
AC 2011-2728: CONCEPTUAL DESIGN EXPLORATION IN ARCHITEC-
TURE USING PARAMETRIC GENERATIVE COMPUTING: A CASE STUDY

Dr. Stan Guidera, Bowling Green State University

Stan Guidera is an architect and chair of the Department of Architecture and Environmental Design at
Bowling Green State University. His primary teaching and research area is in 3D applications for com-
puter aided design for architecture and construction.

c©American Society for Engineering Education, 2011

P
age 22.368.1

Conceptual Design Exploration in Architecture Using Parametric
Generative Computing: A Case Study

Abstract

This paper documents design strategies using Grasshopper and Rhino 3D as an instructional tool
for conceptual design. It discusses the underlying concepts of generative design and includes
examples using Grasshopper with Rhino 3D for both massing and for basic structural layouts. It
also discusses the necessary skill set, beyond that associated with the operation of the underlying
CAD applications, required for students to utilize these applications. It then proposes a
framework for incorporating generative design into CAD courses utilizing a 2-D to 3-D sequence
of instructional activities.

Part 1: Introduction

The digital revolution and its associated discourse is increasingly influencing all of the design
fields, particularly architecture [1]. In his book Constructing Complexity, William Mitchell
referenced to shift to digital design in architecture stating that “buildings were once materialized
drawings, but now, increasingly, they are materialized digital information – design with the help
of computer-aided design systems, fabricated by means of digitally controlled machinery, put
together on-site with the assistance of digital layout and positioning devices, and generally
inseparable from flows of information through global computer networks.”[2]

However, design exploration is an integral aspect of the design process in any discipline.
Traditionally sketching has functioned as a primary conceptual design tool due to its
indeterminacy and ambiguity. Goel [3] suggested that the ambiguity in sketching promoted
cognitive shifts from one proposed conceptual idea to other alternative concepts, a process he
referred to as lateral transformation. Won [4] proposed that during the drawing process designers
demonstrate a “seeing behavior” in which they will concentrate on the figural properties of a
sketch. He stated that as a result the designer may “see the image as something else” and added
that the shift of ‘seeing’ to ‘seeing as’ stimulates imaging. Similarly, Suwa and Tversky [5]
proposed that as designers inspect sketches “they see unanticipated relations and features that
suggest ways to refine and revise ideas.”

As design practices have been restructured around Computer Aided Design (CAD), processes to
integrate digital technologies in conceptual design have been ongoing. The success of these
applications has been limited. CAD has been perceived as a medium intended for production that
is difficult to use in the early stages of the design process where the priority is creativity rather
than precision. [6, 7, 8] The precision inherent in CAD results in a lack of ambiguity making
commercially available computer aided design applications largely ineffective as a medium for
design exploration.

Most commercial CAD applications have provided some form sketch emulation mode [9] or have
provided display options that generate digital representations with hand-drawn characteristics.
The former were largely perceived as ineffective (Figure 1). The latter were typically perceived

P
age 22.368.2

as yet another alternative display which, while providing an effective representation tool, has not
been widely adopted as a design interface (Figure 2).

 Figure 1. AutoCAD Sketch command
example

Figure 2. AutoCAD 3-D Wireframe
display (above), with Sketch emulation
(below)

As an alternative, applications have been developed that attempt to operate in a manner that
emulated traditional manually-based graphic techniques. These applications can include tools to
support 2-D sketching mechanisms. Autodesk’s Architectural Studio interface was based on a
trace-paper overlay mechanism in which designers could use drawing tools that created line-
work modeled after traditional markers and pencils. It could also merge sketches into 3-D
models, thus bridging the gap between 2-D and 3-D graphics. However, its limited adoption has
been attributed to the lack of wide-scale adoption of pen-based input devices [10]. Many other
sketch based 2-D to 3-D have been proposed or developed by researchers over the past decades.
These include seminal applications such as Sutherlands SketchPad, a constraint-based drawing
environment developed in the 1960’s, and STRAIT, a program developed in the 1970’s that
interpreted sketch geometry as straight lines [11]. Recent developments in the interface between
sketching and digital design include “Digital Clay,”[12] “SmartPaper,”[13] and displacement
modeling. [14]

However, it may be argued that attempts to re-create the traditional sketch-based design
processed with a computer may be an inappropriate strategy for conceptual design in a digital
environment. Further, it may be argued that such a strategy is an extension of the early adoption
of CAD, in which many of the commercially available applications were developed and used as
electronic versions of manual drafting practices. Other than a change in the medium and devices
used, no change in the actual processes associated with producing the work actually occurred.

