AC 2011-1786: WORKING TOWARDS THE STUDENT SCRUM - DEVEL-
OPING AGILE ANDROID APPLICATIONS

Thomas Reichlmayr, Rochester Institute of Technology

I am an Associate Professor in the Department of Software Engineering at the Rochester Institute of
Technology. Prior to transitioning to my academic career, I worked as a software engineer in the process
automation industry in a variety of roles over a span of twenty five years. My teaching and research
interests include the development of undergraduate software engineering curriculum, especially at the
introductory level. Of primary interest is the study of software development process and its application to
course curriculum and student team projects.

(©American Society for Engineering Education, 2011

T°2T.1 22 obed

Working Towardsthe Student Scrum -
Developing Agile Android Applications

Abstract

Student project teams are an integral part of difievare engineering curriculum. This paper
reports on the classroom experiences of studemistel@veloping Android applications using
Scrum. The course in study is a software engingentdergraduate elective in Agile Software
Development which used Android mobile phones dahbteGoogle as the development
environment for student teams to learn and pra&aem. Scrum is an agile project
management framework increasingly being adoptékdrdevelopment of commercial software
products. When used in an academic setting it gesvihe opportunity to introduce and practice
project management skills involving planning, estiion, tracking and identifying opportunities
for continuous process improvement. As the ideablmer of team members on a Scrum project
is 5-9 developers, Scrum maps well from a sizepgsstive for the typical student team
collaborating on a course or capstone project. 8&drum has specific project roles and
ceremonies, it is intentionally non-prescriptivetba development practices to be used in the
execution of the project. In a software developnpenject these practices are realized in the
familiar software engineering life-cycles activdief requirements-analysis-design-code-test-
deploy. In an Agile process these activities o@aumore tightly wound incremental and iterative
time boxes. Agile has also introduced variationgwisting software development practices such
as test first design or the frontloading of testgjvities early in the development life-cycle.
The paper addresses the benefits and limitatiotiseodidoption of Scrum by a student project
team and proposes recommendations for a pragmatiess framework — the Student Scrum —
based on the contributions of agile processes eamdipes.

Introduction
Prominent among the outcomes for our undergrachragram in Software Engineering at the
Rochester Institute of Technology is:

“By the time of their graduation, all students withve demonstrated the ability to work in small
teams to develop software systems. This incluéeahttity to assume distinct operational roles
(e.g., project management, quality assurance) dhitaeh to design and implementation.”

It is an outcome that is addressed in every coweseffer in our curriculum. The challenge of
incorporating student team projects into the cta@sris reinforcing those activities that, as
stated in the outcome above, are in addition t@ydeand implementation. As with other
software engineering course projects, there existlas to introducing software process methods
and practices. Examples of process practices iealeguirements elicitation and specification,
estimation, scheduling of activities and releapegject tracking, managing risk, quality
assurance, collection and analysis of metrics #iedtere team mechanics. Common hurdles to
introducing software engineering process in stugenjects are cited in similar experience
reports. They include compressed time schedulegudi]fying the relevancy of following a
process and simply a general disinterest by stsdedted on technology and implementation
details [2].

2'2T.1 22 obed

Over the past ten years Agile software developmpeatttices have grown in acceptance and have
gained a solid foothold in commercial software depment. [3] Companies from Yahoo [4] to
Lockheed Martin [5] are using Agile processes arattfices in the development of their
products and services. Software engineering caunseulums and capstone projects have also
embraced the inclusion of Agile in the classroomd lab. [6,7,8,9] When one hears the
expression “Agile practices”, they typically assdeithe expression with implementation side
development activities — pair-programming, tedtfdesign, continuous integration and
refactoring. These Agile practices are best cap@dlon when they are applied within the
context of a defined software process frameworkchviaiddresses the process practices
previously noted. Process frameworks provide thecire and discipline required to perform
fundamental project management activities. Theygement the how-to side of Agile
implementation methods, with the who, what and whrertess activities required to complete a
successful project.

The most widely used Agile process framework iu8cf10]. Scrum has a well defined
approach and framework for organizing and contrgllk software development project. It is
almost always described in combination with Agidétware development practices, but is
flexible enough to even be used for managing nditwaeoe projects. Selecting Scrum as the
framework for student team projects has the adgendéintroducing software process at a level
of ceremony that captures foundational softwarerssging practices and is manageable within
the constraints of a class or capstone project.

