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Abstract 

Software systems analysis, design, and construction are tacit activities. As any large software 

system is developed, the engineers involved in the development activity learn as they go about 

what it is they are building. Previous experience helps in getting the job done; however, 

technology, tools, and end user desires change so rapidly that a project may transform several 

times during the course of system development. Students who gravitate toward the field of 

software engineering seem to be drawn to it because they enjoy completing ambiguous tasks 

requiring knowledge gained through the engineering experience. These students are also often 

drawn to multiplayer on-line role playing games (MMORPG). The nature of the knowledge 

workforce is changing based on “millenials” entering college and their habits related to playing 

Internet based games
1

. According to a Pew Research study, game playing is ubiquitous among 

American teenagers. Fully 99% of boys and 94% of girls between the ages of 12 and 17 report 

playing video games.
2
  This population is entering universities bringing Internet-based learning 

styles and experience into a lecture-based learning environment. Standard lecture style teaching 

methods do not match the tacit work environment required of software engineering 

professionals. This paper explores the application of MMORPG scoring techniques to course 

topic introduction, curriculum flow, and grading for a year long, project based, software 

engineering technology capstone course offered in the junior year.  Students are formed into 

teams of three or four; then they are set free to discover information about the “tasks.” These 

“tasks,” if completed correctly, will gain them the ultimate position of “Lead Software 

Engineering Architect”. Students are involved in a yearlong odyssey targeted at large scale 

software project management and self discovery of techniques required to build a successful 

system. The paper discusses incoming student demographics, course structure, use of  knowledge 

gold and experience points as incentives, project approach, and outcome of this curriculum 

management model. A method for assessing student learning is discussed along with results. 

Student attitudes and thoughts are also explored. 

Program Overview 

The Computer Systems Engineering Technology department of Oregon Institute of Technology 

offers a four year Bachelor of Science degree in Software Engineering Technology. Oregon 

Institute of Technology is accredited through the Northwest Association of Schools and Colleges 

(NWASC). The Software Engineering Technology degree is accredited through the Accrediting 

Board for Engineering and Technology (ABET).  

The Software Engineering Technology program currently has approximately 100 students 

enrolled in the four years. The program draws students directly out of high school. Students 

normally have exposure to computer programming and a high level of interest in becoming 

“programmers”. Students who gravitate towared the technical program offered at Oregon 

Institute of Technology over computer science degrees offered at larger state universities are 

interested in hands-on activities in a highly interactive environment. By the end of the second 
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year, students are well versed in programming skills, so there is a need to redirect 

“programming” ideas toward interest in becoming “software engineers”. The third year of the 

Software Engineering Technology program focuses on systems analysis, design, construction, 

deployment, testing, and quality assurance. The core of this activity is a three term course 

sequence encompassing team based construction of a real-world enterprise scale system. The 

projects are based on problems derived from on campus research projects or industry partners.  

Course Modification Motivation 

Over the past eight years, student motivation and satisfaction with the three term, project based, 

software engineering course has steadily declined. Low student motivation was making it more 

difficult to achieve key learning goals. According to recent assessments by the Junior Project 

sequence instructor, the course material was no longer effective to the extent it had been when 

first introduced. Student behavior changed, and the experience level of those students entering 

their junior year also changed. These factors prompted the following questions:  

 What do these students do well as they enter their junior year?  

 What activity will engage the current student population in light of the weakening effect 

of standard lecture, example, and exercise? 

In an attempt to answer these questions, an informal questionnaire was passed to the junior class 

finishing the course sequence in June, 2010. The one component consistent with the student 

population was experience with on-line role playing games. Jane McGonigal has cited these 

statistics (TED talk, Feb 2010): 

 3 billion hours a week are spent by people playing online games. 

 As of Spring, 2010, the U. S. population has spent 5.93 million man years playing World 

of Warcraft. 

 By age 21, the average person will have spent 10,000 hours playing on-line games. 

 For the average child in the United States, 10,080 hours is the cumulative amount of time 

spent in school from 5
th

 grade till high school graduation assuming perfect attendance. 

 According to Malcom Gladwell’s book, Outlyer, any individual spending 10,000 hours at 

an endeavor by age 21 will be a virtuoso at that endeavor.
3
 

The current Internet enabled technical environment is raising a generation of Virtuoso gamers. 

How can this talent be captured to obtain a useful outcome? In universities, it is widely accepted 

that much learning occurs outside the classroom, but universities have no coherent gaming the 

system strategy for leveraging that edge activity
4
.  

 

To gain some insight on the current software engineering technology junior class and how 

applicable the above statistics are to the population under consideration, a survey was given. The 

results were: 
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 95%, of the students either currently spend time playing MMORPG or have had 

experience in the past playing MMORPG.  

