
AC 2011-2728: CONCEPTUAL DESIGN EXPLORATION IN ARCHITEC-
TURE USING PARAMETRIC GENERATIVE COMPUTING: A CASE STUDY

Dr. Stan Guidera, Bowling Green State University

Stan Guidera is an architect and chair of the Department of Architecture and Environmental Design at
Bowling Green State University. His primary teaching and research area is in 3D applications for com-
puter aided design for architecture and construction.

c©American Society for Engineering Education, 2011

P
age 22.368.1



Conceptual Design Exploration in Architecture Using Parametric 
Generative Computing: A Case Study 

  
Abstract 
 
This paper documents design strategies using Grasshopper and Rhino 3D as an instructional tool 
for conceptual design. It discusses the underlying concepts of generative design and includes 
examples using Grasshopper with Rhino 3D for both massing and for basic structural layouts. It 
also discusses the necessary skill set, beyond that associated with the operation of the underlying 
CAD applications, required for students to utilize these applications. It then proposes a 
framework for incorporating generative design into CAD courses utilizing a 2-D to 3-D sequence 
of instructional activities. 
 
Part 1: Introduction 
 
The digital revolution and its associated discourse is increasingly influencing all of the design 
fields, particularly architecture [1]. In his book Constructing Complexity, William Mitchell 
referenced to shift to digital design in architecture stating that “buildings were once materialized 
drawings, but now, increasingly, they are materialized digital information – design with the help 
of computer-aided design systems, fabricated by means of digitally controlled machinery, put 
together on-site with the assistance of digital layout and positioning devices, and generally 
inseparable from flows of information through global computer networks.”[2]

  
 
However, design exploration is an integral aspect of the design process in any discipline. 
Traditionally sketching has functioned as a primary conceptual design tool due to its 
indeterminacy and ambiguity. Goel [3] suggested that the ambiguity in sketching promoted 
cognitive shifts from one proposed conceptual idea to other alternative concepts, a process he 
referred to as lateral transformation. Won [4] proposed that during the drawing process designers 
demonstrate a “seeing behavior” in which they will concentrate on the figural properties of a 
sketch. He stated that as a result the designer may “see the image as something else” and added 
that the shift of ‘seeing’ to ‘seeing as’ stimulates imaging. Similarly, Suwa and Tversky [5] 
proposed that as designers inspect sketches “they see unanticipated relations and features that 
suggest ways to refine and revise ideas.” 
 
As design practices have been restructured around Computer Aided Design (CAD), processes to 
integrate digital technologies in conceptual design have been ongoing. The success of these 
applications has been limited. CAD has been perceived as a medium intended for production that 
is difficult to use in the early stages of the design process where the priority is creativity rather 
than precision. [6, 7, 8] The precision inherent in CAD results in a lack of ambiguity making 
commercially available computer aided design applications largely ineffective as a medium for 
design exploration. 
 
Most commercial CAD applications have provided some form sketch emulation mode [9] or have 
provided display options that generate digital representations with hand-drawn characteristics.  
The former were largely perceived as ineffective (Figure 1). The latter were typically perceived 
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as yet another alternative display which, while providing an effective representation tool, has not 
been widely adopted as a design interface (Figure 2).   
 
 
 
 

 
 
 Figure 1.  AutoCAD Sketch command 
example 
 

  
 

Figure 2.  AutoCAD 3-D Wireframe 
display (above), with Sketch emulation 
(below) 

 
 
As an alternative, applications have been developed that attempt to operate in a manner that 
emulated traditional manually-based graphic techniques. These applications can include tools to 
support 2-D sketching mechanisms. Autodesk’s Architectural Studio interface was based on a 
trace-paper overlay mechanism in which designers could use drawing tools that created line-
work modeled after traditional markers and pencils. It could also merge sketches into 3-D 
models, thus bridging the gap between 2-D and 3-D graphics. However, its limited adoption has 
been attributed to the lack of wide-scale adoption of pen-based input devices [10]. Many other 
sketch based 2-D to 3-D have been proposed or developed by researchers over the past decades. 
These include seminal applications such as Sutherlands SketchPad, a constraint-based drawing 
environment developed in the 1960’s, and STRAIT, a program developed in the 1970’s that 
interpreted sketch geometry as straight lines [11]. Recent developments in the interface between 
sketching and digital design include “Digital Clay,”[12] “SmartPaper,”[13] and displacement 
modeling. [14] 
 