This experience report will provide a brief primnogr Scrum to define common terminology
and practices. A description of the Agile SoftwBrevelopment course project using Scrum as
the development methodology for Android phone aapion development follows. The report
concludes with the challenges and opportunitieswsng Scrum for student teams in software
engineering courses and capstone projects.

Scrum Background

Scrum is an incremental and iterative process frearniethat, while typically associated with
software development, can be used for managin@@jn a variety of domains. Scrum as a
software development framework was jointly devetbpad introduced by Jeff Sutherland and
Ken Schwaber [11] in the early 1990’s. It was ins@iby Hirotaka Takeuchi and Ikujiro Nonaka
in a 1986 publication [12] that presented a newaggh promoting speed and flexibility in
commercial product development based on their rekéa the automotive, photo and printer
industries. Their approached proposed overlapgirags-functional development phases as
opposed to sequential phases. The metaphor useithataequential phases represented a relay
race in which members of the relay team waitedHerbaton to be passed before progressing.
The new approach was equated to a rugby team wbitinually passes the ball back and forth
as it progresses down the field. Based on thisyraglalogy, “Scrum” was selected for the name
of process frameworks used by a project exhibitimg) collaborative behavior.

The flow of a Scrum project is a sequence of tirogddl iterations osprints Each sprint
produces a potentially shippable increment of essnvalue. The duration of a sprint is typically
2-6 weeks. Project stakeholders have the oppoyttmitise these incremental releases and
provide timely feedback that can be incorporateéd subsequent sprints. The estimated release

€21.T 2z abed

date(s) of a project is driven by the teawedocity, or rate of working functionality completed
per sprint. As not all features are of equal sizeffort, features are estimated using a unit-less
value, and velocity is captured in terms of thiatree ranking. A common practice is the
description of product featuresuiser storyformat. User stories are descriptions of fundliip
written in the format:

“As a <user role>, | want to <feature>, so thaah &business value>"

For example,
“As a student, | want to view all available coursssthat | can register for next
semester”

A user story is sized in scope so that it can h@emented within one sprint. It also provides the
acceptance criteria to validate the feature upoandmpletion. The explicit details of what the
feature will do are documented in the acceptanstectéeria from which acceptance test cases
are generated. The acceptance test plan then bs@mfexecutable functional specification” or
“specification by example” [13] and is the primagurce of “How does this feature work?” It is
always up to date since it is continuously evolvamgl being executed by the current version of
software.

Requirements are defined and managed ifPtbeuct BacklogAlthough requirements are
commonly maintained as user storig®re are no restrictions for documenting requirgiian
alternative formats. A common misconception is ®eum, and Agile projects in general,
relieve the development team of creating and miinig project documentation. As a
framework, Scrum is non-prescriptive in the typeartifacts and definition of methods used. It
is the responsibility of the project team to idgnthose artifacts and account for the time and
resources to see they are properly supported. Tharperiod of preparation and planning
(Sprint Zeroor Iteration Zerg that is needed at the beginning of the projectréate the initial
version of the Product Backlog, develop the archite or high level design and perform any
other activities needed to support the start ofitlsesprint. It is during this period that recexr
project artifacts and their content are identified.

The Product Backlog is prioritized by the ordemihich features are to be added to a sprint for
development. There may be a variety of charactesigtfluencing the backlog priority —
business value, time to market, technical dependgnetc., but the Product Owner is ultimately
responsible for the ordering of the backlog. Theapleteness of user stories in the Product
Backlog reflects their relative priority. Storidsat will not be worked on until later sprints
(bottom of the backlog) may require more detailjlevbtories approaching the sprint in which
they will be developed (top of the backlog) are encomplete in terms of definition and
acceptance criteria. As stories are developeddlsgyneed to be estimated. This facilitates short
term (sprint) planning and longer term (releasahping. It is normal for stories to evolve as
they are developed during a sprint. Common exangrkeshe clarification of a user story’s
definition or acceptance criteria.

During sprint planning user stories are pulledrionity order from the top of the product
backlog and the team identifies tasks requiredn@ément each stories. Tasks are estimated (in

v'21/.T 22 abed

hours) by the team and allocated to team membgditsaliravailable resource hours for the sprint
have been consumed. Tasks and task hours maydtaatuer the course of the sprint as new
work is identified or work is removed from the sgriRemaining task hours are tracked on a
Sprint Burn Down Chart on a daily basis and isssble indicator of the sprint’s progress. At the
conclusion of the sprint the team’s velocity inrgtpoints is calculated by adding up the story
points estimates from each fully completed userystver time velocity will converge within a
consistent range enabling more confident predistmmthe timing of releases and their expected
content.

