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Teaching Deflections of Beams: Comparison of Advantages of  
Method of Model Formulas versus Method of Superposition 

 
 
 
Abstract 
 
The method of model formulas is a new method for solving statically indeterminate reactions and 
deflections of elastic beams. Since its publication in the IJEE in 2009, instructors of Mechanics 
of Materials have considerable interest in teaching this method to enrich students’ set of skills in 
determining beam reactions and deflections. Besides, instructors are interested in seeing relative 
advantages of this method versus the traditional method of superposition. This paper is aimed at 
comparing the method of model formulas with the method of superposition regarding (a) their 
methodology and pedagogy, (b) the availability of a one-page excerpt from the method of model 
formulas, (c) the availability of a one-page collection of deflection formulas of selected beams 
for the method of superposition, and (d ) assessment of their effectiveness in solving problems of 
reactions and deflections of beams in several identical given problems. 
 
I.  Introduction 
 
Beams are longitudinal members subjected to transverse loads. Students usually first learn the 
design of beams for strength. Then they learn the determination of deflections of beams under a 
variety of loads. Methods used in determining statically indeterminate reactions and deflections 
of elastic beams include:2 -1 3 method of integration (with or without use of singularity functions), 
method using moment-area theorems, method of conjugate beam, method using Castigliano’s 
theorem, method of superposition, method of segments, and method of model formulas. 
 
The method of model formulas1 is a newly propounded method. Beginning with an elastic beam 
under a selected preset general loading, a set of four model formulas are derived and established 
for use in this new method. These four formulas are expressed in terms of the following: 
 

(a) flexural rigidity of the beam; 
(b) slopes, deflections, shear forces, and bending moments at both ends of the beam; 
(c) typical applied loads (concentrated force, concentrated moment, linearly distributed 

force, and uniformly distributed moment) somewhere on the beam. 
 
For starters, one must note that a working proficiency in the rudiments of singularity functions is 
a prerequisite to using the method of model formulas. To benefit a wider readership, which may 
have different specialties in mechanics, and to avoid or minimize any possible misunderstanding, 
this paper includes summaries of the rudiments of singularity functions and the sign conventions 
for beams. Readers, who are familiar with these topics, may skip the summaries. An excerpt 
from the method of model formulas is needed and shown in Fig. 1, courtesy of IJEE.1 Besides, a 
collection of slope and deflection formulas of selected beams for the method of superposition is 
needed and shown in Fig. 2, courtesy of a textbook by S. Timoshenko and G. H. MacCullough.2 
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Excerpt from the Method of Model Formulas 
Courtesy: Int. J. Engng. Ed., Vol. 25, No. 1, pp. 65-74, 2009 
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Fig. 1.  Model loading and beam deflection formulas for the method of model formulas 
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Deflection Formulas of Selected Beams for the Method of Superposition 
 

Courtesy: Timoshenko and MacCullough, Elements of Strength of Materials, 
                                               3th Ed., pp. 182-183, D. Van Nostrand Company, Inc., 1949 

 
 

 
 

 
 

Fig. 2.  Slope and deflection formulas of selected beams for the method of superposition 
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■ Summary of rudiments of singularity functions 
 

Notice that the argument of a singularity function is enclosed by angle brackets (i.e., < >). The 
argument of a regular function continues to be enclosed by parentheses [i.e., ( )]. The rudiments 
of singularity functions include the following:1,8,9 
 
 

                                        ( )    if    0   and   0n nx a x a x a n< − > = − − ≥ >  (5) 
 

 

                                              1   if    0   and   0nx a x a n< − > = − ≥ =  (6) 
 

 

                                               0   if    0   or   0nx a x a n< − > = − < <  (7) 
 

                                       11    if    01
x n nx a dx x a nn

+

−∞
< − > = < − > >

+∫  (8) 
 

                                           1    if    0
x n nx a dx x a n+

−∞
< − > = < − > ≤∫  (9) 

                                          1      if      0n nd x a n x a ndx
−< − > = < − > >  (10) 

                                            1      if      0n nd x a x a ndx
−< − > = < − > ≤  (11) 

 

 

Equations (6) and (7) imply that, in using singularity functions for beams, we take 
 
 

                                                             0 1     for     0b b= ≥  (12) 
 

                                                             0 0     for     0b b= <  (13) 
 
■ Summary of sign conventions for beams 
 

In the method of model formulas, the adopted sign conventions for various model loadings on the 
beam and for deflections of the beam with a constant flexural rigidity EI are illustrated in Fig. 1. 
Notice the following key points: 
 

● A shear force is positive if it acts upward on the left (or downward on the right) face of the 
beam element [e.g., aV  at the left end a, and bV  at the right end b in Fig. 1(a)]. 