 85% of those students surveyed currently enjoy these activities and will spend a large 

amount of their leisure time engaged in playing MMORPG. 

 95% of the students said they learn best from a high level of trial and error rather than 

reading, exercises, and application of theory. 

With this information in hand, a re-structuring of the Junior Project course sequence was started. 

The idea was to provide the standard software engineering curriculum with a MMORPG gaming 

twist. The software engineering activities did not involve virtual worlds, and support for such an 

environment was out of reach of the researchers. The scoring mechanism was, however, 

relatively easy to emulate and adaptable to standard percentage scale grading. Adaptation was 

done in a sequencing of information introduction and designing point accumulation where 

discovery, trial and error, and continuous feedback on task outcome were the goals. Each step 

along the way involves the following components of MMORPG 

o farming gold,  

o buying tools,  

o researching tasks, and  

o overcoming monsters. 

 

The goal is the Epic Win at the end of the year where the fully developed system is deployed to 

the end customer. 

Junior Project Course Sequence Educational Objectives 

The Junior Project course sequence is the first exposure for most software engineering 

technology students to large scale software engineering problems. Topics include software 

engineering process, scheduling, architecture, and teamwork. This is also the first time students 

work on a project spanning multiple quarters. In some instances, projects are a continuation from 

a previous year team effort.  The junior project is a required sequence and must be completed in 

a single year. Once a project is started, the teams remain consistent throughout the year. The 

sequence is split up based on quarters with specific outcomes identified for each quarter. 

First Quarter – Software Process Management 

1. Describe and contrast different software engineering process models including the iterative 

process used in this class. 

2. Understand the benefits and problems of teaming, describing qualities and processes of 

effective teams, and describing the role of teamwork in system design. 

3. Describe and contrast potential project organizations and the team member roles within those 

organizations. 

4. Create a Team Charter to articulate how the team will track, manage and communicate 

project progress, changes in scope, changes in design, and defects. 

5. Assess risk, probability of the risk, triggers and formulate contingency plans. 
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6. Construct a statement of work with appropriate acceptance criteria. 

7. Describe the relationship between Testing and Quality Assurance. 

8. Describe the Quality assurance practices appropriate for each part of the development life 

cycle. 

9. Create user based requirements and engineering requirements. 

10. Describe traceability and be able to map a requirement through all project artifacts. 

11. Describe different modeling techniques and where they apply. 

12. Describe the different architectural views and assign them to parts of the life-cycle. 

13. Asses risk and develop risk management plans. 

Second Quarter – JP I 

1. Use case modeling to refine requirements. 

2. Create a use case specification including steps and scenarios. 

3. Derive sequence models from use case scenarios. 

4. Create initial class models from sequence diagrams, requirements and uses cases. 

5. Describe the roles of team members including the Team Leader and Quality Assurance 

Manager. 

6. Describe the role of functional analysis in use case analysis and requirements gathering and 

refinement. 

7. Understand the role of the low fidelity User interface in the software development life-cycle. 

8. Develop a project schedule including refining estimates and allocating resources.  

9. Manage the project including collecting status, analyzing variances, planning and taking 

adaptive action and reporting status. 

 

Third Quarter – JP II 

1. Management of requirements and understand the importance of requirements in a large scale 

software project. 

2. Use case analysis and understanding its place in the software development lifecycle. 

3. Understanding of software development event sequences and how they fit in the software 

development lifecycle. 

4. Application of class modeling and understand how it fits into the software development 

lifecycle. 

5. Application of software system development task scheduling and development estimates.  

6. Application of software development implementation (writing code) and understanding how 

it fits into the software development lifecycle. 

7. Use of software system requirements and the mapping of those requirements into the 

software development lifecycle for effective impact analysis for change control. 

 

MMORPG Course Elements 
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The goal of the course modification is to draw students into course material through application 

of scoring and organization of activities similar to ideas used in MMORPG. The following ten 

elements are considered the ingredients for any successful game
5
. 

1. Avatars 

2. Three dimensional environment 

3. Narrative Context (Epic Story) 

4. Feedback 

5. Reputations, Rank, and Levels 

6. Marketplaces and Economies 

7. Competition under explicit and enforced rules 

8. Teams 

9. Parallel Communication Systems 

10. Time Pressure 

The challenge is to adapt these elements to a standard three term, project based course. Items 1, 

2, and 9 were of no consequence since the course is not being taught under any virtual gaming 

environment. Items 3 – 8 and 10 are directly supported through the structure of the course. 

Narrative Context 

Students were given a “first day on the job” lecture where the environment in which they would 

be working was explained. The projects were introduced, each project with a story behind the 

idea and a presented use scenario. 

