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A Taste of Java - Discrete and Fast Fourier Transforms 

 

This paper attempts to present the development and application of a practical teaching module 

introducing Java programming techniques to electronics, computer and bioengineering students 

before they encounter digital signal processing and its applications in junior and/or senior level 

courses.  

The Fourier transform takes a signal in the time domain, switches it into the frequency domain, 

and vice versa. Fourier Transforms are extensively used in engineering and science in a wide 

variety of fields including acoustics, digital signal processing, image processing, geophysical 

processing, wavelet theory, optics and astronomy. The Discrete Fourier Transform (DFT) is an 

essential digital signal processing tool, and is highly desirable if the integral form of the Fourier 

Transform cannot be expressed as a mathematical equation. The key to spectral analysis is to 

choose a window length that suits the signal to be analyzed, since the length of window used for 

DFT calculations has a strong impact on the information the DFT can provide.  The operation 

count of the DFT algorithm is time intensive, and as such a number of Fast Fourier Transform 

methods have been developed to perform DFT efficiently.  

This paper will explain how this learning and teaching module was instrumental in progressive 

learning for students by presenting Java programming and the general theory of the Fourier 

Transform in order to demonstrate how the DFT and FFT algorithms are derived and computed 

through leverage of the Java data structures. This paper thereby serves as an innovative way to 

expose technology students to this difficult topic and gives them a fresh taste of Java 

programming while having fun learning the Discrete and Fast Fourier Transforms.   

DSP algorithms may be implemented on any processor, but specialized digital signal processing 

hardware enables the greatest speed and efficiency.
8   

Digital signal processors designed 

specifically for operations common in DSP have special features that permit them to accomplish 

in real time what other processors cannot. Real time means that outputs keep pace with collection 

of input samples during actual operations. For some operations such as filtering, this means that 

a new output sample can be produced as each new input sample is received. For others such as 

FFTs, output information can be produced only when a block of input samples has been 

recorded.   A DFT decomposes a sequence of values into components of different frequencies. 

This operation is useful in many fields, but computing it directly from the definition is often too 

slow to be practical.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

.                                                                                                                                                                          

An FFT is a way to compute the same result more quickly; computing a DFT of N points in the 

naive way, using the definition, takes O (N 
2
) arithmetical operations, while an FFT can compute 

the same result in only O(N log N) operations. The difference in speed can be substantial, 

especially for long data sets where N may be in the thousands or millions—in practice, the 

computation time can be reduced by several orders of magnitude in such cases, and the 

improvement is roughly proportional to N / log(N). This huge improvement made many DFT-

based algorithms practical; FFTs are of great importance to a wide variety of applications, from 

audio and speech signal processing, sonar and radar signal processing, sensor array processing, 

spectral estimation, statistical signal processing,  signal processing for communications, control 
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of systems, biomedical signal processing, seismic data processing, and solving partial differential 

equations. 

                                                                                                                                                                                       

We will begin with a brief review of some key concepts and terminology of object orientation 

which were found to be useful by engineering technology students at our university. Object 

orientation uses classes to encapsulate (i.e., wrap together) data (attributes) and methods 

(behaviors). In procedural programming languages (such as C), the programming tends to be 

action oriented. Java programming, however, is object oriented. In procedural programming 

languages, the unit of programming is the function (functions are called methods in Java). In 

Java the unit of programming is the class. Objects are created from classes by instantiation, and 

attributes and behaviors are encapsulated within the ―boundaries‖ of classes as methods and 

fields. Keywords public and private are access modifiers. Variables or methods declared public 

are accessible wherever the program has a reference to an object of the class. Variables or 

methods declared with access modifier private are accessible only to methods of the class in 

which they are declared.  

 

Arrays in Java are data structures consisting of related data items of the same type. Arrays can be 

considered as fixed-length entities, although at times an array reference with proper syntax may 

be reassigned to a new array of a different length. On the other hand we have dynamic data 

structures, such as stacks, queues, trees and lists that can shrink or grow as programs execute. 

The students were introduced to simple examples using static arrays. Array objects occupy space 

in memory as such all objects in Java (including arrays) are created with keyword new.              

