AC 2011-2497: INTEGRATING EMERGING TECHNOLOGIES WITH ENGINEERING DESIGN COURSES

Caleb DeValve, Virginia Polytechnic Institute and State University

Caleb DeValve is a Ph.D. student in Mechanical Engineering at Virginia Polytechnic Institute and State University. He is currently a GAANN (Graduate Assistance in Areas of National Need) Fellow sponsored by the U.S. Department of Education. His research interests focus on composite materials; specifically nanocomposites and flow processes during composite fabrication, relevant to technologies such as helicopter rotor and wind turbine blade fabrication and material enhancement.

Richard M. Goff, Virginia Tech

Richard M. Goff is an Associate Professor and Assistant Department Head of the Department of Engineering Education at Virginia Tech. He is the Director of the Multi-University NSF I/UCRC Center for e-Design, the Director of the Frith Freshman Design Laboratory and the Co-Director of the Engineering First-year Program. His research areas are design and design education. Dr. Goff has won numerous University teaching awards for his innovative and interactive teaching. He is passionately committed to bringing research and industry projects into the class room as well as spreading fun and creating engagement in all levels of Engineering Education.

Integrating emerging technologies with engineering design courses

Abstract

An engineering design course is proposed which combines the teaching of design theory with emerging technologies in engineering disciplines and application to a design project. The term *emerging technologies* is presented to imply a broad application of the ideas presented in this paper, giving flexibility to the design course implementation in specific curriculums. It is proposed that the outlined design course has the potential to increase student's engagement in the design process because of the wide scope and opportunities for progression that emerging technologies inherently possess. Additionally, this design course presents an opportunity for students to explore the possibilities of design problems through the application of technologies which are not well developed, naturally propelling the growth in the particular engineering field. Based on a typical American University semester format, the instruction is divided into two equal segments; the first half focuses on details regarding the emerging technology and design theory, while the second half utilizes teams of three to five students working as a group to apply the skills gained from the first half of the semester and propose solutions to a design problem. A discussion-based classroom setting is used to create a "constructivist" environment, through which student-centered learning is fostered.

The design course outlined here is aimed at junior-level engineering students and is interdisciplinary in nature by offering the course as a general engineering elective. An aspect of consideration is the apparent value of an engineering design course offered prior to the capstone design project currently found in most engineering curriculums in the U.S. and typically encountered during the senior year of study. It is argued that the course presented in this paper would help to fill this gap prevalent in many engineering curriculums between the freshman and senior years of instruction and better prepare students for rigorous engineering design encountered in industry and other post-graduation settings. To illustrate particular aspects of the design course, the present work will focus on a specific emerging engineering technology, namely composite materials. It is noted that as progression in various fields and technologies is made, the scope of the design course is structured to be adapted accordingly.

1. Introduction

Current undergraduate engineering curriculums implemented in American universities generally contain an introductory design course during the freshman year of study along with a capstone design project during the senior year [e.g. 1-4]. This approach to the curriculum neglects significant engineering design experience during the sophomore and junior years of study. Students pursuing STEM degrees in general (and engineering degrees specifically) are found to already have a firm foundation in the "hard" sciences needed for engineering upon entering into the University setting [5], but can often graduate unprepared for the design aspect of engineering necessary in many post-graduation settings [6]. It is therefore important to reevaluate how engineering education field have previously addressed this issue and proposed a more integrated approach to teaching design skills to young engineers throughout the undergraduate curriculum [e.g. 8]. The following attempts to address this same issue of design instruction in undergraduate engineering curriculums and outlines a proposed design course which can be best described as a "guided design experience."

The primary purpose of the design course presented in this paper is to supplement the current design instruction of undergraduate engineering students and fill the design gap prevalent during the middle years of undergraduate engineering study. By primarily focusing the proposed design course towards junior-year level engineering students, an attempt is made to address the concerns of a curriculum modeled according to the situation described above (where design is taught primarily near the beginning and the end of the curriculum and not throughout). As engineers are often required to engage in design projects after graduation, a better preparation for this setting should be considered in the curricular approach.

Two important issues to consider are the retention and interest of students in the engineering program, which are directly related to the curriculum's focus and outcomes towards preparing each enrolled student for a career beyond graduation [9-10]. By proposing a new design course which combines the instruction of design theory with principles of emerging technologies applied towards a relevant design problem, it is argued that students' perceived significance of the topics and relevance towards career applications are enhanced. As a result of completing this course, the students will practice the design process, be able to explain and discuss the emerging technology, be able to apply basic governing principles of the emerging technology to a design project, and be better prepared for investigation within a team towards rigorous design challenges. The following report will go into more detail regarding the proposed course and will outline specific course learning goals and objectives, sample course discussion topics, grading policies, course texts, the teaching format and instructional methods, and assessment measures of the course learning goals.

2. Scope and Assumptions

The proposed design course is outlined according to a typical American University semesterbased (14 weeks) format and aimed to attract students across engineering disciplines. Students are not expected to have any previous knowledge of the emerging technology; rather the course will serve as a platform to expose undergraduate students to new engineering topics and ongoing research within the specific university's engineering department. It is implied throughout this document that the instructor of the design course is directly involved in ongoing engineeringrelated research around which the individual course is tailored. In order to best exemplify particular aspects of the design course the present work will focus on a specific emerging engineering technology, namely composite materials. A few examples of other potential emerging technologies which could be incorporated into the current proposed course include nanorobotics, fuel cells, thermal energy storage, biotechnology, and piezoelectric energy harvesting. As various engineering fields and technologies progress, the details of the design course are structured to be adapted accordingly.

The ideas and materials presented in this report are relevant to departmental administrators, potential instructors, and faculty involved with planning and directing engineering course curriculums. While the course proposed in this document is based on many references, three resources form the primary core of the course's development: engineering education principles presented by Dr. Goff in ENGE 5024: Design in Engineering Education and Practice at Virginia Tech [11], course development resources developed at Virginia Tech by the Faculty Development Institute (FDI) [12], and a book on design theory authored by Ullman [13]. By synthesizing several of the ideas and methods presented in the previous three resources along with a selection of supplemental literature, a comprehensive engineering design course structure has been developed and is outlined in the sections which follow.

3. Course Context

Many factors relating to the learning environment and a student's past experience will affect how well the instruction and course topics are perceived by the student [11, 12]. It is important to first consider the background and knowledge that students may potentially bring into the course. Since the current course is aimed at junior-year level students in a typical four-year engineering program, some assumptions must be made regarding the students preparedness (which may differ across particular University programs). In general, the course aims to be relatively "stand-alone" within the junior-year course curriculum, where the material covered is not intended to build on specific previous courses. Table 1 presents a sample of an initial analysis involving the main aspects of the course and how they will be approached from an instructional standpoint.

After covering the basic principles of the emerging technology and design theory through examples and discussion, these topics will be applied through a design project which will ask the students to exploit the benefits of composite materials. It should be noted here that the main

objective of the design course (and consequently the design project) is not for the students to intensively research the chosen emerging technology, but rather to explore the conceptual domain where the emerging technology could be beneficial. Students will work in teams to identify a particular design need or improve upon an existing design and apply the design process along with an aspect of composite materials to solve the design problem. Further details regarding the design project assignment are given below in Section 4.