Feedback 

There is no limit to the number of times a student could attempt completion of a task and submit 

the related deliverable for feedback. Each time a team or students submit a project artifact for 

points, comments are made on the artifact explaining how it can be improved. 

Reputations, Rank and Levels 

A leader board was maintained throughout the year showing the top three teams. This is a point 

of competition for team pride. The project is divided into levels so as a team progresses in 

implementation of the project, the team will advance to the next level. Each new level presents 

more complicated and difficult tasks as well as challenge tasks that bring external elements into 

the course content. 

Marketplace and Economies 

Individual students and teams were required to purchase tools from a virtual marketplace for use 

in completion of tasks. At each level, the marketplace is updated with additional tools that teams 

will require to complete the tasks related to the level. These tools required earning and then 

spending virtual gold. Teams also bartered tools and services, using the virtual gold as a 

currency. Projects were auctioned off where bidding was done in earned virtual gold. 
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Competition under explicit and enforced rules 

Competition is enforced through the use of Experience Points as a measure of how well a team is 

doing, with the allocation of those experience points based on task performance. Technical 

challenges were set up in which teams compete. Rules govern team member behavior with 

specific consequences described for breaking course rules.     

Teams 

By nature of the class, students were assigned project teams for completion of their project. 

Project scope is larger than what most individual students could complete in a single academic 

year. Task size requires projects to be divided among team members and teams to coordinate for 

effective project integration and deployment. 

Time Pressure 

The three term course sequence establishes a three term deadline. Twice each quarter, individual 

students are presented with an assessment of how well they are doing in experience points as 

related to course outcome expectations. Each challenge task had a time limit for task engagement 

and task completion. 

Level Definitions 

The sequence objectives was spread throughout the three term sequence and presented in a 

sequential manner such that useful work could be done in completion of the final assigned 

project. The division was also done so students gained required skills for level completion as 

they progress through the sequence of levels. To define tasks for the sequential levels, topics and 

deliverables from previous years courses were sequenced and grouped based on key milestones 

in project development lifecycle. Each group of tasks and associated deliverable artifact was 

assigned a name to represent the level of experience required to take on the tasks. There is no 

sequencing of tasks within a level. Levels must be completed sequentially. 

These groups were: 

Level Name Tasks 

Novice Coder 1. Reading of Brooks, The Mythical Man Month and summarizing articles. 

2. Reading of Martin, Agile Software Development and summarizing 

articles. 

3. Structuring a development team and creating a team charter. 

4. Bidding on a project to be worked on for the school year. 

5. Researching offered projects to gain an understanding of potential 

systems to be built over the course of the year. Choosing a project to 

work on. 

6. Gathering and cataloging system functional and non functional 

requirements. 

7. Creation of an initial user interface prototype. 

8. Generation of bi-weekly status reports. 
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Requirements 

Engineer 

1. Researching and writing a system business case. 

2. Building of a functional architecture description and UML model. 

3. Creation of an initial Gantt chart for project management. 

4. Definition of a software development process the development will 

attempt to follow throughout the development lifecycle for the system. 

5. Creation of an enterprise level database for their system including defeat 

of the “Database Ogre”. 

6. Bi-weekly status report and Gantt chart update. 

7. System demonstrations. 

8. Technology demonstrations. 

Systems 

Analyst 

1. Use Case Specifications 

2. Use Case Architecture Model and Model Description. 

3. Early class model and logical architecture. 

4. Requirements specification and defeat of the “Specification Sorceress”. 

5. Architectural Prototype presentation. 

6. Requirements to Use Case map. 

7. Bi-weekly status reports and Gantt chart update. 

8. System demonstrations. 

9. Technology demonstrations. 

Software 

Designer 

1. Use Case Model with complete associated sequence diagrams. 

2. Logical architecture and description. 

3. CRUD matrix. 

4. Refined class models and descriptions. 

5. Business case refinement and defeat of the “Business Troll”. 

6. System design presentation. 

7. Bi-weekly status reports and Gantt chart update. 

Software 

Architect 

1. Refined class models with high and medium level priority requirements 

coverage. 

2. Refined user interface and underlying implementation. 

3. Initial component model. 

4. Outsourcing exercise. 

5. Initial deployed component artifacts based on defined interfaces. 

6. Operational tests for deployed component artifacts and defeat of the 

“Test Dragon”. 

7. Component and test demonstration presentation. 

Systems 

Architect 

1. Completed class models and descriptions. 

2. Refined component model with exposed interface dependencies. 

3. Physical model and description. 

4. Deployment description. 

5. Alpha release deliverable - executable, installation scripts, and 

installation manual. 