P
age 22.368.3

This has resulted in the criticism that CAD has failed to meet the expectations of its users and
that it’s true potential has gone unrealized. Therefore a more effective strategy may lie in re-
conceptualizing conceptual design by utilizing processes that embrace and exploit computation.

Generative design approaches have emerged from the search for strategies to facilitate the
exploration of alternative solutions in design, using computers as variance-producing engines to
navigate large solution spaces and to achieve unexpected but viable solutions. [15] Kolaravec used
the term “digital morphogenesis” to refer to design processes in which digital media is not used
for representation but as a generative tool for the derivation of form and its transformation. [16]
He stated that “the predictable relationships between design and representation are abandoned in
favor of computationally-generated complexities” and that “models of design capable of
consistent and continual dynamic transformation are replacing the static norms of conventional
processes.’ For Kolaravec, generative computing, or, as he referred to it, “digital
morphogenesis,” is a “radical departure from centuries-old traditions and norms in architectural
design” – the emphasis shifts from form-making to form-finding.”[16]

In generative design, algorithmic procedures are often used to produce arrays of alternative
solutions based on predefined goals and constraints, which the designer then evaluates to select
the most appropriate or interesting. [17] This position is reiterated by Oxman [1], who stated that
“the generative model is the design of, and interaction with, complex mechanisms that deal with
the emergence of forms deriving from generative rules, relations and principles.” However, she
also argued that designer interactivity is a key component. She stated that “Interaction has a
major priority in this model” and added that “in order to employ generative techniques in design,
there is a need for an interactive module that provides control and choices for the designer to
guide the selection of desired solutions.”

Chase [18] made a clear distinction between CAD and generative design. He argued that CAD
applications do not have the exploratory potential of generative computing. He further argued
that “traditional CAD software can aid students in understanding their designs, and develop their
knowledge and skills in areas such as geometry, but they act only as aids; the user must directly
input and manipulate forms”, and added that “the power of generative design tools is that these
can guide a novice down an exploratory path.”[18]

The use of generative design technologies have been expanding architectural education and
among design professionals as well. Generative design is a parametric computer modeling
technology that is typically operated using an alternative interface for a Computer Aided Design
application. Examples of these are Generative Components, which works with Microstation, and
Grasshopper, which works with Rhino 3D.

Part 2. Developing an introduction to Generative Computing using Grasshopper

Generative design processes are characterized by the following:

1. A design schema that provides criteria requirements
2. A means of creating variations
3. A means of selecting desirable outcomes

P
age 22.368.4

Based on these characteristics, generative design environments provide significant advantages
for conceptual design as the emphasis is on exploration of alternatives. However, one of the most
significant advantages is that generative design environments are dynamic and interactive,
providing real-time visual feedback as the geometric and dimensional variations are manipulated.

A generative computing application that is rapidly expanding in use is Grasshopper, which runs
with Rhino 3D. This expanded can be attributed to two factors. First, the extensive modeling
capabilities of Rhino 3D, particularly in terms of nurbs (non-uniform rational b-spline) curve and
surface modeling, has lead to its widespread adoption among architectural educators and
professionals. The command structure has many parallels with applications AutoCAD as well as
3D Studio, thus reducing the learning curve for students already familiar with this application.
Secondly, the graphical interface of Grasshopper provides an explicit representation of the
geometric relationships and sequences used to generate the digital model. This explicit
representation is linked to the Rhino 3D viewports. This enables designers to receive immediate
visual feedback as these relationships are manipulated by user-defined mathematical and
geometric parameters.