Main Topics	Sub-Topics	Readiness To Learn	Degree of Difficulty	Instructional Strategies
Theory of Design	Six stages of design	Yes	Basic	In-class examples, application to design project
	Teamwork	Possibly	Moderate	Students work in teams often, class discussions are used to encourage student familiarity
	Planning	Yes	Moderate	In-class examples and planning activities
	Concept generation	No	Complex	In-class concept generation exercises
Emerging	Applications/uses	Yes	Basic	Introduce physical examples
Technology	Governing physics	Yes	Moderate	Conceptual physics with basic governing equations
	Processing/ fabrication	Possibly	Complex	Hands-on lab experimentation
	Limitations/ problems	Yes	Complex	Real-world cases, lab demonstrations
Design Project	Planning for design	Yes	Moderate	Long-term design project
	Concept generation	Possibly	Complex	Real design problem
	Apply emerging technology	Possibly	Complex	Examples of emerging technologies in existing products
	Presentation of ideas	Possibly	Moderate	In-class discussions, one-on-one meetings with instructor

	Table 1.	Examples	of course	context	factors
--	----------	----------	-----------	---------	---------

4. Course Description

The motivation behind the current proposal stems two-fold from the areas covered in the course. First, emerging technologies offer opportunities for new and exciting scholarship in the classroom, considering that there is a greater potential for innovation and development within an emerging technology research area. Second, an opportunity is presented to involve the students in purposeful design, while simultaneously pushing the boundaries of engineering design ideas. The current design course focuses on teaching the significance of fully developing and understanding each of the six stages of design while emphasizing the importance of the initial planning stages [13]. This course also has the goal of strengthening the student's planning skills along with their ability to design within a team, primarily by engagement in a first-hand experience by working through a design project.

As discussed above, the primary objective of this course proposal is to fill an engineering design gap found in the middle years of engineering curriculums in U.S. institutions. By tailoring specific sections of the course to the instructors research interests, students will be exposed to areas of technology which they might not have access to by other means. Several specific course learning goals along with their related sub-goals; referred to here as learning objectives; have been developed with the help of [11] and [12] which seek to identity the important aspects of the previous discussion and are presented in Table 2. Along with each learning goal and learning objective is the type of learning which is targeted.

Learning Goals	Type of	Nested Learning Objectives	Type of
	Learning		Learning
Understanding/	Habits of	Students will be able to effectively work through	Application
application of the	mind/Complex	the product planning stage of design	(Cognitive)
mechanical design	Thinking	Students will be able to classify customer	Analysis
process		requirements and translate them into measurable	(Cognitive)
		engineering metrics	
		Students will be able to formulate connections	Synthesis
		between the design process and general problems,	(Cognitive)
		in and out of engineering	<u> </u>
Relevant working	Information	Students will be able to identify different composite	Comprehension
knowledge of the	processing	materials and the associated strengths/weaknesses	(Cognitive)
emerging		Students will be able to explain the different	Comprehension
technology		composite fabrication/manufacturing processes	(Cognitive)
		Students will be able to calculate material properties	Analysis
		based on constituent materials	(Cognitive)
		Students will be able to discuss the current	Comprehension
		limitations and areas of improvement	(Cognitive)
Synthesis of	Complex	Students will identify a technology area where	Application
technical	thinking	composite materials could be potentially useful	(Cognitive)
knowledge with		Students will develop and create a new	Synthesis
critical application		design/product by combining current technical	(Cognitive)
to a design scenario		expertise with new composite material technology	
		Students will perform self-evaluation and analyze	Evaluation
		other groups design ideas and ingenuity	(Cognitive)
Enhancement of the	Effective	Students will brainstorm collaboratively with team	Social
students ability to	communication	members to generate design ideas	(Affective)
communicate ideas		Students will have the opportunity to present their	Social
and information		ideas and final design solution to the class	(Affective)
		One-on-one meetings with the instructor will be	Motivational
		used to discuss progress and gauge understanding	(Affective)

Table 2. Example course learning goals and objectives

The ideas presented in Table 2 are illustrated here through two examples to better identify the core principles involved in teaching design theory. The third nested learning objective of the first learning goal reads "students will generate several conceptual ideas which solve a problem." To support this learning goal, the students will utilize the 6-3-5 method [13]. First, the students are organized into groups of six. The students will then be asked to individually generate three conceptual ideas in five minutes for a new desk design that addresses the needs of current college students. The design criteria will be that the desk must be easy to move, easy to sit in, have internet access and a power strip, have room for a laptop computer, and will not be outdated in five years. The conceptual ideas will be drawn by the students on a piece of paper, and the papers will be passed around the group incrementally every five minutes in accordance with the 6-3-5 methodology. After completing this cycle, the team will briefly evaluate the ideas and share their best solutions with the other groups in the course. Next, consider the first nested learning objective of the third learning goal, which states that "students will identify a technology area where composite materials are not currently used but could be useful." As an example, the benefits of lightweight composites could be added to the structure of a car to reduce the total weight and increase acceleration and top speed capabilities. In addition, the fact that composites can be molded into complex shapes could be used to design intricate exhaust manifolds for an engine to replace the limitations of steel. These examples demonstrate specific class activities which can be implemented to support the course learning goals.

The focus of the learning objectives is centered on a design assignment involving teams of three to five students. The project description is intentionally broad, to encourage creativity and a wide range of different design avenues for each of the student teams to take. The specific project description is given as follows:

"Using what you [the student] know about design and composite materials, choose an engineering design or product which could benefit from the application of composite materials. Alternatively, choose a customer need for which there is no solution currently available which could be fulfilled by developing a design which utilizes composite materials. The only requirement is that the final design must consist of at least 25% composite materials. You and your team of three to five other engineers will work through the first four stages of design as stated by Ullman [13] (product discovery, project planning, product definition, and conceptual design) in detail throughout the remainder of the semester. Aspects of the design process which have been stressed in this course should be reflected in your design team's methodology and approach to the problem. To culminate the course, a final report will be turned in to the instructor and a presentation will be made to the class regarding your design process and final design."

The above project statement reflects the primary learning goals of the course, where the project is intended to be the culmination of the course requirements. In addition to the above course description and project statement, Appendices A and B present more detail regarding a sample course topical outline, recommended course textbooks, and an outline for overall course grading.

5. Course Approach and Instructional Methodology

The course learning goals presented in Table 2 are important to keep in mind as more specific aspects of the course are further outlined below. The model of teaching best describing the instructional approach taken here is termed a constructionist, problem-based teaching model. The syntax of the course is further outlined in Table 3, guided by [12].

Learning Goals	Instructional	Instructor Actions	Student Activities
	Strategies		
Understand and apply	Lecture,	Relay learning objectives	Focus on learning objectives
the entire design process	discussion, case-	Present short examples	Work through examples to
	study		experience designs processes
Relevant knowledge of	Lecture, lab demo,	Relay important technical	Digest key components of
emerging technology	discussion,	information	emerging technology
Critical application of	Group project,	Elicit performance	Perform
new technical knowledge	discussion	Challenge commonplace	Push personal boundaries of
to a design scenario		designs	design possibilities
Enhance students ability	Team presentation	Give informative feedback	Reflect on feedback
to communicate ideas	and report	Give constructive feedback	Apply feedback

Tuble of opecatie buddetaral clements of the course rearning goals	Table	3. Specifi	c structural	elements	of the	course	learning	goals
--	-------	------------	--------------	----------	--------	--------	----------	-------

Other important aspects of the instruction process involve the social system, the role that the instructor plays in the classroom, and the support system in place to assist the students' needs. The social system is vital and plays an important role in setting the context for learning. It also molds the learning dynamic and the level of approachability which the instructor exhibits. The instructor must also have a well defined role within the classroom to give stability and structure to the course. A support system which reinforces and guides the learning goals of the course is essential for the success of the individual students enrolled. Table 4 presents a summary of these ideas applied to the current course development, under the direction of [12].