However, it may be argued that attempts to re-create the traditional sketch-based design 
processed with a computer may be an inappropriate strategy for conceptual design in a digital 
environment.  Further, it may be argued that such a strategy is an extension of the early adoption 
of CAD, in which many of the commercially available applications were developed and used as 
electronic versions of manual drafting practices. Other than a change in the medium and devices 
used, no change in the actual processes associated with producing the work actually occurred.  
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This has resulted in the criticism that CAD has failed to meet the expectations of its users and 
that it’s true potential has gone unrealized. Therefore a more effective strategy may lie in re-
conceptualizing conceptual design by utilizing processes that embrace and exploit computation. 
 
Generative design approaches have emerged from the search for strategies to facilitate the 
exploration of alternative solutions in design, using computers as variance-producing engines to 
navigate large solution spaces and to achieve unexpected but viable solutions. [15] Kolaravec used 
the term “digital morphogenesis” to refer to design processes in which digital media is not used 
for representation but as a generative tool for the derivation of form and its transformation. [16] 
He stated that “the predictable relationships between design and representation are abandoned in 
favor of computationally-generated complexities” and that “models of design capable of 
consistent and continual dynamic transformation are replacing the static norms of conventional 
processes.’ For Kolaravec, generative computing, or, as he referred to it, “digital 
morphogenesis,” is a “radical departure from centuries-old traditions and norms in architectural 
design” – the emphasis shifts from form-making to form-finding.”[16] 
 
In generative design, algorithmic procedures are often used to produce arrays of alternative 
solutions based on predefined goals and constraints, which the designer then evaluates to select 
the most appropriate or interesting. [17] This position is reiterated by Oxman [1], who stated that 
“the generative model is the design of, and interaction with, complex mechanisms that deal with 
the emergence of forms deriving from generative rules, relations and principles.” However, she 
also argued that designer interactivity is a key component. She stated that “Interaction has a 
major priority in this model” and added that “in order to employ generative techniques in design, 
there is a need for an interactive module that provides control and choices for the designer to 
guide the selection of desired solutions.” 
 
Chase [18] made a clear distinction between CAD and generative design. He argued that CAD 
applications do not have the exploratory potential of generative computing. He further argued 
that “traditional CAD software can aid students in understanding their designs, and develop their 
knowledge and skills in areas such as geometry, but they act only as aids; the user must directly 
input and manipulate forms”, and added that “the power of generative design tools is that these 
can guide a novice down an exploratory path.”[18] 
 
The use of generative design technologies have been expanding architectural education and 
among design professionals as well.  Generative design is a parametric computer modeling 
technology that is typically operated using an alternative interface for a Computer Aided Design 
application. Examples of these are Generative Components, which works with Microstation, and 
Grasshopper, which works with Rhino 3D. 
 
Part 2. Developing an introduction to Generative Computing using Grasshopper 
 
Generative design processes are characterized by the following: 

 
1. A design schema that provides criteria requirements 
2. A means of creating variations 
3. A means of selecting desirable outcomes 
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Based on these characteristics, generative design environments provide significant advantages 
for conceptual design as the emphasis is on exploration of alternatives. However, one of the most 
significant advantages is that generative design environments are dynamic and interactive, 
providing real-time visual feedback as the geometric and dimensional variations are manipulated.   
 
A generative computing application that is rapidly expanding in use is Grasshopper, which runs 
with Rhino 3D.  This expanded can be attributed to two factors. First, the extensive modeling 
capabilities of Rhino 3D, particularly in terms of nurbs (non-uniform rational b-spline) curve and 
surface modeling, has lead to its widespread adoption among architectural educators and 
professionals. The command structure has many parallels with applications AutoCAD as well as 
3D Studio, thus reducing the learning curve for students already familiar with this application. 
Secondly, the graphical interface of Grasshopper provides an explicit representation of the 
geometric relationships and sequences used to generate the digital model. This explicit 
representation is linked to the Rhino 3D viewports. This enables designers to receive immediate 
visual feedback as these relationships are manipulated by user-defined mathematical and 
geometric parameters. 
 
Additionally, Grasshopper utilizes a simple strategy for storing variations of the results of these 
manipulations. A process, driven by clicking on a single icon, is used to store an option. When 
combined with layers, this process, referred to as “baking”, can store any number of variations 
on discrete layers, so the options can be saved for future display and review. 
 