● At ends of the beam, a moment is positive if it tends to cause compression in the top fiber of 
the beam [e.g., aM  at the left end a, and bM  at the right end b in Fig. 1(a)].  

● If not at ends of the beam, a moment is positive if it tends to cause compression in the top fi-
ber of the beam just to the right of the position where it acts [e.g., the concentrated moment 

K=K   and the uniformly distributed moment with intensity 0m  in Fig. 1(a)].  
● A concentrated force or a distributed force applied to the beam is positive if it is directed 

downward [e.g., the concentrated force P ↓=P , the linearly distributed force with intensity 
0w  on the left side and intensity 1w  on the right side in Fig. 1(a), where the distribution be-

comes uniform if 0 1w w= ]. 
 

The slopes and deflections of a beam displaced from AB to ab are shown in Fig. 1(b). Note that 
 

● A positive slope is a counterclockwise angular displacement [e.g., aθ  and bθ  in Fig. 1(b)]. 
● A positive deflection is an upward linear displacement [e.g., ay  and by  in Fig. 1(b)]. 
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■ Methodology and pedagogy of the method of model formulas 
 

The four model formulas in Eqs. (1) through (4) were derived in great detail in the paper that 
propounded the method of model formulas.1 For convenience of readers, let us take a brief over-
view of how these model formulas are obtained. Basically, it starts out with the loading function 
q, written in terms of singularity functions for the beam ab in Fig. 1; as follows:  
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0 0

a a P K w

w w w
w w w w

m m

q V x M x P x x K x x w x x
w w w wx x w x u x uu x u x
m x x m x u

− − − −

− −

= < > + < > − < − > + < − > − < − >
− −− < − > + < − > + < − >− −

+ < − > − < − >

 (14) 

 

By integrating q, one can write the shear force V and the bending moment M for the beam ab in 
Fig. 1. Letting the flexural rigidity of the beam ab be EI, y be the deflection, y′  be the slope, and 
y′′  be the second derivative of y with respect to the abscissa x, which defines the position of the 
section along the axis of the beam under consideration, one may apply the relation EIy M′′ = and 
readily obtain the expressions for EIy′ and EIy  via integration. The slope and deflection of the 
beam are aθ  and ay  at its left end a (i.e., at x = 0), and are bθ  and by  at the right end b (i.e., at x 
= L), as illustrated in Fig. 1. Imposition of these boundary conditions will yield the four model 
formulas in Eqs. (1) through (4). 
 
Note that L in the model formulas in Eqs. (1) through (4) is a parameter representing the total 
length of the beam segment. In other words, this L is to be replaced by the total length of the 
beam segment to which the model formulas are applied. Furthermore, notice that this method 
allows one to treat reactions at interior supports (i.e., those not at the ends of the beam) as ap-
plied concentrated forces or moments, as appropriate. All one has to do is to simply impose the 
additional boundary conditions at the points of interior supports for the beam segment. Thus, 
statically indeterminate reactions as well as slopes and deflections of beams can be determined. 
 
A beam needs to be divided into segments for analysis only if (a) it is a combined beam (e.g., a 
Gerber beam) having discontinuities in slope at hinge connections between segments, and (b) it 
contains segments with different flexural rigidities (e.g., a stepped beam). 
 
■ Methodology and pedagogy of the method of superposition 
 
The method of superposition for the deflection of beams is a traditional method that can be found 
in most textbooks on mechanics of materials.2-8 The methodology and pedagogy of this method 
may not require a detailed description in this paper.  
 