Table 4. Aspects of the classroom and instructional dynamics

The social system	A blend of "social" and "radical." The students will be required to cooperate
The interpersonal structure	significantly and will also be responsible for much of their learning experience as it
of the classroom	will be mostly experiential in nature during the design project.
The role of the instructor	The first half of the semester will be approached as both an instructor and a mentor.
How the instructor relays	The second half of the semester will be focused on the design project, where then
information and enables	the mentoring role will come into play more often. Significant cooperation among
learners ability to grow	the students in their design process will be encouraged.
The support system	Case studies from the composite materials textbook
The types and amount of	Simple problems to demonstrate composite material physics
instructional, technical,	Small quizzes periodically to gauge progress near the beginning of the course
and other resource support	Seven week design project
required for the instruction	Software for solid modeling and structural dynamics (e.g. COMSOL, ANSYS)

Particular aspects of the instructional approach towards the course were adopted from a presentation at Virginia Tech sponsored by the Faculty Development Institute taught by Dr. Brett Jones [15]. Dr. Jones has developed an instructional model which was designed to help faculty better prepare course activities to motivate students, referred to as MUSIC, which stands for eMpowerment, Usefulness, Success, Interest, and Caring [16]. The details of each of these ideas of expanded in Table 5, with some specific examples included to demonstrate potential instructor behavior to support these classroom conditions.

eMpowerment	Let students have partial control	During the first class ask the students for suggestions		
	over learning outcomes and	about course rules and guidelines about discussions and		
	course format	grading policies		
	Avoid manipulating students	Encourage students to reach into areas where they may be		
	behavior or design outcomes	unfamiliar with the topic		
Usefulness	Relate course content to students	Composites used in race cars, wind turbines, boats,		
	interests	helicopters, etc.		
	Make the connection between	Emphasizing planning creates a better product and saves		
	course material and career goals	the company money in the long-term		
Success	Clearly outline classroom and	Regular quizzes regarding course material		
	individual student expectations	Syllabus contains all course policies and due dates		
	Give regular feedback regarding	In-class discussions		
	students competence and progress	One-on-one meetings at the semester's beginning		
Interest	Interject humor and/or novelty into discussions			
	Show defined enthusiasm for course	e content		
Caring	Demonstrate specific care about stu	dents well-being		
	Encourage the students' success			

Table 5. MOSIC model of instruction [15] applied to the current cours
--

6. Course Assessment

The methods implemented in this report for assessing the current course were developed using the resources of Heywood [6] and Leydens et al. [17], along with the resources previously mentioned found in [12]. Chapter 15 of the text authored by Heywood [6] presents a rigorous study involving the assessment and evaluation of engineering education courses. As this study points out, many instructors are noticing the need for more qualitative assessment methods within the engineering education context, as opposed to a purely quantitative approach. Leydens et al. [17] continue this discourse into more detail and provide an excellent resource for designing qualitative assessment measures within the classroom. The method found to be most applicable to measure the current course outcomes is a "mixed" approach, which uses qualitative and more open-ended studies to identify specific topics of interest regarding the course, which can subsequently be broken down into quantitative questions as a broader, follow-up survey. This balancing of two alternative methods is an excellent approach for establishing both "breadth and depth" within the evaluation technique. Table 6 presents specific assessment strategies developed for the current proposed design course.

Casla	Such Cools (Objections)	Type of	Assessment	Feedback
Goals	Sub-Goals (Objectives)	Learning	Strategy	Strategy
Understanding	Students will be able to effectively	Application	Design project	Discussion,
and	work through the product planning	(Cognitive)	and product	feedback from
application of	stage of design		planning	group members
the design	Students will be able to take	Analysis	Product	Discussion, in-
process	customer requirements and convert	(Cognitive)	definition stage	class examples,
	them into engineering metrics		of project	graded quizzes
	Students will generate several	Synthesis	Quizzes, and	Grading,
	conceptual ideas which solve a	(Cognitive)	conceptual idea	discussion,
	problem		generation	group members
	Students will be able to connect and	Synthesis	Discussions and	Discussion,
	apply the design process to general	(Cognitive)	design project	grading
	problems, in and out of engineering			
Relevant	Students will be able to identify	Knowledge	Quizzes, design	Grading,
knowledge and	different composite materials and the	(Cognitive)	project: product	discussion
appreciation	associated strengths/weaknesses		definition	
for emerging	Students will understand the different	Comprehension	Quizzes	Grading,
technology	fabrication processes available for	(Cognitive)		discussion
	actual composite manufacturing			
	Students will be able to calculate	Application	Quizzes	Grading
	material properties based on	(Cognitive)		
	constituent materials			
	Students will understand the current	Analysis	Quizzes,	Grading, one-
	limitations and areas of improvement	(Cognitive)	conceptual	on-one
	involved with composite materials		design	discussions
Critical	Students will identify a technology	Analysis	Design project:	Discussions
application of	area where composite materials are	(Cognitive)	product	
new technical	not currently used but could be useful		discovery	
knowledge to a	Students will develop a new product	Synthesis	Design project:	Grading,
design	synthesizing current technical	(Cognitive)	conceptual	discussion,
scenario	expertise with new composite		design	internal group
	material technology			review
	Students will assess others design	Evaluation	Student/teacher	Review of
	groups ideas and ingenuity	(Cognitive)	evaluations of	commenter's
Enhancement	Students will brainstorm	Social	Evaluation of	Grading
of the students	collaboratively with team members	(Affective)	ideas by teacher/	discussion
ability to	to generate design ideas	(infective)	other groups	discussion
communicate	Students will have the opportunity to	Social	Presentations	Grading and
ideas and	present their ideas and final design	(Affective)	riesentations	viewer
information	solution to the class	(miceuve)		feedback
	Students will work together to	Motivational	Design project	Grading and
	produce reports and presentation	(Affective)	Design project	viewer
	materials	(incouve)		feedback
	materials			ICCUDICK

Table 6: Course learning goals and strategies

A consistent method towards grading is also essential toward a successful assessment of the learning goals in the classroom. Furthermore, a specific outline of each step in the grading process along with precise grading criteria for each item is essential for framing the focus of the instructional outcomes and consistent assessment. Table 7, developed through [12], presents a sample grading rubric of particular sub-processes within the design project along with a brief description of each score. This grading rubric may be altered by the instructor to reflect other specific course requirements or activities which will be graded within the course, and to focus on the important parts of each individual assignment.

Critorio	Description and Associated Score						
Criteria	1	2	3	4			
Design	Two or less of the	Three of the items in	Four of the items in	Plan template, task			
planning	items in Level 4	Level 4 grade (on the	Level 4 grade (on the	sequence, cost			
	grade (on the far	far right)	far right)	prediction, GANNT			
	right)			chart, SWOT analysis,			
Product	Identification of	Identification of	Identification of	Clear indication of			
definition	some customer	customer needs in	customer needs but	customer requirements			
	needs, but not in	product and	not in measureable	converted to engineering			
	measureable form,	engineering specs,	form and composite	specifications organized			
	composite material	but composite	material benefits	in a house of quality			
	benefits incorrectly	material benefits	applied to a product				
	applied	incorrectly applied	advantage				
Conceptual	Only one concept,	Two ideas, fairly	Three new ideas, at	Three ideas utilizing the			
design	incomplete idea	well thought out	least one being	benefits of composites,			
			innovative	advancing limits of			
				design			

Table '	7: Sample	grading rubri	c for a subsection	of the student	project report
---------	-----------	---------------	--------------------	----------------	----------------

A summative evaluation plan is proposed for the evaluation of the course, to be implemented as described in the preceding section. Both instructors and students will benefit from this evaluation, which will be used to alter aspects of instruction and in turn will create a better learning environment for the future students who enroll in the course. Surveys, one-on-one interviews, and project grades will all factor into the overall evaluation of the course, supporting the idea of a mixed-method approach where both qualitative and quantitative assessment measures are employed. A sample evaluation technique through a course exit survey is described in more detail in Table 8, regarding the educational outcome of increasing the individual student's ability to apply the design process towards solving a design problem. These survey questions are to be completed by the student after the project has been completed and the semester has drawn to a close. The answers to these questions will help to identity strong points in the course structure, what the students understand, and areas which are weak and need to be improved in course implementation.

