maplet creation, and MAPLE use knowledge can be taught

easily by reading the textbooks like learning ‘MAPLE by Examples
3
’.

Only one student (the first author) has used the approach outlined in this ‘hands-on examples’

paper and this has been the first attempt to teach the Maplets creation using this approach. The

teacher (second) author felt it more appropriate to disseminate the ‘Maplet creation’ Learning

study so he can get input suggestions or comments from the academic community for further

P
age 15.921.22

improvements. More refinements and more simple-to-medium hands-on examples are possible

based on the provided examples in this paper. A future look into teaching more advanced

hands-on Maplet examples will occur based on the interest of the student community. For this

and other reasons, all these simple hands-on Maplet examples using the command lines, will be

soon available from the second author, or from the MAPLE website after being accepted and

uploaded on the MAPLE site.

Bibliography

1. ‘Introduction to Programming Guide’, MAPLE 12, MapleSoft, 2008

2. ‘Advanced Programming Guide’, MAPLE 12, MapleSoft, 2008

3. Martha L. Abell and James P. Braselton, ‘MAPLE By Example, Third Edition’ , Elsevier, 2005

P
age 15.921.23