Basically, this method requires that a table containing a good collection of slope and deflection 
formulas of selected beams, such as the one shown in Fig. 2, be available. In this method, the 
resulting deflection of a beam due to the various loads applied on the beam is taken to be the 
same as the sum of the deflections of the beam due to individual loads applied one at a time on 
the beam. However, this method will fail to work if the table lacks formulas for certain types of 
load (e.g., concentrated moment acting at other than an end point of a simply supported beam). 
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II.  Teaching and Learning a New Method via Contrast between Solutions 
 
Mechanics is mostly a deductive science, but learning is mostly an inductive process. For the 
purposes of teaching and learning, all examples will first be solved by the new method of model 
formulas (MoMF). Then the same problems in the examples will be solved by the traditional 
method of superposition (MoS) ― unless impossible ― using just the formulas for slopes and 
deflections of beams that are shown in Fig. 2. To stay within a limit in this paper, formulas that 
are available from other sources will not be admitted in the solution using MoS in the examples. 
 
Example 1. A simply supported beam AD with constant flexural rigidity EI and total length L is 
acted on by a concentrated force P ↓  at B and a concentrated moment PL   at C as shown in 
Fig. 3. Determine (a) the slopes Aθ  and Dθ  at A and D, respectively; (b) the deflection By  at B. 
 

 
 

Fig. 3.  Simply supported beam AD carrying concentrated loads 
 
 

Solution. The beam is statically determinate. Its free-body diagram is shown in Fig. 4. 
 
 

 
 

Fig. 4.  Free-body diagram of the simply supported beam AD 
 
 
 

● Using MoMF: In applying the method of model formulas to this beam, we must adhere to the 
sign conventions as illustrated in Fig. 1. At the left end A, the moment AM  is 0, the shear force 

AV  is 5P/3, the deflection Ay  is 0, but the slope Aθ  is unknown. At the right end D, the deflection 
Dy  is 0, but the slope Dθ  is unknown. Note in the model formulas that we have /3Px L=  for 

the concentrated force P ↓  at B and 2 /3Kx L=  for the concentrated moment PL   at C. Apply-
ing the model formulas in Eqs. (3) and (4), successively, to this beam AD, we write 
 

22( )5 /3 20 0 0 0 0 0 0
2 2 3 3AD
P L P PL LLL L

EI EI EI
θ θ −   = + + − − + − − − + + + −   

   
 

 

3 23( )5 /3 20 0 0 0 0 0 0 0 0
66 3 2 3A

P L PL LP LL L L
EIEI EI

θ −   = + + + − − + − − − + + + −   
   

 
 

These two simultaneous equations yield 
 

2 214 17           81 162DA
PL PL
EI EIθ θ= − =  

 

Using the value of Aθ  and applying the model formula in Eq. (2), we write 
 

3 3

/3

5 /3 230 0 0 0 0 0 0 0 0 0
3 6 3 486B Ax L

L P L PLy y
EI EI

θ
=

   = = + + + − + − − + + + − = −   
   
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We report that 
214

81A
PL
EIθ =           

217
162D

PL
EIθ =            

323
486B

PLy EI= ↓  
 

 

● Using MoS: The beam in Fig. 3 carries a concentrated moment PL   at C, which is not at the 
end of the beam. Since the table of formulas in Fig. 2 lacks this type of load applied at a point 
other than the end of the simply supported beam, the problem in this example is prevented from 
being solved by the method of superposition and the use of just formulas in Fig. 2. 
 
 

Assessment of effectiveness. In this example, we see that the method of model formulas enables 
one to directly and successfully obtain the solutions. The method of superposition could not be 
employed to solve the problem in this example solely because there are no formulas in Fig. 2 for 
the slope and deflection of a simply supported beam acted on by a concentrated moment at a 
point other than the end of the beam. This shows a downside of the MoS when formulas in the 
list are inadequate. Thus, the MoMF appears to be more general and effective than the MoS. 
 
 
 

Example 2. A cantilever beam AC with constant flexural rigidity EI and total length L is loaded 
with a distributed load of intensity w in segment AB as shown in Fig. 5. Determine (a) the slope 

Aθ  and deflection Ay  at A, (b) the slope Bθ  and deflection By  at B. 
 

 

 
 

Fig. 5.  Cantilever beam AC loaded with a distributed load 
 
 
 

Solution. The beam is statically determinate. Its free-body diagram is shown in Fig. 6. 
 