Additionally, Grasshopper utilizes a simple strategy for storing variations of the results of these
manipulations. A process, driven by clicking on a single icon, is used to store an option. When
combined with layers, this process, referred to as “baking”, can store any number of variations
on discrete layers, so the options can be saved for future display and review.

Grasshopper Overview

Grasshopper functions as a plug-in (add-in application) for Rhino 3D. However, unlike most
Rhino plug-ins, Grasshopper utilizes a separate interface window that references geometry
generated in the original Rhino 3D file (Figure 3). Additionally, Grasshopper operations are
saved in a separate file format (.ghx) from Rhino3D. In Grasshopper, operations are built upon
initial Rhino geometry, in some cases as simple as a point. The Rhino geometry is typically
linked to grasshopper using the Grasshopper Parameters panel, where single or multiple points or
curves in Rhino are defined as the geometry that will be used as the basis for further operations.

Figure 3. Grasshopper interface

P
age 22.368.5

Once the Rhino geometry is linked to grasshopper, the relationships “piped” – the input of one
operation is channeled into a second operation or operations. These are graphically represented
by operation icons and input and output curves that connect between the input and output
parameters of the operation icons. The end result of an operation is displayed in the Rhino
viewport. At any point along a sequence of channeled operations, the display of the result of that
operation can be turned on or off. Therefore, an operation in the sequence can be piped into two
or more alternatives, and the designer can toggle the display of the options generated by the
different processes.

Figure 4 illustrates an example in which a Grasshopper curve parameter icon is “set” to a nurbs
curve created in Rhino. In setting a parameter to specific geometric element, that element is then
used as input for subsequent operations. In this example. the curve parameter is “piped” into the
C (curve) input of the “offset curve” operator. The offset distance input D is driven by a number
slider. The “offset curve” icon output C generates a curve that is offset the D distance set by the
user with the number slider. The “offset curve” operator output C is then piped into the B (input
geometry) parameter of the “extrude curve” operator. The second input parameter on the
“extrude curve” operator is D, which is both direction and distance. A Z-direction vector
parameter is piped into D to establish the direction. The same number slider used to determine
the offset distance is piped into the Z vector parameter. As a result, as the number slider is
manipulated, the curve is extruded the same height as the offset distance so that the further the
curve is offset the higher the curve is extruded. The result is illustrated in the Rhino 3D viewport
adjacent to the Grasshopper window in Figure 4. The only actual geometry in the Rhino 3D file
is the single curve used in the initial “set curve” parameter operation.

Figure 4. Grasshopper interface with offset curve and extrude operations.

Figure 5 illustrates an expanded example using the example illustrated in figure 4 as a starting
point. A second extrude operator is added and the original curve is piped into its B (geometry)
input. The Z vector establishing the direction of the first extrusion is then piped into D.

P
age 22.368.6

However, D is modified with a mathematical formula, but rather than utilize the icon-based
mathematical operations available in Grasshopper, the Expression editor, available for many
input or output parameters, is used to directly apply a fixed formula. In the example in figure 5,
D/2 is input into the D expression editor of the new extrusion operator. This will divide any
input into D by two. As a result, a single number slider is used to drive the offset distance and
both extrusion, with the original curve extrusion always being ½ of the distance and the height of
the offset curve. Variations of the scheme are generated using the number slider.

Figure 5. Grasshopper interface with offset curve and extrude operations with expression editor
used to develop a parametrically-driven height dimension for one extrusion that is always twice
the height of the other.

