
AC 2011-1016: ADVANCE FEATURES OF HARDWARE DESCRIPTION
LANGUAGE (VHDL) FOR UNDERGRADUATE STUDENTS

Alireza Kavianpour, DeVry University, Pomona

Dr. Alireza Kavianpour received his PH.D. Degree from University of Southern California (USC). He is
currently Senior Professor at DeVry University, Pomona, CA. Dr. Kavianpour is the author and co-author
of over forty technical papers all published in IEEE Journals or referred conferences. Before joining
DeVry University he was a researcher at the University of California, Irvine and consultant at Qualcom
Inc. His main interests are in the areas of embedded systems and computer architecture.

c©American Society for Engineering Education, 2011

P
age 22.144.1

Advance Features of Hardware Description Language (VHDL) for

Undergraduate Students

This paper describes the use of Very High Speed Integrated Circuit Hardware Description

Language (VHDL) in a computer architecture course. VHDL is a programming language that

allows an individual to define how a piece of hardware behaves. This language was developed

first by US military and became IEEE standard in 1987. It was updated in 1993 and is known

today as "IEEE standard 1076 1993". The complexity of ASIC and FPGA designs has caused an

increase in the use of hardware description languages such as VHDL. As a result, students must

learn the advance features of this language. Companies like Xilinx, Altera, and Cadence have

designed proper hardware interface for the use of this language. Recently, most chip

manufacturers start on VHDL (or Verilog) before the company goes to actual production of a

design. There are two aspects to modeling hardware that any hardware description language

facilitates: true abstract behavior and hardware structure. VHDL has three parts: Library, Entity,

and Architecture.

Despite reviewing many undergraduate digital books, there is no reference on how to teach

different processes and cycles in a computer architecture/organization course by VHDL. In this

paper, the author explains how VHDL could be used to teach different topics such as: fetch

cycle, decode cycle, execution cycle, control unit, arithmetic logic unit, read/write memory, and

input/output operations. Most of the embedded applications we are familiar with use a MIPS

processor. Therefore, as a teaching tool in a computer architecture course, MIPS processor and

VHDL could be used for teaching different topics.

1- Introduction

There are now two industry standard for hardware description languages: VHDL and Verilog.

The complexity of ASIC and FPGA designs has caused an increase in the number of specialist

design consultants with specific tools and an increase in libraries of macro and mega cells

written in either VHDL or Verilog. VHDL became IEEE standard 1076 in 1987. It was updated

in 1993 and is known today as "IEEE standard 1076 1993". VHDL is a concise and verbose

language; its roots are based on Ada. Although an existing programmer of both C and Ada may

find the mix of constructs somewhat confusing at first, the VHDL model follows the same

principle as defined for the C model. When reading integer values from a file, those numerical

values must be read and assigned to a variable; they can neither be read nor assigned to a signal.

2- VHDL Description

A VHDL
1,4,5

 program has three parts: Library, Entity, and Architecture. Library part defines

components. Entity part declares the inputs and outputs. Architecture part defines the relation

between inputs and outputs. VHDL library is where the VHDL compiler stores information

about a design. Example of library declaration is:

P
age 22.144.2

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE STD.TEXTIO.ALL;

Example of ENTITY part for a three inputs OR gate with inputs A,B, C and output D is:

ENTITY OR IS

PORT(A, B, C :IN STD_LOGIC;

D :OUT STD_LOGIC);

END OR;

Example of Architecture part for a three inputs OR gate with inputs A, B, C, and output D is:

ARCHITECTURE OR OF OR IS

BEGIN

D <= A OR B OR C;

END OR;

Following is an example of 32KB SRAM (Static Random Access Memory) with active low read,

write, and chip select inputs. Memory has 15 address lines and 8 data lines.