 

 
 

Fig. 6.  Free-body diagram of the cantilever beam AC 
 
 

● Using MoMF: In applying the method of model formulas to solve the problem, we note that 
the shear force AV  and the bending moment AM  at the free end A, as well as the slope Cθ  and the 
deflection Cy  at the fixed end C, are all zero. Seeing that the uniformly distributed load has 

0wx =  and /2wu L= , we apply the model formulas in Eqs. (3) and (4) to the entire beam to write 
 

3
30 0 0 0 0 0 0 0 0

6 6 2A
Lw wL L

EI EI
θ  = + + − + − − + − + + − 

 
 

4
40 0 0 0 0 0 0 0 0

24 24 2A A
w w LL L L
EI EI

y θ  = + + + − + − − + − + + − 
 

 

 

These two simultaneous equations yield 
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37
48A

wL
EI

θ =                
441

384A
wLy

EI
= −  

 

Using these values and applying the model formulas in Eqs. (1) and (2), respectively, we write 
 

3 3

/2
0 0 0 0 0 0 0 0 0

6 2 8AB x L

w L wLy
EI EI

θ θ
=

 ′= = + + − + − − + + + − = 
 

 

4 4

/2

70 0 0 0 0 0 0 0 0
2 24 2 192AB Ax L

L w L wLy y y
EI EI

θ
=

   = = + + + − + − − + + + − = −   
   

 
 

We report that 
 

37  
48A

wL
EI

θ =            
441

384A
wLy

EI
= ↓           

3

 
8B
wL
EI

θ =            
47

192B
wLy

EI
= ↓  

 
 
 

● Using MoS: For applying the method of superposition and adapting to the formulas in Fig. 2, 
we may turn the original given beam in Fig. 5 about a vertical axis through 180° and note that it 
is equivalent to the superposition (or sum) of two differently loaded beams as shown in Fig. 7. 
 

   

=

    

+

   
 

Fig. 7.  Original given beam is equivalent to the superposition of two beams shown 
 
 

Referring to the formulas for the 3rd beam in Fig. 2 and applying the MoS to the beam, we write 
 

3 3 3( /2) 7
6 6 48A
wL w L wL
EI EI EI

θ = − =           
37  

48A
wL
EI

θ =   
 

4 4 3 4( /2) ( /2) 41
8 8 2 6 384A
wL w L L w L wLy
EI EI EI EI

  
= − + + ⋅ = −  

  
          

441
384A

wLy
EI

= ↓  

 

Referring to the formulas for the 3rd beam in Fig. 2 again, we write 
 

( )4 2 2 36 4
24

wy x L x Lx
EI

δ= − = − + −                  ( )3 2 23 3
6

dy wy x L x Lxdx EI
′ = = − + −  

 

( )
3 3

3 2 2

/2

( /2)3 3
6 6 8B

x L

w w L wLx L x Lx
EI EI EI

θ
=

= − + − + =           
3

 
8B
wL
EI

θ =   
 

( )
4 4

4 2 2 3

/2

( /2) 76 4
24 8 192B

x L

w w L wLy x L x Lx
EI EI EI=

= − + − + = −           
47

192B
wLy

EI
= ↓  

 

 
 

Assessment of effectiveness. In this example, we see that the MoMF enables us to directly and 
successfully obtain the solutions, while the MoS requires some rotations and combinations of 
beams to eventually arrive at the same solutions. The MoMF is more straightforward than the 
MoS; but they are about equally effective in solving the problem in this example. 
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Example 3. A cantilever beam AC with constant flexural rigidity EI and total length 2L is 
propped at A and carries a concentrated moment 0M   at B as shown in Fig. 8. Determine (a) 
the vertical reaction force yA  and slope Aθ  at A, (b) the slope Bθ  and deflection By at B. 
 
 

 
 

Fig. 8.  Cantilever beam AC propped at A and carrying a concentrated moment at B 
 
 
 

Solution. The free-body diagram of the beam is shown in Fig. 9, where we note that the beam is 
statically indeterminate to the first degree. 
 