6. Alpha release test definitions, scripts, and execution. 

7. Alpha release presentation and defeat of the “Presentation Boss”. 

8. Alpha release test completed and returned – done by a different team. 

Software 

Engineer 

1. Completed component model. 

2. Alpha release cycle test results fixed and documented. 
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3. Beta release deliverable - executable, installation scripts, and installation 

manual. 

4. Beta release test definitions, scripts, and execution. 

5. Beta release presentation. 

6. Beta release test completed and returned – done by a different team. 

7. Beta bugs fixed. 

8. Final release done and defeat of the “Challenge of Final Doom”. 

 

The levels and associated tasks are introduced when a team levels up. The intent is to allow for a 

sense of discovery as the students work through tasks, revealing more information as they 

complete tasks. 

Challenge tasks involve a professor and task external to the topics being directly addressed in the 

course but integral to successful project completion. These tasks are drawn from support topics 

directly related to the tasks in the level at which a team is currently working. For instance, all 

students, by the second term of the three term sequence, are either taking or have taken, technical 

report writing. The challenge related to technical report writing is to present their system 

specification to a specific writing professor for evaluation. The writing professor is instructed to 

be “brutal” in their assessment. The team must satisfy the writing professor in order to complete 

the challenge. The challenge tasks involved: 

1. Database definition and implementation. 

2. Software requirements specification technical writing 

3. Business case definition and presentation 

4. System test definition and execution 

5. Public speaking and presentation 

Experience Points and Knowledge Gold  

The levels, tasks, and interaction of the course are supported by the use of experience points and 

knowledge gold. Experience points are used to gauge team and individual performance 

throughout the course sequence. Experience points ultimately translate into a grade at the end of 

the year. Knowledge gold is used for “purchase” of tools and exchange of services between 

teams. Both experience points and knowledge gold have rules that govern their acquisition and 

exchange. 

Knowledge Gold 

The course currency is called Knowledge Gold (KG). The following rules govern the use of 

currency in the three term sequence: 

1. All students start with 0 KG at the beginning of the year. 

2. KG is tracked by the instructor for each individual in the course. It is the student 

responsibility to make sure KG credit is properly recorded. 
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3. KG will be retained across quarters. 

4. KG may be obtained by: 

a. Completing tasks as stipulated by the instructor. 

b. Asking good questions. 

c. Chapter write-ups. 

d. Research into a technical area related the course topics or topics directly related to 

a student’s project. 

e. Productive feedback or thoughtful reflection about the course and process. 

f. Any other tasks that the instructor deems worthy. 

5. KG may be lost by: 

a. Coming in late to class. 

b. Showing up late for or missing scheduled presentations. 

c. Being rude. 

d. Any other thing the instructor deems worthy of penalizing with a loss. 

6. KG can be traded to other members of the class. All trade must be accompanied by a 

formal contract, signed by both parties, and then a copy given to the instructor.  

Examples exchanges include: 

a. Tasks such as programming or other project based help. 

b. Use of tools not possessed by the individual or group. 

c. Exchange of tools or other desirable items. 

Experience Points 

Experience Points (EPs) are awarded to individuals based on tasks completed toward the sound 

engineering of a software system. Team experience is the sum of the experience points possessed 

by all individuals on the team. As a team moves through the technical environment of the 

software development levels, it will obtain experience points by completing tasks from the level. 

The following rules govern the assignment and management of EPs: 

1. The course instructor will track the experience points gained by individuals on a team for 

tasks completed. 

2. It is up to teams and individuals to make sure EP accounting is correct for their cases. 

3. EPs will be accumulated throughout the three term sequence. Grades will be assigned at 

the end of Spring term based on percentage of total available EPs for the year. 

4. When a task or set of tasks is presented, the associated experience points will be shown 

for each task. 

5. Some tasks are recurring; some are one time. Recurring tasks can be completed 

throughout the year; however, as a team moves up in levels, some of these recurring tasks 

will lose value in both awarded KG and EPs. 

6. The amount of EPs awarded to the completion of a task is determined by the instructor at 

the time of evaluating the artifacts resulting from the task. 

7. The team can choose how to divide awarded EPs among themselves. This must be 

communicated to the instructor at the time of EP recording. Conflicts will be mediated by 

the instructor. The decision of the instructor on these matters is binding and will not be 

further disputed. 
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8. If a team does a particularly bad job at completing a task, the instructor has the option to 

level the team down by stripping EPs from the team individuals. If this is done, the team 

must re-visit tasks completed in the new lower level to gain enough EPs to level back up. 