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

ENTITY sram is

 PORT (

 nCS: in STD_LOGIC;

 nOE: in STD_LOGIC;

 nWE: in STD_LOGIC;

 addr: in STD_LOGIC_VECTOR (14 downto 0);

 data: inout STD_LOGIC_VECTOR (7 downto 0));

END sram;

ARCHITECTURE sram of sram is

FUNCTION addr2index (addr: in STD_LOGIC_VECTOR (14 downto 0)) return INTEGER is

VARIABLE index: INTEGER;

VARIABLE I: INTEGER;

BEGIN

 index := 0;

 for I in 14 downto 0 loop

 index := index * 2;

 if (addr(I) = '1') then

 index := index + 1;

 END IF;

 END loop;

 RETURN index;

END addr2index;

type MEMORY is array (0 to 32767) of STD_LOGIC_VECTOR (7 downto 0);

P
age 22.144.3

SIGNAL mem: MEMORY;

BEGIN

 PROCESS (nCS, nOE, nWE, addr)

 VARIABLE I: INTEGER;

 BEGIN

 IF(nCS = '1') then

 data <= "ZZZZZZZZ" after 100 ns;

 ELSIF (nOE = '0') then

 I := addr2index(addr);

 data <= mem(I) after 100 ns;

 ELSIF (nWE'event and (nWE = '1')) then

 I := addr2index(addr);

 mem(I) <= data;

 END IF;

 END PROCESS;

END sram;

3- MIPS Architecture

MIPS
1,2,6

 is an acronym for a microprocessor architecture called Microprocessor without

Interlocked Pipeline Stages. The MIPS processor is a RISC (Reduced Instruction Set Computer)

processor designed in 1981by a company called MIPS Technology. Most of the embedded

applications we are familiar with use a MIPS processor. The MIPS processor is similar to (and

therefore a good example of) many other available RISC processors in the market. Figure 1

display MIPS architecture. MIPS processor operates with the following types of instructions:

Arithmetic, logical, data transfer (or shift), and branch (both conditional and unconditional).

Figure 1: MIPS architecture. P
age 22.144.4

Following are sample formats for these instructions.

Example of Arithmetic Instruction Format

Instruction Meaning Comment

Add $1,$2,$3 $1 = $2 +$3 3 operand

sub $1,$2,$3 $1 = $2 -$3 3 operand

Addi $1,$2,10 $1 = $2 +10 3 operand

addu $1,$2,$3 $1 = $2 +$3 3 operand

Addiu $1,$2,10 $1 = $2 +10+cons. 3 operand

subu $1,$2,$3 $1 = $2 -$3 3 operand

Instruction Example Meaning Comments

multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed

product

Mult. unsigned multu$2,$3 Hi, Lo = $2 x $3 64-bit unsigned

product

divide div $2,$3 Lo = $2 ÷ $3, Lo = quotient, Hi = rem.

 Hi = $2 mod $3

divide unsigned divu $2,$3 Lo = $2 ÷ $3, Unsigned quo. &

rem.

 Hi = $2 mod $3

Move from Hi mfhi $1 $1 = Hi Used to get copy

of Hi

Move from Lo mflo $1 $1 = Lo Used to get copy

of Lo

Example of Logical Instruction Format

Instruction Meaning Comment

and 1,$2,$3 $1 = $2 & $3 3 reg. operands

or $1,$2,$3 $1 = $2 | $3 3 reg. perands

xor $1,$2,$3 $1 = $2 $3 3 reg. operands

nor $1,$2,$3 $1 = ~($2 |$3) 3 reg. Operands

andi

 $1,$2,10 $1 = $2 & 10 reg, constant

ori $1,$2,10 $1 = $2 | 10 reg, constant

xori $1, $2,10 $1 = ~$2 &~10 reg, constant

Example of Data Transfer (Shift) Instruction Format

P
age 22.144.5

Instruction Meaning Comment
sll $1,$2,10 $1 = $2 << 10 Shift left by constant
srl $1,$2,10 $1 = $2 >> 10 Shift right by constant

sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend)

sllv

$1,$2,$3 $1 = $2 << $3 Shift left by variable
srlv $1,$2,

$3
$1 = $2 >> $3 Shift right by variable

srav $1,$2,

$3
$1 = $2 >> $3 Shift R arith. by variable

Example of Conditional Branch Instruction Format

Instruction Meaning
Branch on = beq $1,$2,100 if ($1 == $2) go to PC+4+100

 Equal test; PC relative branch

Branch on bne $1,$2,100 if ($1!= $2) go to PC+4+100

 Not equal test; PC relative sss

ssss set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0

Compare less than; 2’s comp.