 

 
 

Fig. 9.  Free-body diagram of the propped cantilever beam AC 
 
 
 

● Using MoMF: In applying the method of model formulas to this beam, we first note that this 
beam has a total length of 2L, which will be the value for the parameter L in all of the model 
formulas in Eqs. (1) through (4). We also note that the deflection Cy  and the slope Cθ  at C, as 
well as the deflection Ay  at A, are all equal to zero. Applying the model formulas in Eqs. (3) and 
(4) to this beam, we write 
 

2
0(2 )0 0 0 (2 ) 0 0 0 0 0 02

y
A

L M L LEI EI
Aθ −= + + − + − − − + + + −  

 

3
20(2 )0 0 (2 ) 0 0 (2 ) 0 0 0 0 0 06 2

y
A

L ML L LEI EI
Aθ −= + + + − + − − − + + + −  

 

These two simultaneous equations yield 
 

09
16y
MA L=           0

8A
M L

EIθ = −  
 

Using these values and applying the model formulas in Eqs. (1) and (2), respectively, we write 
 

2 050 0 0 0 0 0 0 0 02 32
y

AB x L

A M Ly LEI EIθ θ
=

′= = + + − + − − + + + − =  
 

2
3 00 0 0 0 0 0 0 0 0 06 32

y
AB x L

A M Ly y L LEI EIθ
=

= = + + + − + − − + + + − = −  
 

We report that 
 
 

09
16y
M

L= ↑A           0  8A
M L

EIθ =            05
32B
M L

EIθ =            
2

0

32B
M Ly EI= ↓  
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● Using MoS: For applying the method of superposition and adapting to the formulas in Fig. 2, 
we may turn the original given beam in Fig. 8 about a vertical axis through 180° and note that it 
is equivalent to the superposition (or sum) of two differently loaded beams as shown in Fig. 10. 
 

 =   +  

 
 

Fig. 10.  Original given beam is equivalent to the superposition of two beams shown 
 
 

Referring to the formulas for the 1st and 5th beams in Fig. 2, applying the MoS, and imposing the 
boundary condition of zero deflection at A, we write 
 

32
0 0 (2 )

0
2 3

y
A

A LM L M Ly L
EI EI EI

 
= − + ⋅ + = 

 
                   ∴  09

16y
MA L=  

 

2
0 0(2 )

82
y

A
A LM L M L

EIEI EI
θ = − = −  

 

[ ]
22

0 0 03 53(2 ) 326 2
y y

B

x L

A x L AdM L M L M LL x EIEI dx EI EI EI
θ

=

  = − − = − = 
  

 

 

[ ]
32 22 2

0 0 05
3(2 ) 322 6 2 6

y y
B

x L

A x A LM L M L M Ly L x EIEI EI EI EI
=

  = − + − = − + = − 
  

 

We report that 
 

09
16y
M

L= ↑A           0  8A
M L

EIθ =            05
32B
M L

EIθ =            
2

0

32B
M Ly EI= ↓  

 
 

Assessment of effectiveness. In this example, we see that the MoMF enables us to directly and 
successfully obtain the solutions, while the MoS requires some rotations and combinations of 
beams to eventually arrive at the same solutions. The MoMF is more straightforward than the 
MoS; but they are about equally effective in solving the problem in this example. 
 
 
 
 

Example 4. A continuous beam AC with constant flexural rigidity EI and total length 2L has a 
roller support at A, a roller support at B, and a fixed support at C. This beam carries a linearly 
distributed load and is shown in Fig. 11. Determine (a) the vertical reaction force yA  and slope 

Aθ  at A, (b) the vertical reaction force yB  and slope Bθ  at B. 
 
 

 
 

Fig. 11.  Continuous beam AC carrying a linearly distributed load 
 

P
age 22.1380.11



Solution. The free-body diagram of the beam is shown in Fig. 12. We readily note that the beam 
is statically indeterminate to the second degree. 
 

 
 

Fig. 12.  Free-body diagram of the continuous beam AC 
 
 

● Using MoMF: In applying the method of model formulas to this beam, we notice that the 
beam AC has a total length 2L, which will be the value for the parameter L in all model formulas 
in Eqs. (1) through (4). We see that the shear force AV at left end A is equal to yA , the moment 

AM  and deflection Ay  at A are zero, the deflection By  at B is zero, and the slope Cθ  and deflec-
tion Cy  at C are zero. Applying the model formulas in Eqs. (3) and (4) to the beam AC and using 
Eq. (2) to impose the condition that ( ) 0By y L= =  at B, in that order, we write 
 