Questions to ask the	1)	How did you identify a customer need?
student related to the	2)	What types of planning materials did you use?
nature of what he or she	3)	When defining the product, how did you create engineering metrics from customer
was asked to do.		requirements?
	4)	How many concept generations were you able to create?
	5)	Did the members of your group completely agree with decisions made throughout
		the design process? If not, how did you resolve any disagreements/conflicts?
How capable were	1)	Did trying to find a customer need allow you to feel in control of your project?
specific activities at	2)	Did the example planning materials in class prepare you for the actual planning
generating predicted		within the project?
outcomes?	3)	Were you able to confidently take customer requirements and define engineering
		specifications?
	4)	Did the in-class exercises in concept generation help you to stretch your
		imagination in developing concepts for the design project?
What students learned,	1)	How have the in-class discussions helped you to grasp the design project?
how satisfied they were	2)	How can the design process be applied to problems outside of engineering?
with a lesson or course,	3)	Do you feel like you could walk into a successful company such as GE or Toyota
and what changes they		and begin working on a design project with confidence?
would recommend.	4)	Reflect on how your perceptions of working in a team on a design project have
		changed/remained the same as a result of this design project.

Table 8: Sample exit survey questions regarding the design course learning goals

7. Conclusions and Recommendations

A new design course has been proposed which combines the teaching of design theory and methods with emerging technologies in engineering fields. The course is structured to be applied to different engineering disciplines in general, and is also designed to be tailored to the individual instructor's field of research expertise or interest. Further, the design course is focused on junior-year level engineering undergraduate students, and aims to fill the current gap in design education prevalent between freshman and senior year in many engineering curriculums. The course, design experience, and assessment methods outlined in this paper have many proposed merits, but it should be noted that it is unproven in implementation. However, the benefits have been clearly outlined from the perspective of a recent undergraduate engineering student through personal experience, documented literature, and the views of influential peers within engineering education at Virginia Tech. The course in its current context has been described in detail here. It is recommended that several trial courses of the proposed course be offered in curriculums and the results of the course assessment be studied to determine the effectiveness of the course in achieving the desired outcomes. Using these results, additional modification to the proposed course should be implemented as necessary in order to achieve the science requirement of design education necessary for the 21st century engineer to succeed.

References

- [1] Malik Q, Koehler MJ, Mishra P, Buch N, Shanblatt M, Pierce SJ, 2010. Understanding student attitudes in a freshman design sequence. International Journal of Engineering Education; 26(5): 1179-1191
- [2] Farrell S, Hesketh RP, Newell JA, Slater CS, 2001. Introducing freshmen to reverse engineering and design through investigation of the brewing process. International Journal of Engineering Education; 17(6): 588-592
- [3] Al-Rizzo H, Mohan S, Reed M, Kinley D, Hemphill Z, Finley C, Pope A, Osborn D, Crolley W, 2010. Directional-based cellular e-commerce: undergraduate systems engineering capstone design project. International Journal of Engineering Education; 26(5): 1285-1304.
- [4] Hines PD, Christie RD, 2002. A capstone design project to meet the needs of the changing power systems industry and satisfy new accreditation standards. IEEE Transactions on Power Systems; 17(3): 535-542
- [5] Nicholls GM, Wolfe H, Besterfield-Sacre M, Shuman LJ, 2010. Predicting STEM degree outcomes based on eighth grade data and standard test scores. Journal of Engineering Education; 99(3): 209-223
- [6] Heywood, J. *Engineering education: research and development in curriculum and instruction*. November 2005, Wiley-IEEE Press.
- [7] Moore DJ, Voltmer DR, 2003. Curriculum for an engineering renaissance. IEE Transactions on Education; 46(4): 452-455
- [8] Rehman H, Said RA, Al-Assaf YA, 2009. An integrated approach for strategic development of engineering curricula: focus on students' design skills. IEEE Transactions on Education; 52(4): 470-481
- [9] Eris O, Chachra D, Chen HL, Sheppard S, Ludlow L, Rosca C, Bailey T, Toye G, 2010. Outcomes of a longitudinal administration of the persistence in engineering survey. Journal of Engineering Education; 99(4): 371-395
- [10] Bernold LE, Spurlin JE, Anson CM, 2007. Understanding our students: a longitudinal-study of success and failure in engineering with implications for increased retention. Journal of Engineering Education; 96(4): 263-274
- [11] Goff R, 2010. Weekly lectures; ENGE 5024: Design in engineering education and practice. Virginia Tech; Blacksburg, VA.
- [12] December 2010. https://static.fdi.vt.edu/summer/2006/content/TrackG/index.html. Creating learner-centered instruction. Virginia Tech Faculty Development Institute.
- [13] Ullman DG, 2010. *The mechanical design process,* 4th edition. McGraw Hill, New York.
- [14] Barbero EJ, 2010. Introduction to composite materials design, 2nd edition. CRC Press, Florida.
- [15] Jones B, 2010. Designing instruction to motivate students. Seminar, sponsored by the Virginia Tech Faculty Development Institute; September 24, 2010.
- [16] Jones B, 2009. Motivating students to engage in learning: The MUSIC model of academic motivation. International Journal of Teaching and Learning in Higher Education; 21(2): 272-285.
- [17] Leydens JA, Moskal BM, Pavelich MJ, 2004. Qualitative methods used in the assessment of engineering education. Journal of Engineering Education 2004; 93(1); 65-72.