set < imm. slti $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; 2’s comp.

set < uns. sltu $1,$2,$3 if ($2 < $3) $1=1; else $1=0

Compare less than; natural numbers

set < imm. uns. sltiu $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; natural numbers

 Example of Unconditional Branch Instruction Format

Instruction Meaning
jump j 10000 go to 10000

 Jump to target address

jump register jr $31 go to $31
 For switch, procedure return

jump and link jal 10000 $31 = PC + 4; go to 10000

 For procedure call

These instructions depend on the type of operands used; there are three distinct types of

P
age 22.144.6

instructions. The instruction is I-type if the operand is an immediate instruction, R-type if the

operand is a register instruction, or J-type if the operand is related to jump instructions. Figure 2

displays the differences in these three types. In a MIPS processor each instruction is performed

as a sequence of steps. The steps corresponding to one instruction are referred as an instruction

cycle. Figure 2 represents this concept:

Instruction Cycle = Fetch instruction + Decode + Fetch operand + Execute instruction +Store +

Next instruction.

The Fetch instruction reads instructions from the memory.

The Decode instruction finds types of instructions and operands.

The Fetch operand reads operands from the memory.

The execution cycle executes instruction.

 Figure 2: A view of instruction cycle and instruction format

4. VHDL model for MIPS processor

Advance features of VHDL could be used to describe a processor and its operations. Some of the

features are listed here.

Example of memory declaration is as follows:

type MEMORY is array (0 to 32767) of STD_LOGIC_VECTOR (7 downto 0);

Example of input/output declaration is as follows:

-example of reading infile

P
age 22.144.7

File infile: text is in “ram.txt”;

VARIABLE buf: line;

VARIABLE b: std_vector(7 downto 0);

If not ENDFILE (infile) then

READLINE (infile,buf);

HREAD (buf, b);

Else…..

Sometimes designer prefers to assign a name to a number. The following program illustrates the

use of GENERIC declaration for an 8KB memory. In this program width replaces number 8 and

address replaces 15.

GENERIC (width: positive:=8);

GENERIC (address : positive:=15);

type MEMORY is array (0 to 2**address-1) of STD_LOGIC_VECTOR (width-1 downto 0);

VHDL model of a processor consists of several files.

1-Fetch.vhd

2-Decode.vhd

3-Control.vhd

4-Execute.vhd

5-Memory.vhd

6-Top.vhd

Fetch.vhd file explains instruction reading from memory. Decode.vhd detects type of instruction.

Control.vhd generates all proper signals for a specific opcode (operation code). Execute.vhd

executes instruction. Memory.vhd explains memory reading and writing. Top.vhd contains all

the files. Following is a homework assigned to the students.

Homework: Describe in VHDL, MIPS instructions such as: LW (load) with opcode = 100011,

SW (store) with opcode = 101011, and BEQ (branch equal) with opcode = 000100.

Solution: Following is a portion of the solution to the homework problem above. A complete

solution is in the Appendix 1.

architecture behavioral of control is

 signal Rformat, Lw, Sw, Beq : std_logic;

begin -- behavior of SPIM control

 Rformat <= ((NOT Op(5)) AND (NOT Op(4)) AND (NOT Op(3)) AND

 (NOT Op(2)) AND (NOT Op(1)) AND (NOT Op(0)));

 Lw <= (Op(5)) AND (NOT Op(4)) AND (NOT Op(3)) AND

 (NOT Op(2)) AND (Op(1)) AND (Op(0));