Grasshopper Overview 
 
Grasshopper functions as a plug-in (add-in application) for Rhino 3D. However, unlike most 
Rhino plug-ins, Grasshopper utilizes a separate interface window that references geometry 
generated in the original Rhino 3D file (Figure 3). Additionally, Grasshopper operations are 
saved in a separate file format (.ghx) from Rhino3D. In Grasshopper, operations are built upon 
initial Rhino geometry, in some cases as simple as a point. The Rhino geometry is typically 
linked to grasshopper using the Grasshopper Parameters panel, where single or multiple points or 
curves in Rhino are defined as the geometry that will be used as the basis for further operations.   
 

 
Figure 3. Grasshopper interface 
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Once the Rhino geometry is linked to grasshopper, the relationships “piped” – the input of one 
operation is channeled into a second operation or operations. These are graphically represented 
by operation icons and input and output curves that connect between the input and output 
parameters of the operation icons. The end result of an operation is displayed in the Rhino 
viewport.  At any point along a sequence of channeled operations, the display of the result of that 
operation can be turned on or off.  Therefore, an operation in the sequence can be piped into two 
or more alternatives, and the designer can toggle the display of the options generated by the 
different processes. 
 
Figure 4 illustrates an example in which a Grasshopper curve parameter icon is “set” to a nurbs 
curve created in Rhino.  In setting a parameter to specific geometric element, that element is then 
used as input for subsequent operations. In this example. the curve parameter is “piped” into the 
C (curve) input of the “offset curve” operator.  The offset distance input D is driven by a number 
slider. The “offset curve” icon output C generates a curve that is offset the D distance set by the 
user with the number slider.  The “offset curve” operator output C is then piped into the B (input 
geometry) parameter of the “extrude curve” operator.  The second input parameter on the 
“extrude curve” operator is D, which is both direction and distance.  A Z-direction vector 
parameter is piped into D to establish the direction. The same number slider used to determine 
the offset distance is piped into the Z vector parameter.  As a result, as the number slider is 
manipulated, the curve is extruded the same height as the offset distance so that the further the 
curve is offset the higher the curve is extruded. The result is illustrated in the Rhino 3D viewport 
adjacent to the Grasshopper window in Figure 4.  The only actual geometry in the Rhino 3D file 
is the single curve used in the initial “set curve” parameter operation. 
 

 
Figure 4. Grasshopper interface with offset curve and extrude operations. 
 
Figure 5 illustrates an expanded example using the example illustrated in figure 4 as a starting 
point. A second extrude operator is added and the original curve is piped into its B (geometry) 
input.  The Z vector establishing the direction of the first extrusion is then piped into D.  
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However, D is modified with a mathematical formula, but rather than utilize the icon-based 
mathematical operations available in Grasshopper, the Expression editor, available for many 
input or output parameters, is used to directly apply a fixed formula.  In the example in figure 5, 
D/2 is input into the D expression editor of the new extrusion operator.  This will divide any 
input into D by two.  As a result, a single number slider is used to drive the offset distance and 
both extrusion, with the original curve extrusion always being ½ of the distance and the height of 
the offset curve.  Variations of the scheme are generated using the number slider. 
 

 
Figure 5.  Grasshopper interface with offset curve and extrude operations with expression editor 
used to develop a parametrically-driven height dimension for one extrusion that is always twice 
the height of the other. 
 
Figure 6A and 6B illustrate a further expanded example using the example illustrated in figure 5 
as a starting point.  In figure 6A “edge surface” operator is added to the Grasshopper window.  In 
Rhino 3D, the basic application of the edge surface command creates a 2-D surface between two 
curves.  Similarly, in Grasshopper, the edge surface operator uses the curve parameter set from 
the original curve in Rhino as the first curve and to create an offset curve in Grasshopper, which 
is manipulated with the number slider as the second curve.  The result is a planar surface that 
adjusts dynamically with the curve as the number parameter for the distance is manipulated.  In 
figure 6B the example is further developed into a closed 3-D mass. The original Rhino curve and 
Grasshopper offset curve are disconnected from the edge surface operator and replaced with the 
output of the Grasshopper extrusion operators which had been applied to the original and the 
offset curve in figure 5.  This creates surfaces between all edges simultaneously.  In 
Grasshopper, the resulting geometry is a three-dimensional volume that has a width dimension 
and a height dimension manipulated by the single number slider. 
 