The following declaration and array-creation expression creates 10 elements for the double array 

fdata.                                                                                                                                            

double  fdata[ ]  =  new double[ 10 ] ;                                                                                                                                  

The task can also be performed in two steps as follows:                                                                                       

double fdata[  ];                                                                                                                                                               

fdata  = new  double [ 10 ] ;     

                                                                                                                                                      

Sometimes, we may write programs which may employ a series of counter variables to 

summarize the discrete Fourier transform data. We also have introduced the students to the 

mechanisms used to pass arguments to methods. The two ways to pass arguments to methods in 

many programming languages (like C and C++) are pass-by-value and pass-by-reference, which 

are also sometimes called call-by-value and call-by-reference, respectively. Since arrays are 

objects in Java, arrays are passed to methods in Java by reference. Passing arrays by reference 

makes sense for performance reasons as well. If arrays were passed by value, a copy of each 

element would be passed. Imagine now for large, frequently passed arrays; this not only means 

time wasted in processing but a considerable memory overhead due to space utilization by the 

copies of arrays.   

 

To pass an array argument to a method, you just specify the name of the array without any 

brackets. For example, if array fdata is declared as 

double fdata[ ] = new double[2*N]; 

then the method call 

fastFT ( fdata )  ; P
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passes a reference to array fdata to method fastFT. In Java, every array object knows its own 

length (via the length field). Thus, when you pass an array object into a method, you are not 

required to pass the length of the array as an additional argument.      

For a method to receive an array through a method call, the method‘s parameters list must 

specify an array parameter (or several if more than one array is to be received).
6 
For example, the 

method header for method fastFT might be written as  

void fastFT (  double gb[  ]  ) ;                                                                                                          

indicating that fastFT expects to receive a double array in parameter gb. Since arrays are passed 

by reference, when the called method uses the array name gb, it refers to the actual array ( fdata 

in the preceding call) in the calling method.  

 With some diligent care and guidance from faculty, any engineering technology student can 

quickly learn how to create and use classes and objects, a subject known as object-based 

programming (OBP). It is important to write programs that are understandable and easy to 

maintain. Change is the rule rather than the exception. The four Java programs or code snippets 

which will be given below were used by engineering technology students before even they have 

been exposed to control theory or DSP courses. This was accomplished by a class lecture in OBP 

which was followed by examples of simple substitutions in the Java, program code; however 

most motivated students will want to do more than that. The Faculty here at our university 

attempted to indulge students in such activities. 

Given below is an example of an instructor lead program which the student edited, compiled and 

displayed the output. The purpose of this program is to show how general Java workhorse 

discrete Fourier Transform and other control theory methods 
7
 can be introduced at an earliest 

stage to engineering technology students with the tools and concepts they will further reinforce 

in future DSP courses. 

public class Fourier { 

 public static double[] discreteFT(double[]fdata, int N, boolean fwd){ 

  double X[] = new double[2*N]; 

  double omega; 

  int k, ki, kr, n; 

  if (fwd){ 

   omega = 2.0*Math.PI/N; 

  } else { 

   omega = -2.0*Math.PI/N; 

  } 

 for(k=0; k<N; k++) { 

  kr = 2*k; 

  ki = 2*k + 1; 

  X[kr] = 0.0; 

  X[ki] = 0.0; 

  for(n=0; n<N; ++n) { 

   X[kr] += fdata[2*n]*Math.cos(omega*n*k) + 

fdata[2*n+1]*Math.sin(omega*n*k); P
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   X[ki] += -fdata[2*n]*Math.sin(omega*n*k) + 

fdata[2*n+1]*Math.cos(omega*n*k); 

     } 

       } 

 if ( fwd ) { 

  for(k=0; k<N; ++k) { 

   X[2*k] /= N; 

   X[2*k + 1] /= N; 

  } 

 } 

 return X; 

 } 

 } 

 

The TestDFT application class given below uses class Fourier and invokes its methods.  
//TestDFT Program 

public class TestDFT { 

 public static void main(String args[]) { 

  int N = 64; 

  double T = 2.0; 

  double tn, fk; 

  double fdata[] = new double[2*N]; 

  for(int i=0; i<N; ++i) { 

   fdata[2*i] = Math.cos(4.0*Math.PI*i*T/N); 

   fdata[2*i+1] = 0.0; 

  } 

 double X[] = Fourier.discreteFT(fdata, N, true); 

 for (int k=0; k<N; ++k) { 

    fk = k/T; 

    System.out.println("f["+k+"] = "+fk+"Xr["+k+"] = "+X[2*k]+ "  Xi["+k+"] = "+X[2*k + 1]) ;                                                                         

} 

 for (int i=0; i<N; ++i) { 

  fdata[2*i] = 0.0; 

  fdata[2*i+1] = 0.0; 

  if (i == 4 || i == N-4 ) { 

   fdata[2*i] = 0.5; 

  } 

 } 

 double x[] = Fourier.discreteFT(fdata, N, false); 