Structure of the Course

The Agile Software Development course is an uppasidn, software engineering process
elective in our program. It requires that studératge completed a required course in Software
Process and Project Management during which theg feceived an introduction to
fundamental software development practices. Stgdesually have completed a portion of their
co-operative education blocks (co-op), which isdaantage since they have had the
opportunity to experience implementations (good laad) of commercial software processes.
An increasing number of students co-op with comgaitiat are using Scrum as their primary
software development process.

Teams of 6-7 students were selected at the sténederm and project work began shortly after
an overview of Scrum was completed. A challengamyf course related project is finding the
sweet spot of scope and complexity. There neelde enough work to engage an entire team,
while at the same time working in an environmeat tfioes not require an unreasonable startup
investment either in the technology or problem dimimia this course the focus was on process
practices, so the implementation side of the ptajeeded to be challenging, but not
overwhelming. Just prior to the start of the te@onpgle put out a call for proposals on using
Android phones in the classroom, and we were fateienough to secure enough phones for
each student in the class to use the entire tegaam$ used the open source, Java-based
development kit -Android Development Tools (ADThigh runs as a plugin in the Eclipse IDE.
[14] As our students were well experienced withhhtdva and Eclipse, the development of an
Android app as a course project was a popular ehdie still needed a short period of
“Android boot camp” to get teams up to the poinewthey were proficient enough to jump off
to developing their own apps, but teams got thrabghperiod quickly.

The next challenge after selecting a course priget¥Who gets to be the customer?” Unless the
course is fortunate enough to have an externabmest the instructor typically assumes this
responsibility. In Scrum, this role is played bg fAroduct Owner. The Product Owner is the
source of user stories and is responsible for gfithe priority of implementation and
acceptance criteria. We elected not to have athsedevelop the same app, but to let the teams
collaboratively define their own apps. In doingtBe teams spent the initial part of the project
writing their own user stories. One member of treant was appointed Product Owner to resolve
proposed feature conflicts. This activity allonegeryone to participate in the writing and
estimation of user stories. We included the ihdivelopment of user stories and Android boot
camp as lteration Zero activities, with the exitaria from lteration Zero being that there would
be sufficient work defined to support the stargefint 1.

G'2T/.T 2z abed

The instructor initially assumed the roleRdérum MasterThe Scrum Master provides guidance
and coaching to the team on following the prin@gpéthe Scrum framework. They also help the
team to remove impediments that may distract threm the tasks scheduled for the current
sprint. As the course progressed, and the stugairied more experience with the Scrum
process, the role of Scrum Master was absorbetidogtudent team.

The Android apps proposed by the teams included:

e Atraining app that could be used by runners tokttaeir distance (using GPS) and time
during training runs.

* An app that accessed the university’'s bus systestetothe user when the next
scheduled bus was approaching a bus stop.

» A Black Jack card game which tutored the user gintabetting strategies.

As part of the planning activity teams used “PlaigriiPoker”, an Agile estimation practice
modeled after the Wideband Delphi method to asstigry points to each user story. Story points
are based on the relative effort to complete aspewed to other user stories. At the conclusion
of each sprint, the number of story points complégeused to compute the team’s velocity
which, helps to plan and track future releases.

An example of user stories and story point estim&tam the bus scheduling app:

« As a slow walker, | want to know the closest bugpghat will take me to my destination
(5 points)

« As a sleepy student, | want to adjust my alarnmhat kwill be woken up at the optimal
time so as not to miss the bus (3 points)

« As an infrequent user, | want to be able to fintwhen the next bus for a given
destination arrives so | know how long to waittat bus stop (2 points)

« As afrequent user, | want to be able to save firdgi®n and time so | am notified
beforehand (8 points)

« As a visitor, | want walking directions from andadus stop (8 points)

Prior to the start of the sprint, the team seledtsh user stories will be implemented. Each
story is decomposed into specific development taskksestimated in hours. After the team has
collectively identified and estimated the task$uity implement a user story, team members
“sign-up” or commit to taking responsibility foretiask. This approach to allocating resources is
referred to asommitment driven sprint plannifg4]. The team has a budget of hours for the
sprint and can only commit to tasks that fit witkiiat budget. Tasks may be modified, added or
deleted during a sprint, but the status of thensjisitracked on a regular basis by comparing the
scheduled number of task hours remaining to thengld end date of the sprint. Scrum tracks
this scheduling metric usirggsprint burn-down charfThe sprint burn-down chart is a valuable
visual feedback mechanism to the team not onlyngutie sprint, but at the conclusion of the
sprint when a retrospective is held. Teams use@lback to continually tune their task
identification and estimating technique for futspeints.