Figure 6A and 6B illustrate a further expanded example using the example illustrated in figure 5
as a starting point. In figure 6A “edge surface” operator is added to the Grasshopper window. In
Rhino 3D, the basic application of the edge surface command creates a 2-D surface between two
curves. Similarly, in Grasshopper, the edge surface operator uses the curve parameter set from
the original curve in Rhino as the first curve and to create an offset curve in Grasshopper, which
is manipulated with the number slider as the second curve. The result is a planar surface that
adjusts dynamically with the curve as the number parameter for the distance is manipulated. In
figure 6B the example is further developed into a closed 3-D mass. The original Rhino curve and
Grasshopper offset curve are disconnected from the edge surface operator and replaced with the
output of the Grasshopper extrusion operators which had been applied to the original and the
offset curve in figure 5. This creates surfaces between all edges simultaneously. In
Grasshopper, the resulting geometry is a three-dimensional volume that has a width dimension
and a height dimension manipulated by the single number slider.

Expression editor active

P
age 22.368.7

Figure 6A: Edge surface applied between
original Rhino curve and Grasshopper offset
curve to create 2-D surface.

Figure 6B. Edge surface applied between
Grasshopper extrusions of original Rhino curve
and Grasshopper offset curve to create 3-D mass.

Organizing the class activities

Ongoing review of the research related to generative design lead architecture faculty at Bowling
Green State University to develop an introductory assignment which would enable both students
and instructors to experiment with utilizing GC (Generative Computing) as a design platform.
While expanding student’s technical skills with software was an intended learning outcome, the
primary objective was to analyze the effectiveness of the technology as a medium for design
exploration, particularly when used by novice designers. The course selected to introduce
generative design concepts had been previously developed as an elective upper-level
architectural computing class emphasizing advanced BIM (Building Information Modeling)
content. Therefore, it was necessary to limit the course time allocated to an experimental
introduction of generative design to approximately four weeks. During this period students
would need to develop competencies with Rhino 3D and Grasshopper. Therefore, the
instructional strategy was divided into three areas of content focus:

1. Content Area One: A single-track introduction to 2-D and 3-D operations in Rhino 3D
(Version 4.0, SR8) which was to draw extensively on students prior experiences.

2. Content Area Two: A two-track phase which involved covering 3-D operations specific
to Rhino 3D while simultaneously covering 2-D generative computing operations in
Grasshopper (Version 8.0004).

3. Content Area Three: A single track 3-D generative computing track using both 2-D and
3-D operations in Grasshopper, culminating in a “design exploration project” assignment
in which students were to use Rhino 3D and Grasshopper to generate three discrete
alternatives using the Grasshopper “bake” operations.

The sequence of the tracks used in this instructional strategy is illustrated in Figure 7.

P
age 22.368.8

Figure 7. Instructional strategy diagram for introducing GC concepts

Embedded within the stages of the class project organization are the three characteristics of
generative design, which were aligned as noted in Table 1.

Table 1. Alignment of three characteristics of generative design and class project stages

A design schema that provides criteria
requirements

Design Project Parameters

A means of creating variations Grasshopper parameters and operations
A means of selecting desirable outcomes Grasshopper “Baking” operation

The initial area content focus was structured to identify the parallel operations between
AutoCAD and Rhino in order to draw on the student’s existing skill base to introduce Rhino3D.
The primary parallel operations and commands covered are documented in Table 2.

Table 2. Primary ACAD to Rhino parallel operations and commands

ACAD/3DS Max Concept: Rhino Concept:
Relative and Absolute Coordinates Relative and Absolute Coordinates
Viewport Navigation Viewport Navigation (parallels to 3DS MAX)
Zoom, Pan, and View options Zoom, Pan, and View options
Viewport display: Wireframe, Shading
options

Viewport display: Wireframe, Shading options,
render options

P
age 22.368.9

Object snaps Object Snaps
Drawing Aids (Grid snap, Ortho modes) Drawing Aids (Grid snap, Ortho modes)
Function keys and keyboard shortcuts Function keys and keyboard shortcuts

(parallels with AutoCAD)
Layers Layers
User coordinate Systems, Work Planes

C-plane Operations: Setting c-planes, orienting
views to c-planes

Line and Polyline commands Line and Polyline commands
2-D Shape creation 2-D Shape creation
Grip editing Control point editing
Polyline editing (PEDIT) Control point editing, curve degrees
2-D Geometry Editing (Offset, Trim, Fillet,
Etc.)