Week 1 Introduction to compositeDefinitionSimply: two or more different materials used together to make a better materialIntroduction to compositePast examplesMud and straw = bricksmaterials and designPast examplesMud and straw = bricksmethodsImportanceLighter, stronger, Tailored to individual application needsmethodsApplicationsWind turbine blades, helicopter rotors, airplane panels, car panels, tennis rackets, motorsycle holmets, boat hullsIndustry useAerospace, energy, recreation, automotiveWhat is design?What is the goal? How do we get there? Example activity: have the students beline design in one sentencePersonality (to be used for assembling project teams during the second half of the indicator testsemesterWeek 2Current state of Fibers (e.g. curbon-fiber, e-glass, s-glass, etc.)FabricationTransport phenomena: Darcy's lawGoverning PhysicalFiber How do they affect the resulting composite material's properties and PhysicalPropertyHarmonic averaging techniques, law of mixtures calculation Fiber orientation and weave layersWeek 3Simulation of resin flow process in fiber profermModeling and ProductionMaufacturing and production considerations, Cost-benefit considerationsWeek 4Why study design? Is design a well-defined process or an "art"?Modeling and ProjectHow human sinds work/ Short-erm vs. long-term memory How humans process information Six stages of design (as defined by Ultman [13])Week 6Why is project planning so important?Proj				
Introduction to material composite Past examples Mud and straw = bricks materials and Cornent, water, and crushed limestone = concrete methods Importance Lighter, stronger, Tailored to individual application needs Applications Wind turbine blades, helicopter rotors, airplane panels, car panels, tennis rackets, motorcycle helmets, hoat hulls Industry use Aerospace, energy, recreation, automotive What is design? What is the goal? How do we get there? Example activity: have the students define design in one sentence Personality (to be used for assembling project teams during the second half of the indicator test senseter Week 2 Current state of Fibers (e.g. crboxy, polyester, etc.) Fabrication Weasing (e.g. LCM, RTM, VARTM, etc.) Processing (e.g. LCM, RTM, VARTM, etc.) Processing (e.g. LCM, RTM, VARTM, etc.) Week 3 Resin injection Transport phenomena: Darcy's law Governing Fiber orientation and weave layers Simulation of resin flow process in fiber preform Modeling and Fiber orientation considerations, Cost-benefit considerations Week 4 Simulation of resin flow process in fiber preform Mouthuman solve problems	Week 1	Definition	Simply: two or more different materials used together to make a better	
composite materials and design Mud and straw = bricks methods Importance Lighter, stronger, Tailored to individual application needs Applications Wind turbine blades, helicopter rotors, airplane panels, car panels, tennis rackets, motory, ele helmets, boat hulls Industry use Aerospace, energy, recreation, automotive What is design? What is the goal? How do we get there? Example activity: have the students define design in one sentence Personality (to be used for assembling project teams during the second half of the indicator test Selection and Fasting (e.g. carbon-fiber, e-glass, s-glas, etc.) Selection and He art Resin (e.g. epoxy, polyester, etc.) Processing (e.g. LCM, RTM, VARTM, etc.) Week 3 Resin injection Transport phenomena: Darcy's law Governing Fiber How do they affect the resulting composite material's properties and microstructures Physical Simulation of resin flow process in fiber preform Modeling and Reinforcement construction in RTM Production Manufacturing and production considerations, Cost-benefit considerations Mek 4 How humans process information Project Why tany dowelesign a vell-defined process or an "art"? <th>Introduction to</th> <th></th> <th>material</th>	Introduction to		material	
materials and design Wood chips/saw dust and synthetic resin = particle board design Cament, water, and crushed limestone = concrete methods Importance Lighter, stronger, Tailored to individual application needs Applications Wind turbine blades, belicopter rotors, airplane panels, car panels, tennis rackets, motorcycle helmets, boat hulls Industry use Aerospace, energy, recreation, automotive What is design? What is the goal? How do we get there? Example activity: have the students define design in one sentence Personality (to be used for assembling project teams during the second half of the indicator test senseter Selection and the art Resin (e.g. enzy). polyester, etc.) Fabrication Fibers (e.g., LCM, RTM, VARTM, etc.) Week 3 Resin injection Transport phenomena: Darcy's law Governing Fiber How do they affect the resulting composite material's properties and microstructures Property Property Harmonic averaging techniques, law of mixtures calculation relify concentring and production onsiderations, Cost-benefit considerations Meek 4 Modeling and Keinforcement construction in RTM Production Maunfactruing and p	composite	Past examples	Mud and straw = bricks	
design methods Cement, water, and crushed limestone = concrete Importance Lighter, stronger, Tailored to individual application needs Applications Wind turbine blades, helicopter rotors, airplane panels, car panels, tennis rackets, motorcycle helmets, boat hulls Industry use Aerospace, energy, recreation, automotive What is design? What is the goal? How do we get there? Example activity: have the students define design in one sentence Personality (to be used for assembling project teams during the second half of the indicator test Selection and Fabricator (e.g. carbon-fiber, e-glass, s-glass, etc.) Fabrication Week 2 Verkek 3 Resin injection Fabrication Resin injection Processing (e.g. LCM, RTM, VARTM, etc.) Week 4 Simulation of resin flow process in fiber preform Governing Fiber Property Harmonic averaging techniques, law of mixtures calculation Fiber orientation and weave layers Week 4 Simulation of resin flow process in fiber preform Modeling and Reinforcement onstruction in RTM Production Manufacturing and production considerations, Cost-benefit considerations	materials and		Wood chips/saw dust and synthetic resin = particle board	
methods Importance Lighter, stronger, Tailored to individual application needs Applications Wind turbine blades, helicopter rotors, airplane panels, car panels, tennis rackets, motorcycle helmets, boat hulls Industry use Aerospace, energy, recreation, automotive What is design? What is the goal? How do we get there? Example activity: have the students define design in one sentence Personality (to be used for assembling project teams during the second half of the indicator test senseter Week 2 Current state of Fibres (e.g. carbon-fiber, e-glass, s-glass, etc.) Selection and Fabrication Resin (e.g. epoxy, polyester, etc.) Week 3 Resin injection Transport phenomena: Darcy's law Forosmatic Governing Fiber How do they affect the resulting composite material's properties and microstructures Property Harmonic averaging techniques, law of mixtures calculation Fiber orientation and weave layers Week 4 Simulation of resin flow process in fiber preform Modeling and Production Mauracturting and production considerations, Cost-benefit considerations Week 5 Why study design? Is design a well-defined process or an "art"? The design How human mindis work? Short-term vs.long-	design		Cement, water, and crushed limestone = concrete	
Applications Wind turbine blades, helicopter rotors, airplane panels, car panels, tennis rackets, motorcycle helmets, boat hulls Industry use Aerospace, energy, recreation, automotive What is design? What is the goal? How do we get there? Example activity: have the students define design in one sentence Personality (to be used for assembling project teams during the second half of the indicator test semester Week 1 Current state of Fibers (e.g. carbon-fiber, e-glass, s-glass, etc.) Selection and Fabrication He art Fabrication Week types (e.g. plain, twill, etc.), Processing (e.g. LCM, RTM, VARTM, etc.) Week 3 Resin injection Fiber How do they affect the resulting composite material's properties and Physical microstructures performance? Equations Fiber orientation and weave layers Week 4 Simulation of resin flow process in fiber proform Modeling and Reinforcement construction in RTM Production Manufacturing and production considerations, Cost-benefit considerations Week 5 Why study design a well-defined process or an "art"? The design How humans solve problems, Creativity method How humans winvs/ Short-term vs. long-term memory <th>methods</th> <th>Importance</th> <th>Lighter, stronger, Tailored to individual application needs</th>	methods	Importance	Lighter, stronger, Tailored to individual application needs	
Industry use Acrospace, energy, recreation, automotive What is design? What is the goal? How dow ege there? Example activity: have the students define design in one sentence Personality (to be used for assembling project teams during the second half of the indicator test semester Week 2 Current state of Fibers (e.g. carbon-fiber, e-glass, s-glass, etc.) Fabrication Resin (e.g. epoxy, polyester, etc.) Processing (e.g. LCM, RTM, VARTM, etc.) Week 3 Resin injection Governing Fiber Physical microstructures performance? Equations Fiber of mance? Projecty Harmonic averaging techniques, law of mixtures calculation Fiber orientation and weave layers Week 4 Simulation of resin flow process in fiber preform Modeling and Reinforcement construction in RTM Production Manufacturing and production considerations, Cost-benefit considerations Week 5 Why study design (as defined by Ullman [13]) Week 6 Why study design (as defined by Ullman [13]) Week 7 Solid models work, Short-term vs. long-term memory Project What specific steps shoul		Applications	Wind turbine blades, helicopter rotors, airplane panels, car panels, tennis	
Industry useAerospace, energy, recreation, automotiveWhat is design?What is the goal? How do we get there?Example activity: have the students define design in one sentencePersonality(to be used for assembling project teams during the second half of theindicator testsemesterSelection andFibers (e.g. carbon-fiber, e-glass, s-glass, etc.)FabricationResin (e.g. epoxy, polyester, etc.)Week 3Resin injectionGoverningFiberPhysicalFiberPropertyHarmonic averaging techniques, law of mixturescalculationFiber orientation and weave layersWeek 4Simulation of resin flow process in fiber preformModeling andReinforcement construction in RTMProductionManufacturing and production considerations, Cost-benefit considerationsWeek 5Why study design? Is design a well-defined process or an "art"?The designHow humans process informationHow humans process informationSix stages of design (as defined by Ullman [13])Week 6Why is project planning so important?ProductWhat specific steps should be taken in project planning?ProductHow dow gauge the relative importance of different products requirements?Solid models vs. drawingsConceptualConceptualAnalytical vs. physicalDesign projectSit stages of design (as defined by Clinaning?ProductHow humans process informationSit stages of design (as defined by Ullman [13])Week 7Solid models vs. drawings <th></th> <th></th> <th>rackets, motorcycle helmets, boat hulls</th>			rackets, motorcycle helmets, boat hulls	
What is design?What is the goal? How do we get there?Example activity: have the students define design in one sentencePersonality(to be used for assembling project teams during the second half of the indicator testSelection andEurrent state of Fibers (e.g. carbon-fiber, e-glass, s-glass, etc.)Selection andthe artResin (e.g. epoxy, polyester, etc.)FabricationWeave types (e.g. plain, twill, etc.), Processing (e.g. LCM, RTM, VARTM, etc.)Week 3Resin injectionGoverningFiberPhysicalmicrostructures performance?EquationsProperty Ramonic averaging techniques, law of mixtures (alculation of resin flow process in fiber preformModeling and ProductionReinforcement construction in RTMProductionManufacturing and production considerations, Cost-benefit considerationsWeek 5Why study design? Is design a well-defined process or an "art"? How humans solve problems, Creativity methodHow humans solve problems, CreativityMet 6Why is project planning so important?ProjectWhat aspecific steps should be taken in project planning?ProductWhere do product definitions come from? How humans process information Six stages of design (as defined by Ullman [13])Week 6Solid models vs. drawingsConceptualAnalytical vs. drawingsConceptualAnalytical vs. drawingsConceptualAnalytical vs. drawingsConceptualAnalytical vs. drawingsConceptualConnections between sales-engineering-manufacturing-installation </th <th></th> <th>Industry use</th> <th>Aerospace, energy, recreation, automotive</th>		Industry use	Aerospace, energy, recreation, automotive	