Course Event Sequencing 

At the start of the first term, the class was allowed to self form into student teams of three or four 

individuals. These teams remained consistent throughout the year. Team formation was done in 

the first week of the first term. Teams were then presented with a list of team roles. These were: 

team lead, technical lead, quality assurance lead, and lead programmer. Each team was required 

to submit a paper indicating what students were being assigned to which role. Teams were also 

required to come up with a team name and a slogan.  

The projects were introduced in the second week of the first term. Students were informed they 

were all at the Novice Coder level. Project possibilities were presented allowing teams to discuss 

and barter for project topics. Bartering was done by exchanging Knowledge Gold for alliance 

during the bidding process. During the first three weeks, students were “farming gold” in 

anticipation of the project auction. This was a period of accelerated reading and writing. 

In the third week of the first term, projects were auctioned off for knowledge gold. Once teams 

obtained their official project, work began in earnest. Teams that had started work on a project, 

yet did not obtain the specific project in the auction, sold their work to the winning team for 

knowledge gold. At this point in the first term, students were required to drive the sequencing of 

the course by requesting lecture topics revolving around required level tasks. Students also 

scheduled both individual and team based presentations. For any scheduled presentation outside 

required level presentations, a team was given knowledge gold and experience points. Once this 

position of the course was reached, the teams work level drove course topic sequencing. 

Leveling up 

Leveling up is the process of gaining enough skills through successful completion of a defined 

set of tasks to be presented a new set of tasks requiring more refined and new software 

engineering skills. The goal is to never present a task greater than what the students can achieve.  

Leveling is the act of moving from one experience level to the next. As a team moves up in 

levels, they will be presented with more difficult tasks related to the project they are working on. 

Each task relates to a different part of software development and engineering. Rules applied to 

leveling are: 

1. A team must gain a specific level of experience points and complete all current level 

tasks in order to "level-up" to the next level of difficulty.  

2. The experience points for leveling requirements will be calculated as an accumulation of 

experience points of all team members.  

3. A team can only gain points for tasks at their current level or the levels below. 
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4. Levels will not be revealed before being achieved by a team. 

5. The first team to level up will reveal the next level to the rest of the class. 

6. The first team to level up will receive a bonus, determined at the time of leveling up by 

the instructor. 

7. Tasks and tools will accompany the experience point level of the team. As a team levels 

up, they will receive the tasks for the higher level. Tools will be made available for 

purchase for the new level. 

8. All tasks and tools from lower levels will be available at higher levels. Some tasks are 

recurring, and Experience Points and Knowledge Gold can be continuously garnered 

from these tasks. 

9. It is possible for an individual or team to level down if their performance on a task related 

to the their level is particularly bad. When this happens, the team individuals will lose 

EPs that place them in the lower level. 

10. A team will only level up if their total accumulation of experience points is at the 60% 

level of all available accumulated experience points for their level. If a team is not at the 

required accumulation of experience points, they will be required to either do additional 

tasks or re-work some of the level tasks where they performed less than optimal. 

11. Level based presentations can be done only once. 

MMORPG Course Grading 

Grading of the course is based on percentage of experience points and all required deliverables 

obtainable at the level of Software Engineer. During the first two terms, all students in the course 

were given an in-progress grade. At the end of the third term, 90% or above of obtainable 

experience points is equivalent to an A, 80 – 89% of obtainable experience points is equivalent 

to a B, 70 – 79% of obtainable experience points is equivalent to a C, 60 – 69% of obtainable 

experience points is equivalent to a D, and below 59% is an equivalent F. The grading for this 

course is high stakes for the students since the grade received will represent three courses and a 

grade of a D or an F will require the student to take the entire sequence over. 

Each deliverable in the sequence of tasks is graded by the instructor. Points are assigned to each 

deliverable artifact by use of a scoring rubric. Students are given the scoring rubric when they 

obtain the level. Each time a team turns in a set of artifacts for a task, the artifacts are scored and 

the completed rubric is returned to the team.  The team can then choose to work further on the 

task and re-submit the artifacts, or it they can choose to accept the score and move on to another 

task. 

Presentations are graded by the class and instructor as a whole based on a grading rubric. The 

presentation rubric is distributed when a team levels up to a level with a formalized presentation. 

Each student in the course is required to attend a scheduled formal presentation. Excuses must be 

cleared prior to the day of the presentation. During the presentation, students, instructor, and any 
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interested visitors use the provided rubric to score the presentation. The scores are then averaged 

with the instructor and any special visitor scores given more weight than the student scores. 

Project Definitions for the 2010-2011 Academic Year 

Projects were defined by the course instructor. In all cases, the projects are real-world, cross-

discipline projects where project completion will result in system deployment and use by the 

project sponsoring client. This gives the project a real-life stake holder with keen interest in 

project success. All projects have enterprise level components. 