 System.out.println(); 

 for (int n=0; n<N; ++n) { 

    tn = n*T/N; 

     System.out.println("t["+n+"] = "+tn+"xr["+n+"] = "+x[2*n]+"  xi["+n+"]  = "+x[2*n + 1]); 

     } 

   } 

} 
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Here is a sample of TestDFT results: 

f[0] = 0.0Xr[0] = -1.1275702593849246E-16  Xi[0] = 0.0 

f[1] = 0.5Xr[1] = -4.5102810375396984E-17  Xi[1] = -6.505213034913027E-17 

f[2] = 1.0Xr[2] = -5.898059818321144E-17  Xi[2] = -3.426078865054194E-17 

f[3] = 1.5Xr[3] = 3.469446951953614E-17  Xi[3] = -1.5872719805187785E-16 

 

Highly efficient algorithms for computing the DFT were first developed in the 1960s. 

Collectively known as Fast Fourier Transforms (FFTs), they all rely upon the fact that the 

standard DFT involves redundant calculation. Strictly speaking, there is no such thing as ‗the 

FFT‘ 
3
. Rather, there is a collection of algorithms with different features, advantages, and 

limitations. An algorithm which is suitable for programming in a high level-language on a 

general purpose computer may not be the best for special purpose DSP hardware. What the 

different algorithms have in common is their general approach – the decomposition of the DFT 

into a number of successively shorter, and simpler, DFTs.  

 

There are various ways of explaining FFT decomposition. We can show that a DFT can be 

expressed in terms of shorter, simpler, DFT‘s by dividing the signal x[n] into subsequences. The 

method which is widely used in DSP literature is also referred to as conventional decomposition.  

Then there is also an alternative approach known as index-mapping. It should be clear in our 

mind that conventional decomposition and index mapping are just two ways of looking at the 

same problem and there is no essential difference between them.  

 

Suppose we have a signal with N sample values, where N is an integer power of 2. We first 

separate x[n] into two subsequences, each with N/2 samples. The first subsequence consists of 

even number points in x[n], and the second consists of odd number points- Writing n = 2k, when 

n is even, and n = 2k + 1 when n is odd.  We can thus express the original N-point DSP in terms 

of two N/2 point DFTs. Now we can take the decomposition further, by breaking each N/2- point 

subsequence down into two shorter, N/4-point subsequences. The process can continue until, in 

the limit, we are left with a series of 2-point subsequences, each of which requires a very simple 

2-pointDFT. A complete decomposition of this type gives rise to one of the commonly used 

radix-2, decimation in time, FFT algorithms. 

 

Now the students are ready to implement an FFT as a Java method. It is called the fastFFT( ) 

method and also defined in the Fourier class. 

  

public class Fourier { 

public static void fastFFT(double[ ] fdata, int N, boolean fwd) { 

  double omega, tempr, tempi, fscale; 

  double xtemp, cosine, sine, xr, xi; 

  int i, j, k, n, m, M; 

   

  j=0; 

  for(i=0; i<N-1; i++) { 

   if (i<j) { 

    tempr = fdata[2*i]; 

P
age 22.116.6



    tempi = fdata[2*i + 1]; 

    fdata[2*i] = fdata[2*j]; 

    fdata[2*i + 1] = fdata[2*j + 1]; 

    fdata[2*j] = tempr; 

    fdata[2*j + 1] = tempi; }  

  k = N/2; 

  while (k <= j) { 

   j  -=  k; 

   k >>= 1; } 

  j  += k; 

  } 

 if (fwd)  

  fscale = 1.0; 

 else  

  fscale = -1.0; 

 M = 2; 

 while( M < 2*N ) { 

  omega = fscale*2.0*Math.PI/M; 

  sin = Math.sin(omega); 

  cos = Math.cos(omega) - 1.0; 

  xr = 1.0; 

  xi = 0.0; 

  for (m=0; m<M-1; m+=2) { 

   for (i=m; i<2*N; i+=M*2) { 

                        j = i + m ;  

    tempr = xr*fdata[j] - xi*fdata[j+1]; 

    tempi = xr*fdata[j+1] + xi*fdata[j]; 

    fdata[j] = fdata[i] - tempr; 

    fdata[j+1] = fdata[i+1] - tempi; 

    fdata[i] += tempr; 

    fdata[i+1] += tempi; }  

  xtemp = xr; 

  xr = xr + xr*cos - xi*sin; 

  xi = xi + xtemp*sin +xi*cos; 

  } 

 M *=2; 