 Sw <= (Op(5)) AND (NOT Op(4)) AND (Op(3)) AND

 (NOT Op(2)) AND (Op(1)) AND (Op(0));

 Beq <= (NOT Op(5)) AND (NOT Op(4)) AND (NOT Op(3)) AND

 (Op(2)) AND (NOT Op(1)) AND (NOT Op(0));

P
age 22.144.8

 RegDst <= Rformat;

 ALUSrc <= Lw or Sw;

 MemtoReg <= Lw;

 RegWrite <= Rformat or Lw;

 MemRead <= Lw;

 MemWrite <= Sw;

 Branch <= Beq;

 ALUOp1 <= Rformat;

 ALUOp0 <= Beq;

end behavioral;

5- Conclusion

Combining VHDL and MIPS processor will result a useful tool for teaching hardware courses.

This paper discusses the use of VHDL in a computer architecture course. As a demonstration,

MIPS processor is selected to explain different steps in an instruction cycle. The MIPS

processor is similar to (and therefore a good example of) many other available RISC processors

in the market today. With the help of VHDL notation and MULTISIM software, instructors

may assign numerous homework and projects (See Appendix A) for implementing different

processes such as fetch, decode, and execute cycles in a processor.

6- References

1- Sudhakar Yalamanchili, VHDL Starter's Guide, Prentice Hall, ISBN 0-13-519802-X, 1998

2-William Stallings, Computer Organization and Architecture, Fifth Edition, Prentice Hall, ISBN 0-13-081294-3,

2001

3 - D. Patterson and J. Hennessy, Computer Organization and Design:

The Hardware/Software Interface, Second Edition, Morgan Kaufman Publishers, 1998

4- J. W. Stewart and C.Y. Wang, Digital Electronics Laboratory Experiments using the Xilinix XC95108 CPLD,

Prentice Hall, 2005

5- Foundation series software, XILINIX Student Edition 4.2i, 2006

6- B. Parhami, Computer Architecture From Microprocessors to Supercomputers, Oxford University Press, 2005

7- Appendix

This section includes solution to the homework.

A- Control.vhd

-- control module (simulates SPIM control module)

 library Synopsys, IEEE;

P
age 22.144.9

use Synopsys.attributes.all;

use IEEE.STD_LOGIC_1164.all;

entity control is

 port(signal Op : in std_logic_vector(5 downto 0);

 signal RegDst : out std_logic;

 signal ALUSrc : out std_logic;

 signal MemtoReg : out std_logic;

 signal RegWrite : out std_logic;

 signal MemRead : out std_logic;

 signal MemWrite : out std_logic;

 signal Branch : out std_logic;

 signal ALUop0 : out std_logic;

 signal ALUop1 : out std_logic;

 signal phi1,phi2: in std_logic);

end control;

-- SPIM control architecture

architecture behavioral of control is

 signal Rformat, Lw, Sw, Beq : std_logic;

begin -- behavior of SPIM control

 Rformat <= ((NOT Op(5)) AND (NOT Op(4)) AND (NOT Op(3)) AND

 (NOT Op(2)) AND (NOT Op(1)) AND (NOT Op(0)));

 Lw <= (Op(5)) AND (NOT Op(4)) AND (NOT Op(3)) AND

 (NOT Op(2)) AND (Op(1)) AND (Op(0));

 Sw <= (Op(5)) AND (NOT Op(4)) AND (Op(3)) AND

 (NOT Op(2)) AND (Op(1)) AND (Op(0));

 Beq <= (NOT Op(5)) AND (NOT Op(4)) AND (NOT Op(3)) AND

 (Op(2)) AND (NOT Op(1)) AND (NOT Op(0));

 RegDst <= Rformat;

 ALUSrc <= Lw or Sw;

 MemtoReg <= Lw;

 RegWrite <= Rformat or Lw;

 MemRead <= Lw;

 MemWrite <= Sw;

 Branch <= Beq;

 ALUOp1 <= Rformat;

 ALUOp0 <= Beq;