Robot Navigation – Manufacturing Robotics 

In a robotics-based manufacturing environment, a manufacturing floor will be split up into areas 

of robotics activities called work cells. A robotics work cell is a grouping of robots that are 

tasked with creation of a particular part of an end product. To affect full product assembly, work 

cells need to be fed incoming parts for use in assembly, and completed parts need to be taken 

away. To supply work cells and remove completed assemblies from work cells, a robot will 

move parts between areas of the manufacturing floor. This project involves interfacing of a robot 

with a ceiling mounted camera for the purpose of navigating a parts delivery robot around on a 

manufacturing floor. This project will involve: 

 Image acquisition and processing from a digital camera. 

 Path finding from the imaging system. 

 Robot programming for navigation on a shop floor. 

 Robot building and possible augmentation. 

 Potential embedded system programming. 

 Client/Server wireless communication 

 

Electric Vehicle Data Telemetry and Tracking 

An electric vehicle company is working with the Junior Project class on a project for data 

acquisition and dissemination from the electric delivery truck being built for initial sale in the 

Brazilian market. The system being created is a remote telemetry system based on CDMA or 

GSM cellular technologies. The system will interface with vehicle sensors and the control 

system. The overall goal of the system is to acquire real-time data from the vehicle as it travels. 

The data stream will then be sent to a centralized web site where it will be displayed and 

archived for later analysis. This project will involve the following: 

 Interfacing with a real-time control system. 

 Data acquisition, processing, and streaming through a wireless network. 

 The design and implementation of web technologies for display and end user analysis of 

the data. 

 Use of GPS technologies for vehicle location tracking. 

 

Catheter Lab Simulation 
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A Cath is a “catheter” used for interventional radiology for treatment of cardiac emergencies. 

The catheter is directed through an artery to a region of interest to deliver medicine for relief of 

clogged arteries.  The Cath Lab at our university has a camera and workstation to act as a “C 

Arm” or “U Arm”. The project is to build software and adapt an X, Y, Z accelerometer to the 

camera for to simulation of the Cath Lab procedure behavior.  This also requires the application 

of a foot pedal to initiate image playback. The project will require the following: 

 Interfacing to a real-time accelerometer. 

 Real-time image capture, manipulation, and playback from a digital camera. 

 JPG image capture, manipulation, display and storage. 

 DICOM image capture, manipulation, display and storage. 

 Touch screen tablet interface. 

 

Batch DICOM Image Writer 

Medical Imaging creates large volumes of digital images. These images are stored in a 

centralized database called a Picture Archival Communication System (PACS). The medical 

imaging department has purchased a DVD batch writer. Currently there are no inexpensive tools 

allowing the retrieval of DICOM based images from a PACS system, viewing and manipulation 

of those images, addition of annotation, then writing of the images onto a DVD in DICOM 

standard format. This project will involve: 

 Creation of a DICOM viewer for acquiring images from the OIT PACS and displaying 

those images in a UI. 

 Allowing annotation to be added to the images in the viewer. 

 Writing the images to a DVD in DICOM standard Part 10 format. 

 

Tracking Robot 

Last year, progress was made on a robot intended to act as a "watch dog" where the robot would 

sit idle in a room. Upon sensing some disturbance in the room, the robot would enter a search 

mode, looking for some individual to acquire as a target. Upon acquiring the target, the robot is 

to follow the target and take pictures, sending those pictures to a web server. The current robot 

will acquire a target but not track it. To track a target, the Hume tracking algorithm must be 

implemented. This project will involve: 

 Refinement of an existing robotics platform. 

 Application of numerical analysis constructs. 

 Use of Microsoft Robotics Studio (MSRS) to create services 

 

MMORPG Course Assessment 

End results of the course were mixed. There were positive and negative aspects of student 

engagement. Overall, the outcome was similar to that of the course as done in a standard 

lecture/lab venue where tasks were hard scheduled and dates were set. Students gained 

experience and knowledge as required by the three term sequence. Students generally maintained 
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a higher level of interest in course activities, but it was easier to “lose the group” during times of 

high external commitment (such as midterms) or times of low perceived activity. A summary 

comparison is offered in Table 1. Comparative analysis is based on the previous year software 

engineering sequence as compared to the sequence offered under the MMORPG grading model. 

Table 1 – Comparison of course outcomes form standard grading vs. MMORPG style grading. 

 Standard Lecture/Lab 

Sequencing 

MMORPG Style Sequencing 

Student Attitude Students typically complain about 

the heavy workload related to 

leaning a new set of theories and 

skills combined with the necessity 

of practicing and producing a 

working product. 

Students did not recognize the 

workload as being excessive and 

retained a positive attitude 

throughout the sequence. Students 

felt they could better control the 

work load to meet demands of other 

courses. 

