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 Helping Students Approach FEA Simulations like Experts 
 
Introduction 

Computer simulation has emerged as a fundamentally new approach for solving 
engineering problems, distinct from theory and experiments. The recent, dramatic reduction in 
the cost of computing hardware and the maturation of off-the-shelf, commercial software 
packages has allowed advanced simulation to become an integral part of engineering design, 
analysis and research. Driven by cost pressures, many industries are vigorously pursuing a zero-
prototype future, with simulations minimizing or even replacing expensive physical prototypes.  
For society to reap the full benefits of simulation, most engineers, not just specialists, need the 
ability to deploy simulations effectively.  There is now widespread agreement that undergraduate 
engineering students need to be taught the capabilities and limitations of advanced simulation1.  
Simulation also offers the opportunity to enhance learning through an interactive, visual 
medium2 and to build excitement among students about the engineering profession. Working 
with simulations is a visual and interactive experience, something the current generation of 
students takes to readily.  Simulation enables beginners to generate solutions to practical 
engineering problems without the use of abstract mathematics or expensive equipment.  The 
finite element method (FEM), also referred to as Finite Element Analysis (FEA), is an important 
numerical technique used to simulate a wide variety of engineering problems.  By integrating 
simulations across several sequential required courses in the mechanical engineering curriculum, 
we plan to increase students’ ability to use FEA-based simulations effectively and improve their 
understanding of the concepts developed in these courses.   
 

Cognitive research has shown that people’s understanding lies in a spectrum from 
“novice” to “expert” 3.  Conventional learning materials tend to relegate beginners to “novice 
thinking” by presenting simulation exercises as recipes handed down by authorities. Wieman’s 
group has shown that interactive simulations, when designed using a rigorous scientific 
approach, are much more effective in helping physics students develop an expert cognitive 
structure than lectures are 4.  A preliminary survey of best practices guidelines  for simulation 
use,  developed by practicing engineers,5 indicates that the expert approach has an underlying 
uniformity irrespective of the specific context or discipline.  Our project extends this cognitive 
and simulation research to industrial-standard simulation platforms.   We hypothesize that if 
students, in their formative years, see the same expert approach to simulations being followed 
repeatedly for a wide variety of problems in different subject areas, they are likely to internalize 
it and be able to apply it in new situations.  Students will thus develop a mental organizational 
structure similar to those developed by experts with years of experience working with 
simulations.  Students will then be able to work with simulations much more effectively in both 
academic and industrial settings since they will have a robust scaffold of understanding on which 
to base new applications.   
 

Learning materials and strategies are being developed to help undergraduate students 
learn an “expert approach” to FEM so that they can obtain reliable solutions to engineering 
problems. The materials are being organized into a dynamic, interactive cyberlearning portal for 
simulation, where faculty, students and practitioners can learn, teach, contribute and interact 
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meaningfully.  A key insight undergirding this effort is that advanced simulation software takes 
care of the details of the mathematical models and numerical techniques so that the user (student 
or non-expert engineer) only needs to be concerned with the essence of relevant concepts to 
apply the technology intelligently and effectively.  
 
 Methods 

In order to support the goal of guiding undergraduate engineering students towards a more 
“expert” approach to simulations, this effort seeks to:   
 
1. Identify and formalize an expert approach in simulation that is valid across various 

applications in finite-element analysis (FEA) and computational fluid dynamics (CFD).  
2. Incorporate this expert approach into simulation exercises in three Mechanical Engineering 

courses at our university and evaluate the resultant impact on student learning.  
3. Disseminate the resulting learning materials and strategies so that other instructors can easily 

incorporate this expert approach into their courses.  
 

The desired student learning outcomes are:   
1. Students will be better able to avoid common errors as they apply industry standard  FEA and 

CFD software.  
2. Students will be better able to verify and validate FEA and CFD results.  
3. Students will be able to apply the expert approach to new problems in FEA and CFD.  
 