Expression editor active 
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Figure 6A: Edge surface applied between 
original Rhino curve and Grasshopper offset 
curve to create 2-D surface. 

Figure 6B. Edge surface applied between 
Grasshopper extrusions of original Rhino curve 
and Grasshopper offset curve to create 3-D mass. 

 
Organizing the class activities 
 
Ongoing review of the research related to generative design lead architecture faculty at Bowling 
Green State University to develop an introductory assignment which would enable both students 
and instructors to experiment with utilizing GC (Generative Computing) as a design platform.  
While expanding student’s technical skills with software was an intended learning outcome, the 
primary objective was to analyze the effectiveness of the technology as a medium for design 
exploration, particularly when used by novice designers. The course selected to introduce 
generative design concepts had been previously developed as an elective upper-level 
architectural computing class emphasizing advanced BIM (Building Information Modeling) 
content. Therefore, it was necessary to limit the course time allocated to an experimental 
introduction of generative design to approximately four weeks.  During this period students 
would need to develop competencies with Rhino 3D and Grasshopper. Therefore, the 
instructional strategy was divided into three areas of content focus:  
 

1. Content Area One: A single-track introduction to 2-D and 3-D operations in Rhino 3D 
(Version 4.0, SR8) which was to draw extensively on students prior experiences.   

2. Content Area Two: A two-track phase which involved covering 3-D operations specific 
to Rhino 3D while simultaneously covering 2-D generative computing operations in 
Grasshopper (Version 8.0004). 

3. Content Area Three: A single track 3-D generative computing track using both 2-D and 
3-D operations in Grasshopper, culminating in a “design exploration project” assignment 
in which students were to use Rhino 3D and Grasshopper to generate three discrete 
alternatives using the Grasshopper “bake” operations.  

 
The sequence of the tracks used in this instructional strategy is illustrated in Figure 7. 
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Figure 7. Instructional strategy diagram for introducing GC concepts 

 
Embedded within the stages of the class project organization are the three characteristics of 
generative design, which were aligned as noted in Table 1.  
 
Table 1. Alignment of three characteristics of generative design and class project stages 

A design schema that provides criteria 
requirements 

Design Project Parameters 

A means of creating variations Grasshopper parameters and operations 
A means of selecting desirable outcomes Grasshopper “Baking” operation 

 
The initial area content focus was structured to identify the parallel operations between 
AutoCAD and Rhino in order to draw on the student’s existing skill base to introduce Rhino3D. 
The primary parallel operations and commands covered are documented in Table 2. 
 
Table 2. Primary ACAD to Rhino parallel operations and commands 

ACAD/3DS Max Concept: Rhino Concept: 
Relative and Absolute Coordinates Relative and Absolute Coordinates 
Viewport Navigation  Viewport Navigation (parallels to 3DS MAX) 
Zoom, Pan, and View options Zoom, Pan, and View options 
Viewport display: Wireframe, Shading 
options 

Viewport display: Wireframe, Shading options, 
render options 
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Object snaps Object Snaps 
Drawing Aids (Grid snap, Ortho modes) Drawing Aids (Grid snap, Ortho modes) 
Function keys and keyboard shortcuts Function keys and keyboard shortcuts 

(parallels with AutoCAD) 
Layers Layers 
User coordinate Systems, Work Planes 
 

C-plane Operations: Setting c-planes, orienting 
views to c-planes 

Line and Polyline commands Line and Polyline commands 
2-D Shape creation 2-D Shape creation 
Grip editing Control point editing 
Polyline editing (PEDIT) Control point editing, curve degrees 
2-D Geometry Editing (Offset, Trim, Fillet, 
Etc.) 

2-D Geometry Editing (Offset, Trim, Fillet, 
Etc.) 