Example activity: have the students define design in one sentencePersonality(to be used for assembling project teams during the second half of the indicator testWeek 2Current state of Selection and the artFibers (e.g. carbon-fiber, e-glass, s-glass, etc.)Week 3Resin (e.g. epoxy, polyester, etc.)FabricationWeave types (e.g. plain, twill, etc.), Processing (e.g. LCM, RTM, VARTM, etc.)Week 3Resin injectionGoverningFiberFiberHow do they affect the resulting composite material's properties and microstructures performance?EquationsProperty ealculationProductionReinforcement construction and weave layersWeek 4Simulation of resin flow process in fiber preformModeling and ProductionReinforcement construction in RTMProductionManufacturing and production considerations, Cost-benefit considerationsWeek 5Why study design? Is design a well-defined process or an "art"?The design methodHow humans process information Six stages of design (as defined by Ullman [13])Week 6Why is project planning so important?ProjectWhat specific steps should be taken in project planning?Planning and Design and Effective methods of conceptual design within a group setting DevingDeving and Mey signalDesign and Deving and ProductHow human sprocess engineering-manufacturing-installationWeek 7Solid models vs. drawingsConceptual Design andHow do we gauge the relative importance of dif		What is design?	What is the goal? How do we get there?	
Personality(to be used for assembling project teams during the second half of the indicator testWeek 2Current state of Fibers (e.g. carbon-fiber, e-glass, s-glass, etc.)Selection andFibers (e.g. carbon-fiber, e-glass, s-glass, etc.)FabricationWeave types (e.g. plain, twill, etc.), Processing (e.g. LCM, RTM, VARTM, etc.)Week 3Resin injectionTransport phenomena: Darcy's lawGoverningFiberHow do they affect the resulting composite material's properties and microstructuresPropertyHarmonic averaging techniques, law of mixtures calculationcalculationFiber orientation and weave layersWeek 4Simulation of resin flow process in fiber preformModeling and ProductionReinforcement construction in RTMProductionManufacturing and production considerations, Cost-benefit considerationsWeek 5Why study design? Is design a well-defined process or an "art"?The design How humans process information Six stages of design (as defined by Ullman [13])Week 6Why is project planning so important?ProjectWhat amount of time do successful companies spend on planning?Planning and ProductWhere do product definitions come from?DefinitionHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawings Conceptual Analytical vs. physicalDesign and ProductImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group setting DevelopmentConcept			Example activity: have the students define design in one sentence	
indicator test semester Week 2 Current state of Fibers (e.g. carbon-fiber, e-glass, s-glass, etc.) Selection and Fabrication the art Resin (e.g. epoxy, polyester, etc.) Processing (e.g. LCM, RTM, VARTM, etc.) Processing (e.g. LCM, RTM, VARTM, etc.) Week 3 Resin injection Transport phenomena: Darcy's law Governing Fiber How do they affect the resulting composite material's properties and microstructures Physical microstructures performance? Equations Property Harmonic averaging techniques, law of mixtures calculation Fiber orientation and weave layers Simulation of resin flow process in fiber preform Modeling and Reinforcement construction onsiderations, Cost-benefit considerations Week 4 Simulation of resin flow process information More big How humans solve problems, Creativity method How humans process information Six stages of design (as defined by Ullman [13]) Week 6 Why is project planning so important? Project What amount of time do successful companies spend on planning? Product More trelative importance of different products requirements? </th <th></th> <th>Personality</th> <th>(to be used for assembling project teams during the second half of the</th>		Personality	(to be used for assembling project teams during the second half of the	
Week 2 Current state of Fibers (e.g., carbon-fiber, e-glass, selas, etc.) Selection and the art Resin (e.g., epoxy, polyester, etc.) Fabrication Weave types (e.g., plain, twill, etc.), Processing (e.g., LCM, RTM, VARTM, etc.) Processing (e.g., LCM, RTM, VARTM, etc.) Week 3 Resin injection Transport phenomena: Darcy's law Governing Fiber How do they affect the resulting composite material's properties and microstructures performance? Equations Property Harmonic averaging techniques, law of mixtures calculation Fiber orientation and weave layers Week 4 Simulation of resin flow process in fiber preform Reding and Reinforcement construction in RTM Production Manufacturing and production considerations, Cost-benefit considerations Week 5 Why study design? Is design a well-defined process or an "art"? The design How humans solve problems, Creativity method How humans process information Six stages of design (as defined by Ullman [13]) Week 6 Why is project Planning so important? Project What amount of time do successful companies spend on planning? Planning and <td< th=""><th></th><th>indicator test</th><th>semester</th></td<>		indicator test	semester	
Selection and the art Resin (e.g. epoxy, polyester, etc.) Fabrication Weav types (e.g. plain, twill, etc.), Processing (e.g. LCM, RTM, VARTM, etc.) Week 3 Resin injection Governing Fiber How do they affect the resulting composite material's properties and Physical microstructures performance? Equations Property Harmonic averaging techniques, law of mixtures calculation Fiber orientation and weave layers Week 4 Simulation of resin flow process in fiber preform Modeling and Reinforcement construction in RTM Production Manufacturing and production considerations, Cost-benefit considerations Week 5 Why study design? Is design a well-defined process or an "art"? The design How humans solve problems, Creativity Mothumans process information Six stages of design (as defined by Ullman [13]) Week 6 Why is project planning so important? Product Whare amount of time do successful companies spend on planning? Planning and What specific steps should be taken in project planning? Product Where do product definitions come from? How do we gauge the relative importance of different produc	Week 2	Current state of	Fibers (e.g. carbon-fiber, e-glass, s-glass, etc.)	
Fabrication Weave types (e.g. plain, twill, etc.), Processing (e.g. LCM, RTM, VARTM, etc.) Week 3 Resin injection Transport phenomena: Darcy's law Governing Fiber How do they affect the resulting composite material's properties and microstructures performance? Equations Property Harmonic averaging techniques, law of mixtures Calculation Fiber orientation and weave layers Week 4 Simulation of resin flow process in fiber preform Modeling and Reinforcement construction in RTM Production Maunfacturing and production considerations, Cost-benefit considerations Week 5 Why study design? Is design a well-defined process or an "art"? The design How humans solve problems, Creativity Method How humans solve problems, Creativity How humans process information Six stages of design (as defined by Ullman [13]) Week 6 Why is project planning so important? Project What amount of time do successful companies spend on planning? Product Where do product definitions come from? Definition How do we gauge the relative importance of different products requirements? Week 7 Solid models	Selection and	the art	Resin (e.g. epoxy, polyester, etc.)	
Processing (e.g. LCM, RTM, VARTM, etc.)Week 3Resin injectionTransport phenomena: Darcy's lawGoverningFiberHow do they affect the resulting composite material's properties andPhysicalmicrostructuresperformance?EquationsPropertyHarmonic averaging techniques, law of mixturescalculationFiber orientation and weave layersWeek 4Simulation of resin flow process in fiber preformModeling andReinforcement construction in RTMProductionManufacturing and production considerations, Cost-benefit considerationsWeek 5Why study design? Is design a well-defined process or an "art"?The designHow humans solve problems, CreativitymethodHow humans process informationSix stages of design (as defined by Ullman [13])Week 6Why is project planning so important?ProjectWhat specific steps should be taken in project planning?Planning andProduct definitions come from?DefinitionHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeek 8-13Design project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progress	Fabrication		Weave types (e.g. plain, twill, etc.),	
Week 3Resin injectionTransport phenomena: Darcy's lawGoverningFiberHow do they affect the resulting composite material's properties andPhysicalmicrostructuresperformance?EquationsPropertyHarmonic averaging techniques, law of mixturescalculationFiber orientation and weave layersWeek 4Simulation of resin flow process in fiber preformModeling andReinforcement construction in RTMProductionManufacturing and production considerations, Cost-benefit considerationsWeek 5Why study design? Is design a well-defined process or an "art"?The designHow humans solve problems, CreativitymethodHow humans process informationSix stages of design (as defined by Ullman [13])Week 6Why is project planning so important?ProjectWhat amount of time do successful companies spend on planning?Planning andProduct definitions come from?ProductWhere do product definitions come from?How do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeek 8-13Design project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progress </th <th></th> <th></th> <th>Processing (e.g. LCM, RTM, VARTM, etc.)</th>			Processing (e.g. LCM, RTM, VARTM, etc.)	
Governing PhysicalFiber microstructuresHow do they affect the resulting composite material's properties and microstructuresEquationsProperty calculationHarmonic averaging techniques, law of mixtures Fiber orientation and weave layersWeek 4Simulation of resin flow process in fiber preformModeling and ProductionReinforcement construction in RTMProductionManufacturing and production considerations, Cost-benefit considerationsWeek 5Why study design? Is design a well-defined process or an "art"?The design methodHow humans solve problems, CreativityModeling and ProjectHow humans solve problems, CreativityMetk 6Why is project planning so inportant?ProjectWhat amount of time do successful companies spend on planning?Planning and ProductHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptual Design and DevelopmentGonceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13 Design ProjectDesign project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design process	Week 3	Resin injection	Transport phenomena: Darcy's law	
Physical Equations microstructures calculation performance? Week 4 Simulation of resin flow process in fiber preform Modeling and Production Reinforcement construction in RTM Production Manufacturing and production considerations, Cost-benefit considerations Week 5 Why study design? Is design a well-defined process or an "art"? The design How humans solve problems, Creativity method How human minds work/ Short-term vs. long-term memory How human sprocess information Six stages of design (as defined by Ullman [13]) Week 6 Why is project planning so important? Product Whar specific steps should be taken in project planning? Product Where do product definitions come from? Definition How do we gauge the relative importance of different products requirements? Week 7 Solid models vs. drawings Conceptual Analytical vs. physical Design and Importance of communication, different modes of communication style Product Effective methods of conceptual design within a group setting Development Connections between sales-engineering-manufacturing-installation Weeks 8-13 Design project is	Governing	Fiber	How do they affect the resulting composite material's properties and	
EquationsProperty calculationHarmonic averaging techniques, law of mixturesWeek 4Simulation of resin flow process in fiber preformModeling andReinforcement construction in RTMProductionManufacturing and production considerations, Cost-benefit considerationsWeek 5Why study design? Is design a well-defined process or an "art"?The designHow humans solve problems, CreativitymethodHow humans process informationSix stages of design (as defined by Ullman [13])Week 6Why is project planning so important?ProjectWhat amount of time do successful companies spend on planning?ProductWhere do product definitions come from?DefinitionSolid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13Design project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progressBeginn projectMajority of class time is used to meet with group members and discuss progressBeginn projectFifective nich on of the design process	Physical	microstructures	performance?	