P
age 22.144.10

end behavioral;

B- Memory.vhd

-- DMEMORY module (provides the data memory for the SPIM computer)

library Synopsys, IEEE;

use Synopsys.attributes.all;

use IEEE.STD_LOGIC_1164.all;

entity dmemory is

 port(rd_bus : out std_logic_vector(7 downto 0);

 ra_bus : in std_logic_vector(7 downto 0);

 wd_bus : in std_logic_vector(7 downto 0);

 wadd_bus : in std_logic_vector(7 downto 0);

 MemRead, Memwrite, MemtoReg : in std_logic;

 phi1,phi2,reset: in std_logic);

end dmemory;

-- DMEMORY architecture

architecture behavioral of dmemory is

 signal mem0,mem1,mem2,mem3,mem4,mem5,mem6,mem7 : std_logic_vector(7 downto

0);

 signal mux : std_logic_vector(7 downto 0);

 signal mem0write, mem1write, mem2write, mem3write : std_logic;

 signal mem4write, mem5write, mem6write, mem7write : std_logic;

begin

-- Read Data Memory

with ra_bus(2 downto 0) select

mux <= mem0 WHEN "000",

 mem1 WHEN "001",

 mem2 WHEN "010",

 mem3 WHEN "011",

 mem4 WHEN "100",

 mem5 WHEN "101",

 mem6 WHEN "110",

 mem7 WHEN "111",

 To_stdlogicvector(X"FF") WHEN others;

-- Mux to skip data memory for Rformat instructions

rd_bus <= ra_bus(7 downto 0) WHEN (MemtoReg='0') ELSE mux WHEN (MemRead='1')

 ELSE To_Stdlogicvector(B"11111111");

-- Write to data memory?

-- The following code sets an initial value and replaces the next line

--dff_v(wd_bus,phi2 AND Memwrite AND (wadd_bus(2 downto 0)="000"),mem0);

P
age 22.144.11

mem0write <= '1' When ((Memwrite='1') AND(wadd_bus(2 downto 0)="000"))

 ELSE '0';

mem1write <= '1' When ((Memwrite='1') AND (wadd_bus(2 downto 0)="001"))

 ELSE '0';

mem2write <= '1' When ((Memwrite='1') AND (wadd_bus(2 downto 0)="010"))

 ELSE '0';

mem3write <= '1' When ((Memwrite='1') AND (wadd_bus(2 downto 0)="011"))

 ELSE '0';

mem4write <= '1' When ((Memwrite='1') AND (wadd_bus(2 downto 0)="100"))

 ELSE '0';

mem5write <= '1' When ((Memwrite='1') AND (wadd_bus(2 downto 0)="101"))

 ELSE '0';

mem6write <= '1' When ((Memwrite='1') AND (wadd_bus(2 downto 0)="110"))

 ELSE '0';

mem7write <= '1' When ((Memwrite='1') AND (wadd_bus(2 downto 0)="111"))

 ELSE '0';

process

begin

wait until phi2'event and phi2='1';

 if (reset = '1') then

 mem0 <= To_stdlogicvector(X"55");

 mem1 <= To_Stdlogicvector(X"AA");

 else

 if mem0write= '1' then mem0 <= wd_bus; else mem0 <= mem0; end if;

 if mem1write= '1' then mem1 <= wd_bus; else mem1 <= mem1; end if;

 if mem2write= '1' then mem2 <= wd_bus; else mem2 <= mem2; end if;

 if mem3write= '1' then mem3 <= wd_bus; else mem3 <= mem3; end if;

 if mem4write= '1' then mem4 <= wd_bus; else mem4 <= mem4; end if;

 if mem5write= '1' then mem5 <= wd_bus; else mem5 <= mem5; end if;

 if mem6write= '1' then mem6 <= wd_bus; else mem6 <= mem6; end if;

 if mem7write= '1' then mem7 <= wd_bus; else mem7 <= mem7; end if;

 end if;

end process;

end behavioral;

P
age 22.144.12