Extrusions Extrude Planar Curve 
Solid Primitives Solid Primitives 
Boolean operations (Union, Subtraction, 
Intersection) 

Boolean operations (Union, Difference, 
Intersection) 

2-D and 3-D Geometry Manipulation: 
Move, copy, rotate, scale 

2-D and 3-D Transforms: Move, copy, rotate, 
scale 

Inquiry Commands Inquiry Commands 
Block (ACAD) and Group (3DS Max) Group 
Lighting: Point, Direct, Spot Lighting: Point, Direct, Spot 

 
In the second section covering 3-D operations specific to Rhino 3D, the emphasis was primarily 
on advanced surface modeling.  While some of these operations, such as lofts and sweeps did 
have analogous operations in AutoCAD, few students had experience with the CAD 
counterparts.  Additionally, many of these operations were considerably more complicated in 
AutoCAD than in Rhino 3D.  Therefore, these functions were covered only in Rhino. While it 
was not anticipated that all the advanced Rhino content would be used in Grasshopper 
operations, some content, such as cage editing, was included to reinforce the student’s grasp of 
the software’s functionality and modeling potential. The 2-D generative computing operations in 
Grasshopper which were covered along with the more advanced Rhino modeling concepts were 
primarily limited to curve operations. However, using grasshopper operations to divide geometry 
and operations used to move and scale geometry, called X-forms in Grasshopper, were also 
covered. A complete list of the topics covered in the Rhino modeling/Grasshopper concept 
content areas are listed in Table 3. 
 
Table 3. Rhino 3D modeling/Grasshopper concept alignment 
 
Rhino3D  
Modeling Concepts: 

2-D generative computing  
operations in Grasshopper 

Lofts Set point 
1-rail and 2-rail sweeps Set curve 
Flow along curve operation Offset curve 
Flow along surface Input and Output Parameters 
Curve Extrusion options Number slider (Floating Point and Integer) 
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Curve degree Expression editor 
Surface control points Divide curve 
Surface editing (offset) X, Y, and Z Vectors 
Capping planar holes Xform (Euclidean) Move and Rotate 
Curve from Object operations Xform Scale 
Cage editing Line: from Point 
Record History function Line: Through/between points 
Extend curve Frames (perpendicular frames on curve) 
Extend surface Geometry around point 
Orient around curve Piping surfaces 
Advanced c-plane operations  
Rebuilding surfaces  
Changing curve directions  
 
Examples of the basic 2-D and 3-D generative computing content covered are documented in 
figure 8. In this student example, two Rhino curves, a line and an arc, have equally spaced points 
placed along their length using the Grasshopper “divide curve” command. The number of points 
along both curves is driven by a single slider. Using the Grasshopper Move X-form, the points 
are repositioned vertically in the Z-direction.  Grasshopper then generates lines between points to 
form a frame of 2-D geometry.  In figure 8, the height of the points generated by the Move X-
form relative to the original curves is driven by two independent number sliders, allowing both 
the frame height and frame slope to be manipulated dynamically. 
 

 
Figure 8. Basic 2-D and 3-D Rhino-to-Grasshopper GC modeling. 
 
Once frames were developed, students could use the Grasshopper piping command to place a 
tube form around the linear geometry in order to simulate structural frames (Figure 9). Once the 
line geometry had been channeled into the piping operation, the results could then be “stacked” 
into a multi-level frame by using the output of the piping operation as input for additional Move 
X-forms. A student example is illustrated in figure 10. The height of both sides of the frame in 
this example is driven by a single number slider to facilitate stacking.  Additionally, the vertical 

Original Line 

Divide Curve 

2 number sliders 
driving height  

Move X-form 
applied to divide 
curve points with Z 
vector.  

Points connected 
using GC Line

Original Arc 

Points from 
Divide Curve 

Z-vector Move X-form 

GC Line and 
Polyline 

Points connected 
using GC Polyline
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stacking is driven by the same slider.  As a result, the heights of all levels of the heights of the 
individual frames could be dynamically manipulated and remain connected.  
 

 
Figure 9.  Tube-shaped form extruded along 2-D geometry using the Grasshopper pipe operation. 
 

 
Figure 10.  Multi-level frame generation. The height of both sides of frame is driven by a single 
number slider. The Z-direction vector assigned to all Move X-forms is driven by a single number 
slider to facilitate stacking, thus retaining frame continuity. 
 
The third section focused on introducing Grasshopper operations using advanced Rhino 3D 
surfaces. In many cases the new operations were 3-D or surface operations which were 
analogous to the 2-D operations covered in the previous section. However, some of the content 
required substantial allocation of time.  Specifically, material related to frames and lists proved 
challenging. Some additional advanced content and operations related to the use of formulas and 
functions was eliminated from the topics to be covered. The operations that were covered in the 
third section included those listed in Table 4. Sample outcomes are documented in Figure 10.  