Teaching materials have been developed for the first of the three target courses, a required 
junior-level course in solid mechanics where mechanical engineering students at our institution 
are first introduced to FEM.  Three FEM-based demonstrations have been created where students 
are presented with the FEM solution to classical problems. Students explore the FEM solution 
and compare the results with the corresponding analytical solution or empirical data. It is 
important to note that students do not obtain the FEM solution themselves but instead focus on 
the exploration and critique of results that have already been obtained. Each of these 
demonstrations is accompanied by in-class clicker questions and homework problems that ask 
the student to think more deeply about the simulations.  Three longer-term projects ask the 
students to engage with simulations at a progressively deeper level. Through these tools, students 
are led through thinking about simulations before they actually start creating their own 
simulation in the third project.  Figure 1 shows how the FEA simulations were integrated into the 
class. Compared to teaching a “recipe of clicks” to create a simulation, this approach is designed 
specifically to increase student’s conceptual understanding of both simulations and course 
content.  
 
Lecture Demonstrations 

The three FEM-based demonstrations were designed and created using ANSYS 
Workbench 12.1, a leading commercial FEM software.  The demo topics -- tensile bar, plate with 
a hole, and curved beam -- were chosen to readily connect with traditional topics in the textbook. 
Each demo was presented in class along with clicker questions designed to engage students in 
discussing the demos.  Students could download these demos, easily change parameters, and re-
run the demos for further investigations outside the lectures.  P
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Homework Assignments 

Following each FEM demonstration, homework was assigned in which an FEM solution 
in ANSYS Workbench was provided and students were asked to determine if it was correct. To 
make that determination, students had to obtain the analytical solution and use it to check the 
FEM solution.  The assignments were very similar to the corresponding in-class demonstrations 
but with a small modifications. Each homework assignment was designed to: (1) reinforce what 
was taught in the in-class demo, (2) guide students in becoming more familiar with reviewing 
FEM results, (3) aid students in developing a deeper understanding of important concepts 
through interactive, visual exploration of FEM results, (4) help students learn how to use 
analytical solutions to check FEM results, and (5) build students’ understanding of the 
relationships between the analytical and numerical solutions.  Thus, students go through the 
process of interpreting FEM results with a critical eye, as an expert would, rather than accepting 
them blindly. This is possible since students were provided with the FEM solution, enabling the 
focus to be shifted to interpreting and critiquing results rather than obtaining a solution. The 
latter skill is taught later in the semester in separate exercises.   
 

The first FEM homework assignment required solving the stress distribution for a bar 
hanging from a ceiling and acted on by a downward force.  The FEM solution provided was 
deliberately incorrect – gravity was omitted.  The learning objectives for this homework were to 
help students (1) understand the difference between body force and surface force, (2) learn to use 
the Differential Equations of Equilibrium to solve for the stress distribution,  (3) practice 
checking an FEM solution, and (4) realize that an FEM  solution could  look realistic but be  
wrong if there was an error in defining the problem.   
 

The second FEM homework required solving for the stress concentration in a plate with 
two grooves and a hole.  The FEM solution was provided for comparison with calculated results.  
The learning objectives for this homework assignment were to help students:  (1) understand the 
concept of stress concentration, (2) visualize the stress distribution in the structure, and (3) learn 
to check FEM stress concentration factors using empirical correlations.  
 

The third FEM homework required solving for the bending stress in a curved beam using 
an elasticity solution and again using Winkler-Bach Theory and then comparing each result with 
the provided FEM solution. The learning objectives for this homework were to: (1) help students 
understand the difference between the elasticity solution and Winkler-Bach theory, and (2) 
realize that for this problem the FEM solution is more accurate than the Winkler-Bach theory 
since the FEM solution does not assume the radial stress is zero. In summary, the FEM 
demonstrations and homework problems build a set of skills – visualizing the deformation and 
stress fields described by equations, critiquing and evaluating results, comprehending the 
different assumptions in analytical and numerical solutions etc. – that help students emulate the 
behavior of experts. 
 
Projects  

Three individual projects were assigned across the semester to further strengthen students 
understanding of FEA. The objectives of these projects were to help students (1) understand the 
post-processing step in FEA; (2) understand the concept of convergence, (3) learn to verify and 
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validate numerical solutions, and (4) use FEA to solve real engineering problems.  In contrast to 
the FEA demonstrations, the projects required students to obtain the FEA solutions themselves, 
either by modifying an in-house MATLAB-based FEA code called redAnTS or by using 
ANSYS Workbench. The skills of reviewing, checking and interpreting results learned through 
the FEA demonstrations were necessary to successfully complete the projects. Thus, the 
demonstrations and projects complemented each other, enabling students to move along the 
spectrum from novice to expert.  
 