calculationFiber orientation and weave layersWeek 4Simulation of resin flow process in fiber preformModeling andReinforcement construction in RTMProductionManufacturing and production considerations, Cost-benefit considerationsWeek 5Why study design? Is design a well-defined process or an "art"?The designHow humans solve problems, CreativitymethodHow humans process informationSix stages of design (as defined by Ullman [13])Week 6Why is project planning so important?ProjectWhat amount of time do successful companies spend on planning?Planning andWhat specific steps should be taken in project planning?ProductWhere do product definitions come from?DefinitionHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13Design project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design process	Equations	Property	Harmonic averaging techniques, law of mixtures	
Week 4Simulation of resin flow process in fiber preformModeling andReinforcement construction in RTMProductionManufacturing and production considerations, Cost-benefit considerationsWeek 5Why study design? Is design a well-defined process or an "art"?The designHow humans solve problems, CreativitymethodHow human minds work/ Short-term vs. long-term memoryHow humans process informationSix stages of design (as defined by Ullman [13])Week 6Why is project planning so important?ProjectWhat amount of time do successful companies spend on planning?Planning andWhat specific steps should be taken in project planning?ProductWhere do product definitions come from?DefinitionHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13Design project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design processWeek 14Teams present entire design process and final product to class and turn in report to instructor		calculation	Fiber orientation and weave layers	
Modeling and ProductionReinforcement construction in RTMProductionManufacturing and production considerations, Cost-benefit considerationsWeek 5Why study design? Is design a well-defined process or an "art"?The designHow humans solve problems, CreativitymethodHow human minds work/ Short-term vs. long-term memoryHow humans process informationSix stages of design (as defined by Ullman [13])Week 6Why is project planning so important?ProjectWhat amount of time do successful companies spend on planning?Planning andWhat specific steps should be taken in project planning?ProductWhere do product definitions come from?DefinitionHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentDesign Project is developed by each group incrementallyMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to class and turn in report to instructor	Week 4	Simulation of resin flow process in fiber preform		
ProductionManufacturing and production considerations, Cost-benefit considerationsWeek 5Why study design? Is design a well-defined process or an "art"?The designHow humans solve problems, CreativitymethodHow human minds work/ Short-term vs. long-term memoryHow humans process informationSix stages of design (as defined by Ullman [13])Week 6Why is project planning so important?ProjectWhat amount of time do successful companies spend on planning?Planning andWhat specific steps should be taken in project planning?ProductWhere do product definitions come from?DefinitionHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13Design project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design processWeek 14Teams present entire design process and final product to class and turn in report to instructor	Modeling and	Reinforcement construction in RTM		
Week 5Why study design? Is design a well-defined process or an "art"?The design methodHow humans solve problems, CreativityHow humans solve problems, CreativityHow humans solve problems, CreativityHow humans process informationSix stages of design (as defined by Ullman [13])Week 6Why is project planning so important?ProjectWhat amount of time do successful companies spend on planning?Planning andWhat specific steps should be taken in project planning?ProductWhere do product definitions come from?DefinitionHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13 Design ProjectDesign project is developed by each group incrementallyMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design processWeek 14Teams present entire design process and final product to class and turn in report to instructor	Production	Manufacturing and production considerations, Cost-benefit considerations		
The design methodHow humans solve problems, CreativitymethodHow human minds work/ Short-term vs. long-term memoryHow humans process informationSix stages of design (as defined by Ullman [13])Week 6Why is project planning so important?ProjectWhat amount of time do successful companies spend on planning?Planning andWhat specific steps should be taken in project planning?ProductWhere do product definitions come from?DefinitionHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13Design project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design processWeek 14Teams present entire design process and final product to class and turn in report to instructor	Week 5	Why study design? Is design a well-defined process or an "art"?		
methodHow human minds work/ Short-term vs. long-term memoryHow humans process informationSix stages of design (as defined by Ullman [13])Week 6Why is project planning so important?ProjectWhat amount of time do successful companies spend on planning?Planning andWhat specific steps should be taken in project planning?ProductWhere do product definitions come from?DefinitionHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13Design project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design processWeek 14Teams present entire design process and final product to class and turn in report to instructor	The design	How humans solve problems, Creativity		
How humans process informationSix stages of design (as defined by Ullman [13])Week 6Why is project planning so important?ProjectWhat amount of time do successful companies spend on planning?Planning andWhat specific steps should be taken in project planning?ProductWhere do product definitions come from?DefinitionHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13Design project is developed by each group incrementallyMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design processWeek 14Teams present entire design process and final product to class and turn in report to instructor	method	How human minds work/ Short-term vs. long-term memory		
Six stages of design (as defined by Ullman [13])Week 6Why is project planning so important?ProjectWhat amount of time do successful companies spend on planning?Planning andWhat specific steps should be taken in project planning?ProductWhere do product definitions come from?DefinitionHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentDesign project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design processWeek 14Teams present entire design process and final product to class and turn in report to instructor		How humans process information		
Week 6Why is project planning so important?ProjectWhat amount of time do successful companies spend on planning?Planning andWhat specific steps should be taken in project planning?ProductWhere do product definitions come from?DefinitionHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13Design project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design processWeek 14Teams present entire design process and final product to class and turn in report to instructor		Six stages of design (as defined by Ullman [13])		
ProjectWhat amount of time do successful companies spend on planning?Planning andWhat specific steps should be taken in project planning?ProductWhere do product definitions come from?DefinitionHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13Design project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design processWeek 14Teams present entire design process and final product to class and turn in report to instructor	Week 6	Why is project planning so important?		
Planning and ProductWhat specific steps should be taken in project planning?ProductWhere do product definitions come from?DefinitionHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13Design project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design processWeek 14Teams present entire design process and final product to class and turn in report to instructor	Project	What amount of time do successful companies spend on planning?		
ProductWhere do product definitions come from?DefinitionHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13Design project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design processWeek 14Teams present entire design process and final product to class and turn in report to instructor	Planning and	What specific steps should be taken in project planning?		
DefinitionHow do we gauge the relative importance of different products requirements?Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13Design project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design processWeek 14Teams present entire design process and final product to class and turn in report to instructor	Product	Where do product definitions come from?		
Week 7Solid models vs. drawingsConceptualAnalytical vs. physicalDesign andImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13Design project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design processWeek 14Teams present entire design process and final product to class and turn in report to instructor	Definition	How do we gauge the relative importance of different products requirements?		
Conceptual Design andAnalytical vs. physicalProductImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13Design project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design processWeek 14Teams present entire design process and final product to class and turn in report to instructor	Week 7	Solid models vs. drawings		
Design and ProductImportance of communication, different modes of communication styleProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13 Design ProjectDesign project is developed by each group incrementallyMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design processWeek 14Teams present entire design process and final product to class and turn in report to instructor	Conceptual	Analytical vs. physical		
ProductEffective methods of conceptual design within a group settingDevelopmentConnections between sales-engineering-manufacturing-installationWeeks 8-13Design project is developed by each group incrementallyDesign ProjectMajority of class time is used to meet with group members and discuss progressBeginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design processWeek 14Teams present entire design process and final product to class and turn in report to instructor	Design and	Importance of communication, different modes of communication style		
Development Connections between sales-engineering-manufacturing-installation Weeks 8-13 Design project is developed by each group incrementally Design Project Majority of class time is used to meet with group members and discuss progress Beginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design process Week 14 Teams present entire design process and final product to class and turn in report to instructor	Product	Effective methods of conceptual design within a group setting		
Weeks 8-13 Design project is developed by each group incrementally Design Project Majority of class time is used to meet with group members and discuss progress Beginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design process Week 14 Teams present entire design process and final product to class and turn in report to instructor	Development	Connections between sales-engineering-manufacturing-installation		
Design Project Majority of class time is used to meet with group members and discuss progress Beginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design process Week 14 Teams present entire design process and final product to class and turn in report to instructor	Weeks 8-13	Design project is developed by each group incrementally		
Beginning of each class (10-15 minutes) is used to elaborate on different design elements to further enrich the instruction of the design process Week 14 Teams present entire design process and final product to class and turn in report to instructor	Design Project	Majority of class time is used to meet with group members and discuss progress		
further enrich the instruction of the design process Week 14 Teams present entire design process and final product to class and turn in report to instructor		Beginning of each class (10-15 minutes) is used to elaborate on different design elements to		
Week 14 Teams present entire design process and final product to class and turn in report to instructor		further enrich the	further enrich the instruction of the design process	
	Week 14	Teams present en	Teams present entire design process and final product to class and turn in report to instructor	