Number slider driving Z 
values to stack frames 

Pipe operation 

Move X-form 
positioning 
frame 3

Move X-form 
positioning 
frame 3

Frame 2

Frame 3

Original frame
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Table 4. Advanced Grasshopper  
operations with surfaces 
Lists 
Series 
Flip (inverting curve/surface direction) 
Lofts 
Revolve 
Points through curves 
Set-plane operations 
Grids 
Meshes 
Sweeps (1 Rail and 2 Rail sweeps) 
Curve-piping 
3-D primitives 
Surface offsets 
Planar Surface and operations 
Cap Holes 
Surface divide 
Surface frames 
Morphing 
Baking operations 
 
Design Project: Generating Design Alternatives 
 
For the application project a computer model of the downtown area of a mid-sized Midwestern 
city was provided to the students.  The mass model included limited detail, but did provide a 
real-world framework for the project. A vacant site was selected for the project location. The site 
was 260’ by 380’ (Figure 11).   
 

 
Figure 11. Project site and context. 
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Students were asked to use grasshopper to generate three design alternatives for the massing of a 
new office tower structure on the designated site. Project parameters were as follows: 
 

 The building footprint was required to be at least 25% of the site but no more than 50% 
of the site.   

 The structure was to be between 200’ and 250’ tall.  
 The structure could not extend/project beyond the property line.  
 The structure could not extend/project more than 15% beyond the building footprint.   
 Floor-to-floor heights were set at 10’ minimum and 20’ maximum. 
 The portion of the site remaining empty was to be considered as an urban plaza – 

however it was not to be developed as part of the project. 
 The starting geometry in the Rhino file was to be limited to a single point and or curve 

segment.   
 Only One .ghx (Grasshopper) file was to be used. This required students to establish 

geometric relations sufficient to drive variations that could generate the three alternatives. 
However, students were allowed to have geometry alternatives that could be swapped out 
within the file. For example, a file could contain both an ellipse and a rectangle that could 
be exchanged in an operation for different results. However, both operation icons were to 
be contained in the single .ghx file. 

 Required project submission: 
1 Rhino .3dm file of initial geometry (point or curve segment) 
2 Grasshopper .ghx file 
3 Site model with the three final alternatives baked on three discrete layers Specific 

instructions were provided for layer as well as file naming conventions. For 
example, the three layers that were used to store the design alternatives were to be 
identified as Alt1, Alt2, and Alt3. However, students were encouraged to store 
any preliminary design development operations that were “baked” during the 
course of developing their proposal on any other layers under a naming 
convention of their choosing.   

 
It was intended that the extent to which students utilized baking operations during preliminary 
design experimentation could provide an indication of the effectiveness of Grasshopper as a 
design exploration tool. 
 
All class participants were able to generate at a minimum basic massing alternatives. Most relied 
on establishing integer-driven relationships that manipulated the massing through alternate floor 
plate geometries as well as X-form operations, number of floor plates, manipulation of floor-
plate areas, and manipulations of floor-to-floor heights. Figure 12 documents the Grasshopper 
operations that were typical in many submissions. A point was positioned on the site. The 
Grasshopper point parameter was then set to that point.  The point parameter is located in the 
upper left corner of the Grasshopper window. Geometric operations were then developed using 
the point parameter as a reference. The example in figure 12 used two discrete geometries, an 
ellipse and a rectangle, as alternatives, which was specifically identified in the project parameters 
as an option for the students to pursue. In the example provided, number sliders were used to 
drive the dimensions of either the rectangle or the ellipse geometry, depending upon which 
geometry the designer was exploring, as well as the operations the geometry is piped into. These 
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operations included vertical distribution (to emulate floor-to-floor as well as overall building 
height), “series” operations (which generated numbers of floor plates and plate rotation angles), 
extrusions, and curve and surface offsets, each of which had dimensional parameters driven by 
shared or independent number sliders.  
 

 
Figure 12. Grasshopper interface showing input and output operations based on a single point. 

 
Figure 13 illustrates the output of explorations involving dynamically manipulating the 
dimensions and the rotations of the option using rectangular geometries developed in 
Grasshopper based upon the single point in the Rhino 3D file. 
 

Figure 13. Output of Grasshopper operations illustrated in figure 12. 