The first project required students to implement the post-processing procedure of FEA in 
MATLAB, i.e., obtaining stresses and strains from the nodal displacements for a single 
triangular element. The nodal displacements of a constant strain triangular element were 
provided to students for five simple cases: uni-axial tension, bi-axial tension, simple shear, pure 
shear, and pure rotation. Students needed to develop a Matlab code to output the displacement 
field, calculate the strain field using the displacement-strain relationship, and then calculate the 
stress field using Hooke’s Law.  Deformed shapes for a square material element were plotted for 
each case, helping students to identify important deformation modes in an FEA solution.  

 
In the second project, students used redAnTS, our in-house FEA software, to find the 

stress field of a cantilever beam under bending. The software provided the nodal displacements 
after students created the geometry, specified parameters, generated the mesh and specified 
boundary conditions. Students needed to augment redAnTS to provide the post-processing 
capabilities: calculation of strain and stress fields from the nodal displacements. While they 
implemented this for one element in stand alone code in the first project, here they were required 
to implement this for an arbitrary number of elements within redAnTS.  Students compared their 
numerical results with the analytical solution and assessed mesh convergence to validate their 
FEA solution.  

 
The third project required students to design a bicycle crank using both redAnTS and 

ANSYS 12.1 Workbench. A baseline design was provided to students and they were asked to 
analyze this design for given static and cyclic loading conditions. Students then selected 
materials and optimized the geometry with the objective of minimizing the mass. Several 
constraints were prescribed, for example, that the new design should maintain certain safety 
factors for both static and cyclic loading conditions and the deflection of the crank should be 
within certain limits.  
 
Assessment 
 The FEM homework assignments developed students’ critical thinking skills pertaining 
to FEM solutions.  The first assignment required a comparison of the student’s analytical 
solution with an FEM solution (provided to students) that deliberately contained an error.  After 
the assignment was graded, the types of mistakes made by the 81 students who turned in the 
assignment were categorized.  The results are shown in Fig. 6.   Only a quarter of the students 
completed the comparison correctly.  A fifth of the students didn’t spot the error in the FEM 
solution.  The rest of the students realized there was a problem but had varying levels of 
problems or incompleteness in their calculations and explanations.  
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engagement in lectures as well as to connect the FEM results with corresponding topics from the 
textbook. Homework problems follow each demonstration. Our assessment indicates that 
students fared poorly on questions that involved critical thinking such as determining the 
boundary conditions applied from the FEM solution. In contrast, they did very well on questions 
that involved plug-and-chug. In the future, we intend to create more homework questions that 
promote critical thinking in order to help students develop a more expert-like cognitive structure.  

 
In addition to the FEM-based demonstrations, three longer-term projects engage students 

with simulations at a progressively deeper level. In the projects, students obtain the FEM 
solution either by developing MATLAB code or using ANSYS. Through this multi-pronged 
strategy, students are led through thinking about simulations at a deeper level. The mid-semester 
and final surveys indicated that integration of FEM into this course was effective in helping 
students’ understanding of numerical as well as theoretical approaches. Students were also 
confident of their ability to accomplish the final FEM-based design project.  

 
Future work will involve building on current findings to provide a robust framework for 

students to progress from novice to expert not only in this course but also two following required 
courses. In Fall 2011, we will continue to integrate FEM simulations into lectures with further 
improvement. Based on our experience and the final course evaluations, we will introduce 
ANSYS earlier in the semester and provide more opportunities for interactive exploration of 
ANSYS results by changing parameters etc. This will serve to improve understanding of results, 
and better connect analytical and numerical solutions. More clicker questions will be used to 
increase student engagement during the lecture. We have developed a wiki 
(https://confluence.cornell.edu/display/simulation/ansys) where the material is posted and 
available for use by other faculty.  The wiki encourages the sharing of content and offers the 
opportunity for others to add to the content and discussion so as to promote more effective use of 
simulation in engineering education.   
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