Group Dynamics Dysfunctional groups typically 

emerge toward the end of the 

second term of the three term 

sequence. At this point, problems 

are so engrained in group 

dynamics that recover and success 

is difficult. 

Group problems came to the surface 

early in the sequence. This allowed 

groups to address issues and develop 

good working relationships. 

Problems addressed early did not 

come up again. 

Group Performance Poorly performing groups 

remained poor. The specific 

deadlines caused early 

demoralization in groups with 

trouble in working relationships. 

Low performing groups maintained 

the ability to advance and did. In the 

first year of this style grading, two of 

three low performing groups 

transformed themselves into mid 

level and high performers after 

overcoming rocky beginnings. These 

groups accelerated at the middle of 

the second term and continued 

positive advancement. 

Reading ~50% of the students would read 

100% of the assigned reading. No 

students read beyond assigned 

reading in software engineering. 

~ 10% of the students extended their 

reading on software engineering to 

include current BLOGs. 

~15% read far more than the 

suggested reading. 

~35% read at the same as the 

standard course. 

~30% read below the suggested 

reading. 

~10% did no assigned reading at all. 

Writing ~40% of students wrote the 

assigned number of essays on 

software engineering. 

~45% of students wrote more than 

the standard assigned number of 

software engineering essays. 
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~50% of students wrote below the 

assigned number of essays on 

software engineering. 

~10% of students turned in no 

writing at all. 

~50% of students showed 

noticeable increase in technical 

writing proficiency during the 

three term sequence. 

~20% of students wrote the standard 

assigned number of software 

engineering essays. 

~35% of students wrote less than the 

standard assigned number of 

software essays. 

~75% of students showed noticeable 

increase in technical writing 

proficiency during the three term 

sequence. 

Work Artifact 

Quality 

Work quality typically reflected 

the desired grade of the students. 

Quality was consistent throughout 

the three term sequence. 

Work quality was consistently high 

for students in high performing 

groups. Mid level performing groups 

would have varying levels of work 

quality dependent on interest in 

gaining an edge on competing 

groups. Some of the highest quality 

work was produced by mid level 

performing groups. 

Internalizing of 

Material 

Material presented early was 

typically forgotten by the end of 

the three term sequence. Students 

tended to attempt rote 

memorization of terminology and 

concepts specific to scheduled 

activities and deliverable project 

artifacts. 

Material presented early in the three 

term sequence was well understood 

by the end of the year. The later the 

topics were introduced, the less 

students seemed to have software 

engineering concepts at direct recall 

when interviewed. 

Skill Attainment Students gained satisfactory skills 

for advancement to the senior 

project sequence. Very few 

students would stand out of the 

crowd. 

Attainment of skills related to items 

introduced early was very high. 

Skills related to items introduced 

later in the sequence was lower; 

however, still deemed acceptable for 

entry into the senior project 

sequence. 

 

Negative Outcome 

Keeping track of knowledge gold and experience points proved to be a challenge. Students ended 

up submitting more work for review, then re-submitting to gain more points and gold. This 

required a careful consideration of how many points they had previously received for a particular 

artifact and how much the modification was worth. The correlation of knowledge gold and 

experience points also required careful attention. 

Students were constantly “gaming the system”, finding loopholes in rules for task completion, 

task scoring, and resource exchange. This required constant vigilance over how the class was 

intermingling and trying to uncover areas of problem before teams discovered and exploited the 
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loopholes for their benefit. Although increased student involvement is a good outcome, in this 

case, the involvement was directed at a tangential artifact of the grading system. Energy spent 

here was negatively traded for time on required software engineering knowledge and skills. 

The instructor is required to manage a small economy where activity in the class is dependent on 

the health of the course economy. This requires understanding of the use of knowledge gold and 

experience points for the purpose of applying incentives to get the student to perform work 

toward the end goal of the project. This management job turned out to be time consuming. 

Course economic incentives were constantly being adjusted. Each time an adjustment was made, 

students had to be informed, and the class website needed to be adjusted. 

By the end of the first term, low performing teams were far behind the high performers. This 

made low performers get course topics introduced long before they were ready to apply the 

knowledge. This gap increased over time increasing difficulty for low performers. At the end of 

the second term, despite constant help sessions, the lowest performing teams had fallen so far 

behind there was no hope in completion of required tasks. Ultimately, one team had to be 

removed from the MMORPG system in an attempt to get these students the required course 

content before the end of the year. 

Positive Outcome 

The structure of the grading system seemed to remove the stigma of doing things wrong, then 

asking how to do them correctly. Several key concepts in software engineering were visited 

throughout the three term sequence based on desires of students during directed discussions. 