2
2 3 4

3 4

(2 ) ( )/2 /20 0 (2 ) 0 (2 ) (2 )
2 2 6 24

( )/2       (2 ) (2 ) 0 0
6 24

y y
A

L w w wL L L L
EI EI EI EIL

w w wL L L L
EI EIL

BAθ − −= + + − − + − −

−+ − + − + −
 

3
3 4 5

4 5

( )(2 ) /2/20 0 (2 ) 0 (2 ) 0 (2 ) (2 )6 6 24 120
( )/2(2 ) (2 ) 0 0      24 120

y y
A

L ww wL L L L LEI EI EI EIL
w wwL L L L
EI E

B

IL

Aθ − −= + + + − − + − −

−+ − + − + −
 

3 4 5( )/2 /20 0 0 0 0 0 0 0 0
6 24 120

y
A

w w wL L L L
EI E
A

I EIL
θ −= + + + − + − − + + + −  

These three simultaneous equations yield 
3339 31                    140 140 56y yA

wLwL wLA BEIθ= = − =  
 

Using these values and applying the model formula in Eq. (1), we write 
 

2 3 4

3

( )/2/20 0 0 0 0 0 0
2 6 24

23    1680

y
B x L A

A ww wy L L L
EI EI EI L

wL
EI

θ θ=
−′= = + + − + − − + + + −

=
 

 

We report that 
 

39
140y

wL= ↑A             
33

140A
wL

EIθ =              31
56y
wL= ↑B             

323  1680B
wL

EIθ =   
 
 
 

● Using MoS: For applying the method of superposition and adapting to the formulas in Fig. 2, 
we may turn the original given beam in Fig. 10 about a vertical axis through 180° and note that it 
is equivalent to the superposition (or sum) of six differently loaded beams as shown in Fig. 13. 
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Fig. 13.  Original given beam is equivalent to the superposition of six beams as shown 
 
 

We have assumed that the reactions at A and B are yA ↑  and yB ↑ , respectively. Referring to the 
formulas for the 1st, 2nd, 3rd, and 4th beams in Fig. 2 and applying the MoS, we impose the two 
boundary conditions 0Ay =  at A and 0By =  at B, successively, to write 
 
 

[ ]

4 4 4 3 4 3

3 2

( /2) (2 ) (2 ) ( /2) ( /2)
8 30 8 6 30 24

(2 )
3(2 ) 0

3 6
y y

w L w L wL wL w L w LL L
EI EI EI EI EI EI

A L B L
L L

EI EI

   
− − + + ⋅ + + ⋅   

   

+ + − =

 

and 
 

[ ]

2 2
2 2 3 2 2 3

4 4 32

( /2) 6(2 ) 4(2 ) 10(2 ) 10(2 ) 5(2 )
24 120(2 )

( /2)
3(2 ) 08 30 6 3

y y

x L

x L x L

w x wxx L L x L L x L x x
EI L EI

A xwL w L B LL x
EI EI EI EI

=

= =

   
   − + − − − + −      

   
  + + + − + = 
  

 

 

The above two equations may be simplified and shown to be equivalent to the matrix equation 
 
 

640 200 289
10 4 5

y

y

A wL
B wL
    

=    
    

 
 

Solving the matrix equation, we obtain and report that 
 
 

39
140y

wLA =           39
140y

wL= ↑A                     31
56y
wLB =           31

56y
wL= ↑B  

 
 

Using the obtained values for yA  and yB , referring to the formulas for the 1st, 2nd, 3rd, and 4th 
beams in Fig. 2, and applying the MoS, we write  
 

2 23 3 3 3 3(2 )( /2) (2 ) (2 ) ( /2) 3
1406 24 6 24 2 2

y y
A

A L B Lw L w L wL w L wL
EIEI EI EI EI EI EI

θ = + − − − − = −  

P
age 22.1380.13



 

              

[ ]

2
22

2
3 2 2 3

23 3 2

3

( /2) 6(2 ) 4(2 )
24

       10(2 ) 10(2 ) 5(2 )
120(2 )

( /2)      3(2 )
6 24 6 2

23    1680

B

y y

x L

x L

x L

d w x x L L x
dx EI

d w x L L x L x x
dx L EI

A x B LwL w L d L x
EI EI dx EI EI

wL
EI

θ
=

=

=

 
 = + −  

 

 
 + − + −  

 

  − − − − − 
  

=

 

 
We report that  

33
140A

wL
EIθ =            

323  1680B
wL

EIθ =   

 
 
 

Assessment of effectiveness. In this example, we see that the method of model formulas enables 
us to directly and successfully obtain the solutions, while the method of superposition requires 
some rotations and combinations of beams to eventually arrive at the same solutions. For the 
problem in this example, the road to the final solution is more straightforward when we use the 
MoMF, but it is more meandering and complex when we use the MoS. Clearly, the MoMF is 
more effective and has an edge over the MoS in this case. 
 