Point parameter 
set from single 
point in the 
Rhino 3-D file 

Used for rectangle options

Used for ellipse options

Point location 
Rhino 3-D file 
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Other design explorations worked with more traditional massing strategies.  In one such 
example, a student developed a proposal with three tower-blocks, each of which used a formula 
for the heights and taper angles so that a minimum number of sliders would manipulate the 
heights and angles using formulas in the expression editors of the several operations. This 
established relationships between the tower blocks. For example, the height of the central core 
tower was always a multiple of 2.75 times the height of the lowest tower. Therefore, the height 
of the lowest tower drove the heights of the other two based on formulas. Additionally, this 
proposal used a Grasshopper Move X-form to position the overall tower massing relative to the 
site, and to rotate the orientation of the massing relative to the property lines. Number sliders 
were used to drive the massing location positively or negatively relative to the X and Y 
coordinates of the center of the site. This allowed the designer to quickly explore massing 
options at any location on the site. Three alternatives generated with this proposal are illustrated 
in figures 14, 15, and 16 in the appendix. 
 
Discussion and Summary 
 
The success of the students in developing design proposals using Grasshopper clearly indicated 
that the strategy for introducing the software and associated modeling processes, including the 
strategy of building on prior skills and knowledge base, was effective. However, while 
developing software knowledge and skills was an intended outcome, faculty were primarily 
interested in how the students explored design options as they developed and finalized their 
schemes. Studio observations indicated that a common strategy was to place multiple geometry 
operators in the Grasshopper window, and then pipe a sequence into those multiple operators and 
toggle the display of the alternatives off and on to view the options. Additionally, students 
quickly found that those alternatives could be left in place while further design experimentations 
were developed “downstream.” Most importantly, it became evident that for most students the 
experimentation with generative design operations yielded unanticipated geometric outcomes, 
thus enhancing its use as a mechanism for exploration. 
 
Once the geometric relationships were established, generating representations of design 
alternatives proved to be one of the least challenging. The process of “baking” design 
alternatives and storing them via layer management was easily mastered by all the students.  
Interestingly, all student submissions contained at least three additional baking operations on 
student-defined layers, and in some cases the number was as high as 15, thus indicating a level of 
design experimentation that was consistent with that observed in the studio.   
 
As noted previously, the class used for this experiment was an elective course. The students 
enrolled in this course had a high-level of interest in computing in architectural design and would 
be inherently motivated to utilize new digital technologies. While it was anticipated that this 
would have a positive influence on the outcomes of the course activity, the extensive design 
exploration documented in the submissions and in studio observations indicated that the use of 
Grasshopper and similar generative design tools should be further developed in the curriculum. 
 
However, despite the potential of generative design processes in both education and practice, a 
degree of caution must be maintained.  The strategy utilized in this case study was based on 
leveraging students prior CAD and computing knowledge in order to introduce higher-order 
modeling skills along with the generative design concepts. Introducing generative design 
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concepts into the broader curriculum could exacerbate the lack of digital design skills prevalent 
among many senior faculty in architecture programs. More importantly, the ability to easily 
generate complex geometry may potentially inhibit the development of design skills, particularly 
in terms of the use of these technologies by novice designers. According to Brown [19] “the 
seductive nature of architectural forms that CAD systems can now produce can lead designers to 
focus on the exploration of form early in the design process, through particular types of 
visualization” but added that “this can be at the expense of the technological, financial and social 
constrains that should be balanced with such investigations of form.” Further he suggested that 
“in discovering this new digital art it is easy to forget the science, or lose the connection between 
the two; and lose track of the fact that architecture is richer if it addresses both art and science 
with equal respect.”[18] Generative design processes present a true paradigm shift in the 
architectural design process in terms of both the relevance of traditional media as well as existing 
applications of digital media. Therefore, faculty must pay close attention to where generative 
design is introduced into the curriculum and to the skill sets of faculty who will be charged to 
guide students in its utilization. 
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Figure 14. Massing option alternative for tower-block scheme with rendering of the geometry 
after alternative was “baked”. 
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Figure 15. Massing option alternative for relocated tower-block scheme with rendering of the 
geometry after alternative was “baked”. Geometry adjusted for repositioned massing. 
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Figure 16. Massing option for rotated alternative for tower-block scheme with rendering of the 
geometry after alternative was “baked”. Geometry adjusted for repositioned massing. 
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