Students would request lecture on topics when relevant to their projects, thus forcing repetition 

and different viewpoints for other course participants. Students never complained about topic 

repetition. The requesting teams’ questions seemed to bring relevance to other teams. 

It became apparent early in the three term sequence which teams were going to perform well and 

which teams were going to have trouble. This made it possible to target the poorly performing 

teams to try to get work up to an acceptable level. More importantly, it became apparent to the 

teams themselves which team members were not going to perform to the level expected by the 

team. This spurred teams to come to the course instructor early for advice on dealing with these 

problems. 

On the whole, students spent more time reading required texts and writing summaries of chapters 

and articles in the texts. This is largely due to the use of these activities to bolster an individual 

and team’s accumulation of experience points and knowledge gold. The reading of articles and 

writing of synopsis was seen as “farming gold” by the student population. Students also showed 

a higher level of motivation in the understanding of reading material and the application of the 

concepts in the reading material to the project with which the team was working. Several 

students remarked on how much they enjoyed the articles in The Mythical Man Month by Fred 
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Brooks.  Even though this is essential reading for software engineering students, it is the first 

time students have openly stated their appreciation of this reading. 

The general attitude of students toward the topics presented in the course sequence was much 

more positive than in the past. Students were not being forced to complete tasks that they did not 

see as beneficial to their understanding of software engineering; they were allowed to request 

information when they saw it necessary for completion of tasks they had chosen to take on. This 

difference in approach made the curriculum and curriculum delivery under control of the 

students, forcing them to take ownership of when and how topics were introduced and 

approached. 

Challenge tasks brought external skills to light in the arena of software engineering. In no case 

did any student complain about the outcome of the challenge task; however, students did 

complain and question relevance going into the challenge tasks. The challenge tasks made the 

software engineering exercises real, bringing outside expertise to light in the completing of a 

defined software engineering task. 

Recommended Changes 

Before offering the Junior Project sequence under the MMORPG points system, the following 

recommendations will be put in place: 

 Creation of a “smarter” grade book. 

As mentioned earlier, tracking of experience points and correlated knowledge gold was a 

challenge. The development of a spread sheet grading system would ease this burden 

greatly. Adding logic to the grade book template in the form: If cell (x,y) has and entry, 

add “z” to “page 2” row “x”. The addition of this simple logic would allow the course 

professor to track only tasks completion. The grade book system must also be able to 

track when a task was started and ideally indicating a time-out based on a maximum task 

duration. 

 Adaptation of policies related to stragglers and the task trial/error cycle. 

In this first attempt at applying the MMORPG style points system to the project based 

course sequence, there were no checks in place to handle the incredibly slow teams or the 

teams striving for 100% perfection. This allowed teams to get hopelessly behind or spend 

too much time trying to achieve perfection. In the next iteration of this style grading, each 

task will be assigned a minimum start time and a maximum duration time. If a team falls 

behind the minimum task time, it will forfeit access to the MMORPG grading system and 

fall under a standard schedule. 
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 Require periodic project demonstrations throughout the entire sequence. 

Students focused directly on perceived tasks at hand. If some form of code based 

deliverable was not immediately required, no work would be done on the technical 

aspects of the system being constructed. Bi-weekly demonstrations proved an effective 

method to keep students focused on the ultimate project artifact – a working system. 

Conclusions 

The MMORPG grading method had positive and negative outcomes. The positive aspects 

revolved around the high performing groups and their drive to compete in a technical project 

environment. These teams embraced the course content and raced toward the finish from day 

one. The grading and self guided mechanism encouraged these teams to push hard and reap 

rewards of fame amongst their peers. Never underestimate the power of bragging rights.  

Negative aspects revolved around the low performing teams and the freedom they were given to 

fail miserably. Being a mandatory sequence in the curriculum where passing with a C or better is 

required to move into senior year courses, getting a D or F in this course would, at best, set a 

student back an entire year in the curriculum. Low performing teams are not necessarily 

comprised of low performing students. These teams need help, not reprimand. This first round of 

MMORPG style grading did not support the low performing conditions well. 

Ideally, this style of grading could be used as an initial part of a longer sequence on software 

engineering. By the end of the first term, it was clear which teams would be high performers and 

which teams would fall behind. This highly competitive grading scheme would serve well as a 

litmus test to divide teams into honors based or standard tracks. After the first term of 

competition, low performing teams would be placed into a class where standard 

schedule/lecture/project assignments would be used. High performing teams moved into a class 

supported by the MMORPG style grading. The MMORPG grading style proved very beneficial 

for highly motivated project teams. Keeping these teams moving at a self regulated pace helps 

these individual realize their full potential and optimizes their learning experience. 
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