 }  

 if( fwd ) { 

  for (k=0; k<N; k++) { 

   fdata[2*k] /= N; 

   fdata[2*k + 1] /= N; 

  } 

 } 

     } 
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In the next step, the students apply this method to compute the FFT on a 2Hz cosine wave. They 

were instructed to take 64 data samples over a 2-second sample period. The program first 

computes the FFT to obtain the frequency spectrum for a 2Hz cosine wave.  Then the program 

below was used by students to perform an inverse Fourier transform that reconstructs the 2Hz 

cosine wave from its frequency spectrum. Next, we implement the FFT as a Java method. It is 

called the fastFFT(  ). The next thing to do is to test the fastFFT( ) by applying it to the 

composite cosine signal that were  processed earlier. The amplitude time history for a signal 

containing three different frequency components is generated and sent to fastFFT () method. The 

TestFFT class source code is shown below: 

public class TestFFT { 

public static void main(String args[ ]) { 

 int N = 64; 

 double T = 1.0; 

 double tn, fk; 

 double fdata[ ] = new double[2*N]; 

  

 for(int i=0; i<N; ++i) { 

  fdata[2*i] = Math.cos(8.0*Math.PI*i*T/N) +                                 

Math.cos(14.0*Math.PI*i*T/N) +                 

    Math.cos(32.0*Math.PI*i*T/N); 

  fdata[2*i+1] = 0.0; 

  } 

Fourier.fastFT(fdata, N, true); 

System.out.println(); 

for(int k=0; k<N; ++k) { 

 fk = k/T; 

System.out.println(  "f["+k+"] = " + fk + " Xr["+k+"] = " + fdata[2*k] + " Xi["+k+"]  

                                                                                                       = " + fdata[2*k+1]) ; 

             } 

        } 

} 

 Here are the sample partial TestFFT results:                                                                                                   

f[0] = 0.0 Xr[0] = 14.118483415068333 Xi[0] = 8.299076200364345                                                           

f[1] = 1.0 Xr[1] = -4.320681943456142 Xi[1] = -11.70913283509337                                             

f[2] = 11.5931285252644 Xi[2] = 11.382484516157067                                                               

f[3] = 3.0 Xr[3] = 0.20410293867180673 Xi[3] = -9.83647671361791                                                        

…                              

f[60] = 60.0 Xr[60] = 0.012868248913439052 Xi[60] = 0.058867631665321246 

f[61] = 61.0 Xr[61] = -0.20682636511072414 Xi[61] = 0.025288953333891355 

f[62] = 62.0 Xr[62] = -0.03895429084677146 Xi[62] = -0.007474788441969488 

f[63] = 63.0 Xr[63] = 0.02651390602928162 Xi[63] = 0.0 
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On most computers, only some of the total computation time of an FFT is spent performing the 

FFT butterfly computations- determining indices, loading and storing data, computing loop 

parameters and other operations consume the majority of cycles. Careful programming that 

allows the compiler to generate efficient code can make a several-fold improvement in the run-

time of an FFT. The best choice of radix in terms of program speed may depend more on 

characteristics of the hardware (such as the number of CPU registers) or compiler than on the 

exact number of computations.     

 

These few examples demonstrate how students can be introduced not only to object based 

programming with Java, but also to basic concepts of discrete Fourier, and fast Fourier 

Transforms in signal processing. Having being exposed to this Java programming, DFT, and FFT 

learning module has far reaching implications. Given time, it can be proved that this group of 

students who are now actually taking the junior level-DSP course, their understanding is far 

better than the group of students who were never exposed to this teaching module. Time did not 

permit me to perform a complete assessment and evaluation of result of experimental versus 

control group.  However, I was fortunate to monitor and discuss the experiences of two students 

who took the senior project capstone class with me last session. They were very positive about 

the outcome and enhanced understanding of the DSP material which they attributed to their early 

exposure of Java Object Oriented Programming and the reinforcement of DFT and FFT concepts 

in signal processing to which they had been exposed later on during their junior and senior years.     

 

In conclusion, it can be stated that with proper guidance, monitoring and diligent care the 

engineering technology students in a similar way can be exposed earlier to Java data structures 

and the basics of DSP. This will go a long way in motivating them, eliminating their fear, 

improving their understanding and enhancing their quality of education. With future conditioning 

and judicious course selection, they will become more motivated and this will help reinforce the 

best practices in implementing digital filtering by fast convolution, spectral analysis, seismic data 

processing, wavelet video compression, fingerprint image compression, and other advanced 

topics in DFT and FFT real time applications 
9
.   
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