2-D Geometry Editing (Offset, Trim, Fillet,
Etc.)

Extrusions Extrude Planar Curve
Solid Primitives Solid Primitives
Boolean operations (Union, Subtraction,
Intersection)

Boolean operations (Union, Difference,
Intersection)

2-D and 3-D Geometry Manipulation:
Move, copy, rotate, scale

2-D and 3-D Transforms: Move, copy, rotate,
scale

Inquiry Commands Inquiry Commands
Block (ACAD) and Group (3DS Max) Group
Lighting: Point, Direct, Spot Lighting: Point, Direct, Spot

In the second section covering 3-D operations specific to Rhino 3D, the emphasis was primarily
on advanced surface modeling. While some of these operations, such as lofts and sweeps did
have analogous operations in AutoCAD, few students had experience with the CAD
counterparts. Additionally, many of these operations were considerably more complicated in
AutoCAD than in Rhino 3D. Therefore, these functions were covered only in Rhino. While it
was not anticipated that all the advanced Rhino content would be used in Grasshopper
operations, some content, such as cage editing, was included to reinforce the student’s grasp of
the software’s functionality and modeling potential. The 2-D generative computing operations in
Grasshopper which were covered along with the more advanced Rhino modeling concepts were
primarily limited to curve operations. However, using grasshopper operations to divide geometry
and operations used to move and scale geometry, called X-forms in Grasshopper, were also
covered. A complete list of the topics covered in the Rhino modeling/Grasshopper concept
content areas are listed in Table 3.

Table 3. Rhino 3D modeling/Grasshopper concept alignment

Rhino3D
Modeling Concepts:

2-D generative computing
operations in Grasshopper

Lofts Set point
1-rail and 2-rail sweeps Set curve
Flow along curve operation Offset curve
Flow along surface Input and Output Parameters
Curve Extrusion options Number slider (Floating Point and Integer)

P
age 22.368.10

Curve degree Expression editor
Surface control points Divide curve
Surface editing (offset) X, Y, and Z Vectors
Capping planar holes Xform (Euclidean) Move and Rotate
Curve from Object operations Xform Scale
Cage editing Line: from Point
Record History function Line: Through/between points
Extend curve Frames (perpendicular frames on curve)
Extend surface Geometry around point
Orient around curve Piping surfaces
Advanced c-plane operations
Rebuilding surfaces
Changing curve directions

Examples of the basic 2-D and 3-D generative computing content covered are documented in
figure 8. In this student example, two Rhino curves, a line and an arc, have equally spaced points
placed along their length using the Grasshopper “divide curve” command. The number of points
along both curves is driven by a single slider. Using the Grasshopper Move X-form, the points
are repositioned vertically in the Z-direction. Grasshopper then generates lines between points to
form a frame of 2-D geometry. In figure 8, the height of the points generated by the Move X-
form relative to the original curves is driven by two independent number sliders, allowing both
the frame height and frame slope to be manipulated dynamically.

Figure 8. Basic 2-D and 3-D Rhino-to-Grasshopper GC modeling.

Once frames were developed, students could use the Grasshopper piping command to place a
tube form around the linear geometry in order to simulate structural frames (Figure 9). Once the
line geometry had been channeled into the piping operation, the results could then be “stacked”
into a multi-level frame by using the output of the piping operation as input for additional Move
X-forms. A student example is illustrated in figure 10. The height of both sides of the frame in
this example is driven by a single number slider to facilitate stacking. Additionally, the vertical

Original Line

Divide Curve

2 number sliders
driving height

Move X-form
applied to divide
curve points with Z
vector.

Points connected
using GC Line

Original Arc

Points from
Divide Curve

Z-vector Move X-form

GC Line and
Polyline

Points connected
using GC Polyline

P
age 22.368.11

stacking is driven by the same slider. As a result, the heights of all levels of the heights of the
individual frames could be dynamically manipulated and remain connected.

Figure 9. Tube-shaped form extruded along 2-D geometry using the Grasshopper pipe operation.