Appendix A - Example of Course Topics

Appendix B - Recommended Textbooks and Grading

The following texts are recommended to be used to aid in the instruction of the current design course focused on the emerging technology of composite materials:

- Ullman D.G., 2010. The Mechanical Design Process, 4th edition. McGraw Hill, New York [13].
- Barbero E.J., 2010. Introduction to Composite Materials Design, 2nd edition. CRC Press, Florida [14].

A majority of the new material in this design course will be encountered while studying the different aspects of the emerging technology. Barbero [4] presents an excellent text outlining composite materials and the basic elements surrounding this technology. The students will be able to use this book to better understand composite materials in order to best approach the design project during the second half of the semester. The text by Ullman [3] is utilized in a freshman course required by the Engineering Department at Virginia Tech and will therefore serve as a secondary textbook and useful as reference for the current proposed design course. Essential aspects of design and the design process will be covered during the lectures and discussions, where a few excerpts from this book will be used to supplement the main text by Barbero [4].

Class participation in discussions 10% Demonstration of understanding of both the design process and emerging technology during 5% one-on-one meeting with instructor Conceptual weekly (during first seven weeks) quizzes related to course content 15% 10% Team work Project planning, documentation, and follow-through 10% Definition of needs and engineering metrics 10% 10% Concepts generated to solve design problem Implementation of composite material technology towards solving the Design 25% 70% Project problem Presentation of entire process 15% 10% Report 5% Calculation accuracy/validity 5% Innovation and creativity in design

Grading: