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Understanding the Engineering Education Research Problem 
Space Using Interactive Knowledge Networks

 
Abstract 
For any knowledge intensive undertaking (such as a discipline) it is critical to chart its birth and 
growth to understand where the discipline stands and what innovative endeavors lead to the 
creative accomplishments currently witnessed in its knowledge products. In this paper, we 
describe the research and development of a knowledge platform called Interactive Knowledge 
Networks for Engineering Education Research (iKNEER). Using a theoretical model that 
combines ultra large-scale data mining techniques, network mapping algorithms, and time-series 
analysis of knowledge product evolution, we attempt to characterize and provide insights into the 
topology of the networks and collaborations within engineering education research. More 
importantly, our goal is to provide members of the Engineering Education Research (EER) 
community with tools and infrastructure that allows them to understand the structure and 
networks of knowledge within the community at any given time. In this paper, we also provide a 
detailed description of the algorithms, workflows, and the technical architecture we use to make 
sense of publications, conference proceedings, funding information, and a range of other 
knowledge products. We plan on announcing its open availability to the EER community. 
 
1. Introduction 
 
In today’s globally competitive economy, success is increasingly driven by knowledge and 
intellectual capital. Academic communities that have developed a corpus of knowledge artifacts 
over decades or sometimes centuries of research are uniquely positioned to capitalize on their 
expansive knowledge bases. Yet, this process is fraught with difficulties. To be innovative, an 
organization [or community] has to be adept at exploiting existing knowledge as well as 
exploring new ways of producing knowledge1. To do so, a community must have a holistic, 
deep, and accessible understanding of what it knows. An informed and innovative future depends 
on an acute awareness of the past to avoid repeating mistakes and non-productive paths. 
 
Engineering education has recently undergone a resurgence and reorientation that mirrors 
growing recognition of the unique challenges faced by both engineering educators and learners 
in the 21st century. A new field of Engineering Education Research (EER) has emerged, in part 
coalescing around theories of how people learn in the domain of engineering. Yet as the EER 
community expands, it is becoming increasingly difficult to develop and sustain community 
memory. This has the potential to significantly hinder progress as the inability of a field, 
discipline, or more generally – a problem space – to recognize what it knows increases the risk 
that isolated researchers and groups will tackle similar problems using relatively primitive 
approaches. The dramatic expansion of engineering education over the past decade has led the 
field to a critical juncture that demands new tools and methods to enable the community to 
expand and build on prior work. In this paper, we address this challenge by describing the 
development and deployment of an interactive knowledge platform – entitled Interactive 
Knowledge Networks for Engineering Education Research (iKNEER) to help members of this 
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growing community explore the current state of knowledge within Engineering Education 
Research, identify future directions for research, and find collaborative partners. 

The engineering education community has a vision of improving and innovating how engineers 
are trained and preparing to make them more competitive in the global economy. To pursue this 
goal the community has coalesced around several relevant initiatives such as those that have 
produced The Engineer of 20202 and the draft report on Engineering Education for the Global 
Economy3. The National Science Board report entitled Moving Forward to Improve Engineering 
Education4 explicitly points to the need for “expanding research and data collection related to 
engineering education” (p. 17). Yet the question remains: once such massive scales of data are 
collected, what sorts of analytics and informatics can be applied to them to derive actionable 
knowledge? Prior efforts and reports provide us with a blueprint of where the community needs 
to head, especially in terms of supporting desired outcomes for engineers who are prepared to 
practice effectively in the 21st century. Yet we do not have a holistic view of how engineering 
education research can help transform engineering teaching and learning to cultivate the engineer 
of the future. This challenge is further compounded when one considers the international state of 
the field, with researchers in many different countries and regions often undertaking similar 
research on engineering education and professional practice. In short, we do not have in-depth 
insights into where we stand, nor do we know how we got here.  

Extant literature in engineering education5 and numerous other disciplines including learning 
sciences6 and cyberinfrastructure7,8 have called for radically rethinking education research to 
include large scale data and collaborations. The important question for rapidly evolving fields 
such as engineering education is: How do we know when large-scale research collaborations are 
happening? Also, how do we know that research utilizing large datasets attracts a large number 
of researchers to utilize these datasets? Can we take a data-driven approach to clearly point out 
trends in research productivity and collaboration? Information retrieval research (e.g., search 
engines) often helps address such problems by improving the aggregation of data and focusing 
on what any given document is about (i.e., word-level content analysis). However, for scientific 
communication, it is equally important to know who writes the document and how the document 
is positioned in the process of knowledge emergence. Improving access to such information 
demands different types of analytic tools. 

Traditionally, analyzing ultra large-scale academic data has been the domain of a few computer 
scientists and engineers. It requires computational techniques to acquire and manage data, 
analyze large-scale networks, and identify trends and patterns. To allow a broader range of 
researchers, educators, and other stakeholders in engineering education research community to 
drive the exploration of the problem space, the data gateway must not only handle the underlying 
computational components, but also provide intuitive navigation, insightful representations, and 
a user-friendly interface. We attempt to characterize and provide the type of insights required by 
the community by utilizing ultra-scale knowledge product such as publications in journals and 
conferences in engineering education, the National Science Foundation grant proposals, and 
articles published by the National Academy of Engineering. 

As of January 2011, iKNEER includes a total of 35,591 documents from 21 different 
publications including Journal of Engineering Education, International Journal of Engineering 
Education, Frontiers in Education, ASEE conference proceedings, and IEEE Transactions on 
Education. We cover a long time period for each dataset with the oldest document dating back to 
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1965. Our document repository is continuously expanding to reach broader inclusion of 
publication sources and longer coverage. Out of the whole dataset, we have developed the 
capability to understand the scientific profile of 27,102 authors and 30,568 keywords. 
 
2. Current approaches to characterizing a research domain using data and 
visualization 
 
Engineering education researchers have long produced review papers that provide overviews for 
a variety of topics. These papers are usually written by domain experts in a comprehensive and 
succinct manner and aim to review recent development within a certain scope based on relevant 
studies. Review papers often explore a broad range of literature concerning a topic, recognize 
contributions of relevant studies over a specific period, synthesize them to chart a literature road 
map, and envision the future development. In engineering education research, by applying 
keyword analysis to the papers in Journal of Engineering Education (JEE) from 1993 to 2002, 
Wankat9,10 revealed the community’s interest in teaching, design and computer while ABET and 
assessment showed upraising trend during the second half of the decade. Jesiek et al.11,12 shared a 
similar approach of providing a critique of engineering education research by a publication 
analysis but on a global scale. Instead of studying engineering education as a whole, some 
projects focused on a particular research topic. Madhavan et al.13 provided a synthesis of 
cyberlearning environments based on a qualitative analysis of articles in the Journal of 
Engineering Education between 2000 and 2009. Similarly, Prince14 studied the effectiveness of 
active learning by synthesizing relevant literature, whereas Dutson et al. investigated the topic of 
teaching engineering design15. While reading review papers helps researchers effectively develop 
comprehensive and insightful understandings of a discipline or a research topic, the effort behind 
writing a review paper is extremely high and usually occur over a prolonged period of time. 
Therefore, it is impossible to have every topic reviewed on a regular basis based on all the 
relevant literature. Instead, authors of review papers usually selectively covered a small set of top 
publications16. Also, review papers inevitably include authors' subjective judgment on which 
papers were selected for such analyses. This can become a potential threat to readers in 
understanding literature accurately and evaluating contributions fairly. 
 
To broaden the inclusion of literature, researchers in other disciplines have proposed frameworks 
and tools to identify significant trends and patterns based on publication metadata such as titles, 
authors, abstracts, keywords, and affiliations. By conducting co-citation analyses, some studies 
identified prominent authors in a specific research area17 and characterized main research focuses 
and trends18,19. Based on statistical analysis of key terms of each document, researchers 
identified trends and patterns that chart the emergence and development of a field. Some 
researchers20 in topic modeling studied author-topic models for scientific publications to 
characterize a topic by the contributing authors and produce author profiles based on the author’s 
academic production. Some examined the longitudinal evolution of topics in a specific domain21 
and the development of social networks among authors22. These studies uncovered trends and 
patterns based on the statistical analysis of large-scale publication data. However, similar data 
gateways for the engineering education research community have not been created. Also, 
existing approaches rarely allowed other researchers to freely explore the problem space and 
produce customized representations. 
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To make available more interactions and meaningful representations, researchers in visual 
analytics have designed visual tools to characterize individual academic articles as well as the 
whole field. Uren et al.23 developed a visual tool ClaiMapper to allow users to sketch argument 
map of individual papers. They defined a taxonomy of rhetorical link types, which were denoted 
by edges on the argument map. Strobelt et al.24 presented the idea of using Document Cards to 
display a summary of an article in IEEE Vis 2008. As a representative of a document, a 
Document Card involved key terms and figures, which when clicked were further directed to the 
full text. Besides the above emphasis on individual articles, researchers have proposed 
innovative visualizations to demonstrate paradigms tracking, research trend, and author-topic 
relationships. McCain17 performed the author co-citation analysis on publications in the ISI 
databases and visualized domains and top authors as clusters on a map.  White et al.25 analyzed 
the co-citation relationships in 12 journals in information science and visualized clusters of 
authors by their research specialties on a map. With a similar focus on author co-citation 
analysis, Chen et al.18 described the semantic space based on the ACM Hypertext conference and 
presented their web-based 3-D visualization tool for navigating various relationships between 
literatures. He et al.26 visualized clusters of authors based on co-citation relationships and 
provided a web-based search engine for understanding a citation database. The software 
SCIMap27 also aimed to visualize co-citation maps and ontology based on academic articles in 
natural science28. Another common visualization tool for domain analysis called VxInsight used 
terrain view to illustrate the popularity of topics and the commonality between them29. Börner et 
al.30 summarized knowledge domain visualizations and proposed guidelines for analyzing 
bibliographic data. A recent study by Bergström et al.31 combined new visualization techniques 
such as circle view, tree map view, force-directed network, and circular network to develop a 
web-based application, PaperCube, to facilitate researchers’ interaction with a digital library and 
exploration of bibliographic metadata. These visualization tools addressed various aspects of the 
domain knowledge and offered users interactive interfaces to navigate the problem space. 
However, none of the above studies has provided an insightful and comprehensive overview of 
engineering education research. 
 
In sum, given the great demand of understanding the birth and growth of engineering education 
research, no previous study has comprehensively covered a broad range of knowledge products 
in engineering education research. Nor did any project attempt to construct a highly interactive 
platform that allows researchers to explore the field in a visual and intuitive way. 
 
3. Methodology 
 
Figure 1 illustrates the architecture and workflow of iKNEER. As a data-intensive gateway, 
iKNEER first (1) collects knowledge products such as academic articles and grant proposals 
from a variety of sources periodically using well-known crawling strategies. As a cyber-tool for 
researchers to explore the field, the web-based interface of iKNEER (2) processes user 
operations on the website, which then (3) trigger the underlying computational components to (4) 
compute the output based on what have been maintained in the database. The result will be then 
(5) represented in a visual form and refresh a portion of the page to reflect the changes. In this 
section, we present our design and implementations of iKNEER by elaborating the three major 
components: data management, computation, and representation. 
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Figure 1. Architecture of iKNEER. 

 
3.1 Data acquisition and management  
 
iKNEER aims at archiving ultra-scale knowledge products in engineering education. To achieve 
this goal, the data server acquires metadata and full texts (when feasible) of academic articles 
relevant to engineering education from online publication data sources such as IEEEXplore, Web 
of Science, and EBSCO. Our list of relevant publications is derived from the feedbacks from a 
vast amount of cohorts in the community and is constantly expanding to reach broader inclusion 
of literature. To keep our database constantly up-to-date, we automate the acquisition process by 
detecting updates from monitored sites periodically. Once new issues and volumes come out, the 
detectors will inform the crawlers to download them. Occasionally, we import data manually 
from optical media when target data are not available on the Internet. To overcome the 
discrepant modality of the data owned by different publishers, we develop adapters to transform 
publication metadata into a unified format before including them into the data server. The need 
of developing new adapters for new data sources sometimes leads to a gap between data 
collected and data accessible by the public. Table 1 shows a partial list of the knowledge 
products currently accessible via iKNEER. Other EER-related resources that have been collected 
by iKNEER but yet to be published are: Australasian Association for Engineering Education, 
Education for Chemical Engineers, International Conference on Engineering Education, 
International Conference on Engineering Education Research, SEFI, and World Conference on 
Continuing Engineering Education. At the same time, our highly configurable adaptor enables us 
to expand our publication coverage to include other academic products within STEM education 
such as The American Biology Teacher, Advances in Physiology Education, Cell Biology 
Education, Interdisciplinary Journal of PBL, The Journal of Science Education and Technology, 
and Science Education. We are currently working on making these new resources accessible on 
iKNEER. Due to the copyrights restrictions, iKNEER is not allowed to provide a direct 
download of full text. However, we offer citation export and a link to the publisher’s site for 
each document accessible on iKNEER. 
 
After publication data are collected and unified, management of such data involves optimizing 
query processing and assuring data quality. The former aims to reduce query-processing time, 
whereas the latter ensures that publication information is accurately represented. For example, 
publishers follow their own naming conventions for author name such as abbreviating first 
names and ignoring middle initials. As a result, it is common that one author published multiple 
papers under two or more literally different names. The author name ambiguity can easily 
produce erroneous results when computing how many authors are working on a given topic, 
collaboration models, and other metrics such as who has the most publications in a journal. To 
overcome this issue, we design a recommendation-based system to allow users to disambiguate 
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duplicate items. Figure 2 demonstrates how iKNEER creates multiple groups of author names 
that are detected as suspicious duplicates of other names in the same group. Based on the 
recommendation list and the corresponding authors’ publication activities, users determine 
whether to group the seemingly similar author names together and treat them as a whole. In 
Figure 2, the author names compared within the group share the same co-author, which is a clear 
indicator that these two names refer to the same author. Therefore, these two names should be 
marked as the same. Our name disambiguation system supports rollback operations so that 
mistakenly grouping name duplicates will not result in permanent changes in the database. 

Table 1. Partial set of knowledge products currently accessible via iKNEER. 

Knowledge product Num. of 
documents 

Available 
years1 

Advances in Engineering Education 20 2007-2009 
American Society for Engineering Education (annual conference) 10,215 1996-2009 
Australasian Journal of Engineering Education 50 2000-2009 
Computer Applications in Engineering Education 367 1997-2009 
Engineering Education 43 2006-2009 
European Journal of Engineering Education 479 2000-2009 
Frontiers in Education (conference) 1,285 2006-2008 
Global Journal of Engineering Education 322 2000-2007 
IEEE Transactions on Education 669 2000-2009 
International Journal of Continuing Engineering Education and Life-Long Learning 185 2004-2009 
International Journal of Electrical Engineering Education 1,450 1969-2009 
International Journal of Engineering Education 1,159 2000-2009 
Journal of Chemical Education 1,823 2005-2008 
Journal of Engineering Education 535 2000-2009 
Journal of Professional Issues in Engineering Education and Practice 808 1994-2008 

 

 
Figure 2. The author name disambiguation system that aids users in grouping duplicates. 

                                                
1 Note that publications may be missing in certain years where no article was published. 
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3.2 Data-centered computational components 
 
Based on the data collected, the computational server aims to support the presentation layer by 
running corresponding algorithms. To support composite search with multiple constraints such as 
author and publication time, we develop a sophisticated search engine that are tuned to provide 
short response time. To produce co-author networks, iKNEER computes and caches results from 
social network analysis based on the co-authorship information of each individual article. To 
prepare for the demonstration of how a topic evolves, we implement a computational component 
that aggregates relevant knowledge products and groups them by publication time. 
 
To produce a concise view of any individual knowledge product we provide a collection of 
weighted keywords. We utilize existing author-supplied keywords and also design a smart 
tagging system. Describing an academic article with a list of keywords has been commonly used 
and often mandated to give readers a general sense of what the article is about. However, some 
publications do not impose this requirement and leave many articles without keywords. 
Manually assigning keywords to a large number of documents is infeasible because of the time 
cost and the questionable accuracy. Therefore, we create a smart tagging system that generates 
keywords based on the frequency of word occurrence in the full text of a given document. We 
maintain a stop word list to filter common words such as the, of, is, and a so that they will not be 
identified as keywords. For example, the top four keywords generated from a JEE paper32 are 
<mentor, 74>, <experience, 63>, <gender, 57>, and <cooperative, 42>, where values indicate the 
number of word occurrence in the document. We continue to investigate other superior methods 
to identify appropriate tags for documents and other knowledge products. 
 
To enable better navigation by topics, we propose a rule to determine the likelihood of a 
document belonging to a certain category. Depending on the word occurrence in the fields of 
title, abstract, and keywords, a document is characterized by a number of topics. Also, we take 
into consideration the taxonomy and ontology of engineering education research so that inter-
topic relationships can be defined. For example, workplace diversity should be contained in 
workplace and if a user searches for workplace, articles on all sub-topics will be returned. 
Relationships between documents will then be passed to the WordBridge algorithm for 
producing a visualization showing the commonality between the two, as outlined in Kim et al.33. 
Figure 3 provides an overview of the process. 
 

 
Figure 3. The decision tree for categorizing documents by topic and visualizing between-document relationships. 

compute

between-document

commonality

Is X an author-

supplied keyword?

Does X appear in both 

the title and abstract?
No

The document belongs to X

The document does not belong to X

Yes Yes

No

The document belongs to X

Other documents that belongs to X

WordBridgesent Visualization
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To open our database to other researchers, we provide remote procedure calls formatted in JSON 
(JSON-RPC) for accessing our data via the programming interface. For example, a developer can 
pass the JSON packet in Table 2 to request information about the first ten papers with the 
keyword assessment published in FIE. Other procedure calls include computing co-author 
networks, keyword trends, and papers written by a given author. 

Table 2. A JSON-RPC request for getting the first ten papers related to assessment published in FIE. 

{"params":{"tag":["assessment"], "publication":"Frontiers in Education Conference", 
"publicationYear":{"beginYear":2000, "endYear":2009}, "output":"PaperInfo", "range":{"beginIndex":0, 
"endIndex":9}}, "method":"advancedQuery", "id":8818} 

 
3.3 Visualizations and user interface 
 
We discuss the design and implementations of data management and computational components 
above, which involve a significant amount of techniques in computer science such as data 
mining, social network analysis, and time-series analysis. To release users from the technical 
details under the hood, we create a web-based user interface for users to explore the field in a 
visual and intuitive manner. No application or plug-in installation is required to visit the website. 
The user interface primarily provides the following capabilities: 
 
3.3.1. Real-time search 
 

 
Figure 4. Real-time search capabilities within iKNEER. As the user types, iKNEER automatically narrows down 

search elements and provides users with clearly categorized search results. 
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One of the most powerful features that we have developed and implemented in iKNEER is the 
capability to perform real-time search across our entire archive. As the user starts to type into the 
“Search Box” that is always available to them in the top left corner of the screen, iKNEER 
immediately narrows down search elements and provides users with suggestions. Beneath the 
hood, this real-time search requires us to process and return a significant amount of data at any 
given time. We are working on enabling full-text search across all our data elements. To perform 
this effectively, we have researched and developed a testbed using an open-source indexing 
system called Apache Lucene2 - which is a “high performance, full-text search engine library.” 
While this is a Java programming language based implementation – we are working on a PHP 
port to enable ease of distribution when iKNEER code-base will be made open source. Figure 4 
shows the real-time search within iKNEER. As the user types “Smith” into the search box, 
iKNEER provides search results to the user in clear categories. The reader will notice that 
iKNEER intelligently classifies the results into Authors, Paper Titles, and Tags. 
 
Users can also constrain their search results very easily by clicking on a search result. 
Constraining the search results allows the users to focus on the information they are looking for 
very quickly and relieves them of the trouble of sorting through a large amount of data. Users 
can also search using nested search criteria. Figure 5 shows a search where the results are 
constrained first by “Karl Smith”, followed by publications only within the “Journal of 
Engineering Education”, and finally focused on the keyword “problem-based learning”. As each 
constraint is added, iKNEER automatically provides the user with further sets of constraints that 
are intelligently determined for that level. More importantly, if the user hovers the mouse over a 
certain constraint, iKNEER will immediately provide an option to remove the constraint. 
Furthermore, users can also remove all constraints simply by clicking the “Remove All” link 
available at the end of the constraint list. Please note that as increasing levels of constraints are 
applied, the slider bar at the bottom left corner of the image changes to reflect the time period 
that are available for that level of constraint. 
 

 
Figure 5. Constrained search within iKNEER. 

Search is intrinsically tied to all other aspects of the iKNEER site. We treat every data element as 
searchable and assume that every search result eventually maps to other larger more powerful 
data points. 
 
3.3.2. Visualizing relationships within iKNEER 

                                                
2 Apache Lucene. Available online at http://lucene.apache.org/java/docs/index.html. 
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One of the most important and powerful aspects of iKNEER that we have already designed and 
deployed is its ability to visualize relationships not only between authors and co-authors of 
papers and conference proceedings, but also between people working within the same problem 
space. We generate these relationship maps interactively and real-time. Users generally get the 
visuals in a matter of seconds – a process that used to take several hours. Figure 6 provides a 
simple collaboration network for Karl Smith. Here the brightness of lines indicates the number of 
papers produced between Karl Smith and his collaborators. 
 

 
Figure 6. Collaboration Network (Circular) for Karl Smith generated real-time by iKNEER. Brightness of lines 

between nodes (authors) indicates number of papers between the authors. 

While iKNEER can easily handle relationships between people (authors), we can easily apply 
our core work into the domain of thematic areas, keywords, journals, and other entities. For 
example, we could pose the question “who are the top 50 people working in the problem space 
‘assessment’ and what is the collaboration network between those people?” Figure 7 provides a 
simple answer to the question in a matter of milliseconds. 
 
We must make the reader aware that while we have made good progress on the algorithmic 
aspect of iKNEER, we still need to make sure that we have complete data coverage. In the 
coming year, we look to scale our work to include a larger set of data. These types of maps can 
also be generated based on timescales. iKNEER already has this feature built into it. For 
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example, any user can generate a time-scaled version of the collaboration networks that allows 
us to understand how a person’s collaboration network evolves over time. 
 

 
Figure 7. Collaboration network for the top 50 people working in the problem space "assessment". 

3.3.3. iKNEER’s advanced trend tracking capability 
In the previous sections, we have identified and highlighted some of iKNEER’s search and 
network mapping capabilities. In this section, we show some of iKNEER’s advanced trend 
mapping capabilities. iKNEER includes tools that allow users to understand how various 
concepts, keywords, tags evolve over time. Figure 8 shows how the use of the keyword 
“engineering education” has evolved over a period of time. Trending analyses are based on 
understanding how keywords occur and evolve a period of time. We then allow users to plot 
these either on a direct frequency scale or a logarithmic scale. We use time-series analysis as an 
intrinsic part of these analyses. Any user can create these trending graphs based on a simple 
search for a topic of interest. 
 
We continue to evolve and refine these capabilities and expect to have full-fledged versions of 
these features in the beta release of iKNEER. 
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Figure 8. Evolution of the keyword "engineering education" over a period of time. These types of graphs can be 

generated interactively and repeatedly using iKNEER. 
 
4. Enabling unique insights 
 
While iKNEER acts as a unique platform for the engineering education community, it also is 
being used to generate very unique insights about the field of engineering education research. 
This is indeed the ultimate goal of iKNEER. Figure 9 provides a visualization of the largest 
network within the field of engineering education research based only on published work 
(journals, conference proceedings, etc.). The largest network in the field of engineering 
education research between the years 2005 – 2009 has 814 nodes (restricted by size of dataset). 
Future analyses with larger datasets may show a larger network emerging. This image was 
generated using a software environment called UCINet (which is incredibly complex for most 
users to utilize). However, the core dataset needed for this work was generated by iKNEER in a 
few seconds (a process that used to take months previously). We are building towards being able 
to generate these types of insights automatically and on-demand. 

 
Figure 9. The largest network of authors within engineering education research from 2005 - 2009. Nodes in blue are 
critical to the integrity of the network and show key contributors. Red nodes indicate collaborators attached to these 

key contributors. 
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One of the key questions for any new discipline such as engineering education research is the 
question of capacity building and capability to propagate innovations. When looking at a 
network graph as shown in Figure 10, we ask the question – how is this network related to the 
larger community of engineering educators? Furthermore, is this network capable of propagating 
innovations? What does it mean that 814 researchers are connected in a single network? To 
showcase iKNEER’s capability to answer such questions – we undertook a network visualization 
of the community fostered by the Frontiers in Education (FIE) conference. This effort used data 
from the proceedings of the FIE conference from 1991 to 2009 – a massive amount of data to 
analyze manually. The resulting visualization34 showed that through the papers presented at this 
conference, a larger community of researchers was being united into a powerful network. This 
network showed not only the characteristics of significant capacity – but also the size of the 
largest network showed tremendous potential to propagate pedagogical and theoretical 
innovations. Key points in the growth of the network fostered by the FIE conference are shown 
in Figure 10. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 10. The growth of the co-author network in FIE: snapshots of the network in (a) 1991, (b) 2000, and (c) 
2009. 

 
5. Conclusion 
 
In this paper, we describe the design and implementations of a data-intensive knowledge 
platform, iKNEER aims to document and present the evolution of engineering education 
research. Table 3 summarizes the main features iKNEER currently provides for end users. We 
collect, index, and allow sense making of a large collection of data through intuitive and user-
friendly interfaces. Researchers and learners alike can easily explore the problem space through a 
web browser without technical expertise on data mining, social network analysis, or time-series 
analysis. Researchers, educators, and other stakeholders in the engineering education research 
community can visually identify potential collaborators, research patterns, topic trends, and 
highly related articles. iKNEER is also starting to provide unique insights about the topology of 
the networks within engineering education research. It shows that the content and knowledge that 
rests within the networks formed by researchers are the fundamental mechanisms through which 
practices and methods unique to the field of EER can propagate. We have the ambitious goal of 
reaching a much broader range of knowledge products such as grant proposals, policy 
documents, and academic articles from other disciplines. We acknowledge that the insights 
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derived from iKNEER are highly linked to the amount and quality of data we index and process. 
The mechanisms described in this paper provide us with a good platform to address both data 
coverage and data quality. To ensure its helpfulness to the community members in EER, we have 
collected feedbacks on the usability and functionality of the iKNEER portal by organizing a 
focus group event that involved engineering educators and engineering education researchers. 
We plan on recruiting more users and announcing its open availability to the EER community. 
 

Table 3. A summary of iKNEER’s primary features for end users. 

Feature Description 
Search function A real-time search engine that intelligently categorizes search results by 

document titles, authors, and keywords 
Statistics for custom result Run-time and rapid computation of statistics for custom result: most 

popular keywords, authors with the largest number of publications, 
publication distribution across journals/conferences, and timely distribution 
of publications  

Co-author network visualization A network visualization that demonstrates frequency of co-authorship 
within user-specified conditions 

Trend visualization An time-series animation with controls that illustrates the evolution of 
research topics 

Data requisition A JSON-RPC interface that allows remote access to the raw data in 
iKNEER 
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