Figure 10. Multi-level frame generation. The height of both sides of frame is driven by a single
number slider. The Z-direction vector assigned to all Move X-forms is driven by a single number
slider to facilitate stacking, thus retaining frame continuity.

The third section focused on introducing Grasshopper operations using advanced Rhino 3D
surfaces. In many cases the new operations were 3-D or surface operations which were
analogous to the 2-D operations covered in the previous section. However, some of the content
required substantial allocation of time. Specifically, material related to frames and lists proved
challenging. Some additional advanced content and operations related to the use of formulas and
functions was eliminated from the topics to be covered. The operations that were covered in the
third section included those listed in Table 4. Sample outcomes are documented in Figure 10.

Number slider driving Z
values to stack frames

Pipe operation

Move X-form
positioning
frame 3

Move X-form
positioning
frame 3

Frame 2

Frame 3

Original frame

P
age 22.368.12

Table 4. Advanced Grasshopper
operations with surfaces
Lists
Series
Flip (inverting curve/surface direction)
Lofts
Revolve
Points through curves
Set-plane operations
Grids
Meshes
Sweeps (1 Rail and 2 Rail sweeps)
Curve-piping
3-D primitives
Surface offsets
Planar Surface and operations
Cap Holes
Surface divide
Surface frames
Morphing
Baking operations

Design Project: Generating Design Alternatives

For the application project a computer model of the downtown area of a mid-sized Midwestern
city was provided to the students. The mass model included limited detail, but did provide a
real-world framework for the project. A vacant site was selected for the project location. The site
was 260’ by 380’ (Figure 11).

Figure 11. Project site and context.

P
age 22.368.13

Students were asked to use grasshopper to generate three design alternatives for the massing of a
new office tower structure on the designated site. Project parameters were as follows:

 The building footprint was required to be at least 25% of the site but no more than 50%
of the site.

 The structure was to be between 200’ and 250’ tall.
 The structure could not extend/project beyond the property line.
 The structure could not extend/project more than 15% beyond the building footprint.
 Floor-to-floor heights were set at 10’ minimum and 20’ maximum.
 The portion of the site remaining empty was to be considered as an urban plaza –

however it was not to be developed as part of the project.
 The starting geometry in the Rhino file was to be limited to a single point and or curve

segment.
 Only One .ghx (Grasshopper) file was to be used. This required students to establish

geometric relations sufficient to drive variations that could generate the three alternatives.
However, students were allowed to have geometry alternatives that could be swapped out
within the file. For example, a file could contain both an ellipse and a rectangle that could
be exchanged in an operation for different results. However, both operation icons were to
be contained in the single .ghx file.

 Required project submission:
1 Rhino .3dm file of initial geometry (point or curve segment)
2 Grasshopper .ghx file
3 Site model with the three final alternatives baked on three discrete layers Specific

instructions were provided for layer as well as file naming conventions. For
example, the three layers that were used to store the design alternatives were to be
identified as Alt1, Alt2, and Alt3. However, students were encouraged to store
any preliminary design development operations that were “baked” during the
course of developing their proposal on any other layers under a naming
convention of their choosing.

It was intended that the extent to which students utilized baking operations during preliminary
design experimentation could provide an indication of the effectiveness of Grasshopper as a
design exploration tool.

All class participants were able to generate at a minimum basic massing alternatives. Most relied
on establishing integer-driven relationships that manipulated the massing through alternate floor
plate geometries as well as X-form operations, number of floor plates, manipulation of floor-
plate areas, and manipulations of floor-to-floor heights. Figure 12 documents the Grasshopper
operations that were typical in many submissions. A point was positioned on the site. The
Grasshopper point parameter was then set to that point. The point parameter is located in the
upper left corner of the Grasshopper window. Geometric operations were then developed using
the point parameter as a reference. The example in figure 12 used two discrete geometries, an
ellipse and a rectangle, as alternatives, which was specifically identified in the project parameters
as an option for the students to pursue. In the example provided, number sliders were used to
drive the dimensions of either the rectangle or the ellipse geometry, depending upon which
geometry the designer was exploring, as well as the operations the geometry is piped into. These

P
age 22.368.14

operations included vertical distribution (to emulate floor-to-floor as well as overall building
height), “series” operations (which generated numbers of floor plates and plate rotation angles),
extrusions, and curve and surface offsets, each of which had dimensional parameters driven by
shared or independent number sliders.