 
III.  Effective Teaching of the MoMF 
 
The method of model formulas is a general methodology that employs a set of four equations to 
serve as model formulas in solving problems involving statically indeterminate reactions, as well 
as slopes and deflections, of elastic beams. The first two model formulas are for the slope and 
deflection at any position x of the beam and contain rudimentary singularity functions, while the 
other two model formulas contain only traditional algebraic expressions. Generally, this method 
is more direct in solving beam deflection problems. Most students favor this method because 
they can solve problems in shorter time using this method and they score higher in tests. 
 
The examples in Section II provide a variety of head-to-head comparisons between solutions by 
the method of model formulas and those by the traditional method of superposition. A one-page 
excerpt from the method of model formulas, such as that shown in Fig. 1, must be available to 
those who used this method. Past experience shows that the following steps form a pedagogy that 
can be used to effectively introduce and teach the method of model formulas to students to enrich 
their study and set of skills in finding statically indeterminate reactions and deflections of elastic 
beams in the undergraduate course of Mechanics of Materials: 
 

■ First, teach the fundamental method of integration and the imposition of boundary conditions. 
■ Teach the rudiments of singularity functions and utilize them in the method of integration. 
■ Go over briefly the derivation1 of the four model formulas in terms of singularity functions. 
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■ Give students the heads-up on the following features in the method of model formulas: 
 ○ No need to integrate or evaluate constants of integration. 
 ○ Not prone to generate a large number of simultaneous equations even if 

 the beam carries multiple concentrated loads (forces or moments), 
 the beam has one or more simple supports not at its ends, 
 the beam has linearly distributed loads not starting at its left end,  
 the beam has linearly distributed loads not ending at its right end, and 
 the beam has non-uniform flexural rigidity but can be divided into uniform segments. 

■ Demonstrate solutions of several beam problems by the method of model formulas. 
■ Check the solutions obtained (e.g., comparing with solutions by another method). 
 

 
In a 92-student Mechanics of Materials class (for sophomores and juniors) in the spring semester 
of 2010, the students were first taught the method of integration (MoI), then the method of model 
formulas (MoMF) in the study of deflection of beams. Based on available data: (a) when the 
students learn and use the MoI to solve statically indeterminate reactions and deflections of 
beams in a quiz, the results of their performance were 12 A’s, 23 B’s, 27 C’s, 12 D’s, and 18 F’s, 
with overall class average equal to 69.1%; (b) when these same students learn and use the 
MoMF to solve statically indeterminate reactions and deflections of beams in a quiz, the results 
of their performance were 35 A’s, 18 B’s, 20 C’s, 10 D’s, and 9 F’s, with overall class average 
equal to 79.7%. The grade distributions for these two quizzes are show in Fig. 14. The MoMF 
has appeared to be a more accessible method to the students in understanding the deflection of 
beams, and students favor this method in solving the problems. 
 
 
 

                          
 
 

                     (a) Quiz result on using MoI                  (b) Quiz result on using MoMF 
                           (overall average = 69.1%)                              (overall average = 79.7%) 
 
 

Fig. 14. Students’ performance in using MoMF 
 
 
IV.  Concluding Remarks 
 
In the method of model formulas, no explicit integration or differentiation is involved in applying 
any of the model formulas. The model formulas essentially serve to provide material equations 
(which involve and reflect the material property) besides the equations of static equilibrium of 
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the beam that can readily be written. Selected model applied loads are illustrated in Fig. 1(a), 
which cover most of the loads encountered in undergraduate Mechanics of Materials. In the case 
of a nonlinearly distributed load on the beam, the model formulas may be modified by the user 
for such a load. 
 
The method of model formulas is relatively new; it is best taught to students as an additional or 
alternative method after they have first learned the method of integration.2-13 This new method is 
found to be more general and effective than the traditional method of superposition, as shown in 
Section II. Learning and using this new method will enrich students’ study and set of skills in 
determining reactions and deflections of beams. Moreover, this new method provides engineers 
with a means to independently check their solutions obtained using traditional methods. 
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