Figure 12. Grasshopper interface showing input and output operations based on a single point.

Figure 13 illustrates the output of explorations involving dynamically manipulating the
dimensions and the rotations of the option using rectangular geometries developed in
Grasshopper based upon the single point in the Rhino 3D file.

Figure 13. Output of Grasshopper operations illustrated in figure 12.

Point parameter
set from single
point in the
Rhino 3-D file

Used for rectangle options

Used for ellipse options

Point location
Rhino 3-D file

P
age 22.368.15

Other design explorations worked with more traditional massing strategies. In one such
example, a student developed a proposal with three tower-blocks, each of which used a formula
for the heights and taper angles so that a minimum number of sliders would manipulate the
heights and angles using formulas in the expression editors of the several operations. This
established relationships between the tower blocks. For example, the height of the central core
tower was always a multiple of 2.75 times the height of the lowest tower. Therefore, the height
of the lowest tower drove the heights of the other two based on formulas. Additionally, this
proposal used a Grasshopper Move X-form to position the overall tower massing relative to the
site, and to rotate the orientation of the massing relative to the property lines. Number sliders
were used to drive the massing location positively or negatively relative to the X and Y
coordinates of the center of the site. This allowed the designer to quickly explore massing
options at any location on the site. Three alternatives generated with this proposal are illustrated
in figures 14, 15, and 16 in the appendix.

Discussion and Summary

The success of the students in developing design proposals using Grasshopper clearly indicated
that the strategy for introducing the software and associated modeling processes, including the
strategy of building on prior skills and knowledge base, was effective. However, while
developing software knowledge and skills was an intended outcome, faculty were primarily
interested in how the students explored design options as they developed and finalized their
schemes. Studio observations indicated that a common strategy was to place multiple geometry
operators in the Grasshopper window, and then pipe a sequence into those multiple operators and
toggle the display of the alternatives off and on to view the options. Additionally, students
quickly found that those alternatives could be left in place while further design experimentations
were developed “downstream.” Most importantly, it became evident that for most students the
experimentation with generative design operations yielded unanticipated geometric outcomes,
thus enhancing its use as a mechanism for exploration.

Once the geometric relationships were established, generating representations of design
alternatives proved to be one of the least challenging. The process of “baking” design
alternatives and storing them via layer management was easily mastered by all the students.
Interestingly, all student submissions contained at least three additional baking operations on
student-defined layers, and in some cases the number was as high as 15, thus indicating a level of
design experimentation that was consistent with that observed in the studio.

As noted previously, the class used for this experiment was an elective course. The students
enrolled in this course had a high-level of interest in computing in architectural design and would
be inherently motivated to utilize new digital technologies. While it was anticipated that this
would have a positive influence on the outcomes of the course activity, the extensive design
exploration documented in the submissions and in studio observations indicated that the use of
Grasshopper and similar generative design tools should be further developed in the curriculum.

However, despite the potential of generative design processes in both education and practice, a
degree of caution must be maintained. The strategy utilized in this case study was based on
leveraging students prior CAD and computing knowledge in order to introduce higher-order
modeling skills along with the generative design concepts. Introducing generative design

P
age 22.368.16

concepts into the broader curriculum could exacerbate the lack of digital design skills prevalent
among many senior faculty in architecture programs. More importantly, the ability to easily
generate complex geometry may potentially inhibit the development of design skills, particularly
in terms of the use of these technologies by novice designers. According to Brown [19] “the
seductive nature of architectural forms that CAD systems can now produce can lead designers to
focus on the exploration of form early in the design process, through particular types of
visualization” but added that “this can be at the expense of the technological, financial and social
constrains that should be balanced with such investigations of form.” Further he suggested that
“in discovering this new digital art it is easy to forget the science, or lose the connection between
the two; and lose track of the fact that architecture is richer if it addresses both art and science
with equal respect.”[18] Generative design processes present a true paradigm shift in the
architectural design process in terms of both the relevance of traditional media as well as existing
applications of digital media. Therefore, faculty must pay close attention to where generative
design is introduced into the curriculum and to the skill sets of faculty who will be charged to
guide students in its utilization.

References

1. Oxman, R. (2006). Theory and design in the first digital age. Design Studies Vol. 27 No. 3, 229 – 265.
2. Mitchell, W. (2005) Constructing complexity. In “Computer Aided Design Futures 2005”. B Martens and

A. Brown (eds.) (41 -55). Dordrecht, The Netherlands: Springer Publications
3. Goel, V. (1995). Sketches of thought. Cambridge, MA: MIT Press.
4. Won, P. (2001). The comparison between visual thinking using computer and conventional media in the

concept generation stages of design. Automation in construction. 10 (1), (25-35).
5. Suwa, M. and Tversky, B. (1997). What do architects and students perceive in their design sketches? A

protocol analysis. Design studies, 18 (4), (385 – 403).
6. Schweikardt, E., & Gross, M. (2000). Digital clay: deriving digital models from freehand sketches.

Automation in construction, 9 (1), (107 – 115).
7. Van Elsas, P. & Vergeest, J. (1998). New functionality for computer-aided design: the displacement

feature. Design Studies (19), 1 (81 – 102).
8. Leglise, M. (1995). Art under constraint – preserving the creative dimension in computer-aided

architectural `
9. Robert C. Zeleznik, R., Herndon, K., and Hughes, J. (1996) SKETCH: An Interface for Sketching 3-D

Scenes. SIGGRAPH '96 Proceedings of the 23rd annual conference on Computer graphics and interactive
techniques

10. Khemlani, L. (2004). The Rise and Fall of Autodesk Architectural Studio. AECbytes Newsletter #13
(September 9, 2004). Accessed online at http://www.aecbytes.com/newsletter/2004/issue_13.html

11. Yi-Luen Do, E. (2002). Drawing marks, acts, and reacts: Toward a computational sketching interface for
architectural design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 16, 149–
171.

12. Schweikardt, E., & Gross, M. (2000). Digital clay: deriving digital models from freehand sketches.
Automation in construction, 9 (1), (107 – 115).

13. Van Elsas, P. & Vergeest, J. (1998). New functionality for computer-aided design: the displacement
feature. Design Studies (19), 1 (81 – 102).

14. Shesh, A., and Chen, B. (2004). SMARTPAPER: An interactive and user-friendly sketching system. In
Eurographics 2004, M.-P. Cani and M. Slayer, eds. 23 (3). 301-310

15. Negroponte, N. (1970). The Architecture Machine: Toward a More Human Environment, MIT Press,
Cambridge, Mass.

16. Kolaravec, B. (2003). Architecture in the Digital Age: Design and Manufacturing. Spon Press, New York.

P
age 22.368.17

17. Herr, C. and Kvan, T. (2007). Adapting cellular automata to support the architectural design process.
Automation in Construction 16 (2007) 61 – 69.

18. Chase, S. (2005). Generative design tools for novice designers: Issues for selection. Automation in
Construction. Volume 14, Issue 6. 689-698.

19. Brown, A. (2003). Visualization as a common design language: connecting art and science. Automation in
Construction 12 (2003) 703– 713

Appendix

Figure 14. Massing option alternative for tower-block scheme with rendering of the geometry
after alternative was “baked”.

P
age 22.368.18

Figure 15. Massing option alternative for relocated tower-block scheme with rendering of the
geometry after alternative was “baked”. Geometry adjusted for repositioned massing.

P
age 22.368.19

Figure 16. Massing option for rotated alternative for tower-block scheme with rendering of the
geometry after alternative was “baked”. Geometry adjusted for repositioned massing.

P
age 22.368.20