An example of a bus scheduling user story decontpioge tasks:

9'2T/.T 2z abed

User Story: As a frequent user, | want to know ehtee nearest bus stop is (5 points)

Tasks:

Display Google Map (3 hours) — George

* Query GPS for current location (1 hour) - Gordon

Build list of bus stop locations (2 hours) - Aamir

» Display straight line between location and bus ¢&bours) — Alaina

A user story is considered fully complete wheruitcessfully meets the acceptance criteria
established by the Product Owner. An importanteagiincept is the “definition of done.” It
requires the team to work with the Product Ownatéfining the criteria that ultimately

validates a user story by the execution of the gtaree test plan. It also identifies the state of
completion that project artifacts need to be ithatend of a sprint — design documentation, user
guides, etc. This approach helps to minimize tfE62one” syndrome that haunts many
projects unable to achieve escape velocity priar telease. Teams were required to identify
acceptance test cases prior to beginning implertientaf a user story. As the sprint proceeded,
acceptance test execution was performed as sabe snctionality required to test a user story
was available. This required the teams to plarotder of their work so they were continuously
producing operational software in small increments.

Although a number of commercial, free and open@®@crum project management tools are
available, students initially maintained their geis manually — poster paper and index cards.
The central source of project status is the te@utsim Board which displays user stories and
tasks in progress and the current sprint burn-dovant. Although tools can automate much of
this process, the manual approach helped the daittefocus on the mechanics of Scrum
methods without being distracted by glittery tomdtures. The public posting and display of
project status is a key component of Agile methodigs. Alistair Cockburn refers to such
postings as “information radiators” [16]. They allthe team to view the status of the project at
a quick glance, more effectively than a tool or gith

Teams also participated in daily stand-up meetargsend of the sprint reflections as prescribed
by Scrum. Daily stand-ups in Scrum allow each tea@mber to answer three questions:

1. What did | accomplish yesterday (or since the $satd-up)?
2. What am | planning on accomplishing today (or befire next stand-up)?
3. What roadblocks are in my way?

These meeting are meant to be information gathenoigproblem solving sessions lasting no
more than 10-15 minutes. The team stands to irlkeréme limitation is not exceeded. It is
important to note that stand-ups are not statusrtieg to a manager (or instructor), but
commitments team members are making to each dthtre classroom it was initially difficult
to have the students address each other and nioisthgctor during the standup. As a result of
the stand-up, actions may be initiated to addisesgeis or work on scheduled tasks — pairs may
form to collaborate on a task, a design review ow@our, etc. At the conclusion of a sprint, the
team demonstrates the completed user stories ddsl &sprint retrospective. During the

/211 22 obed

retrospective the team focuses on process impravisniar subsequent sprints by addressing the
following Keep-Toss-Try questions.

1. What worked well in the sprint just completed? (Kee
2. What should we avoid doing in future sprints? (Joss
3. What could we do differently in future sprints?yyr

As a result of the retrospective the teams sefhechighest priority process improvement
suggestions and post them on their Scrum Board. Kedeps the process improvement goals
visible to the team while working on the next sprirhe subsequent retrospective can then
review what progress the team made on those goals.

Teams were assessed on their participation and @ffadhering to Scrum practices and the
upkeep of their Scrum Board and Product Backlogl &frthe sprint presentations were made to
the entire class after which teams were critiqugthk instructor and fellow classmates. In
addition to the sprint retrospectives, team membebsnitted confidential peer evaluations to the
instructor. We regularly collect peer evaluationsatl class projects to be used along with the
instructor’'s observation in determining a poterdidjustment to an individual grade. A learning
outcome for the course is not only to have theesitglexecute a project using Scrum and Agile
practices, but also to critically evaluate theahiifty of Agile methods and practices based on
the characteristic of the project and developmegaiization. Students addressed this outcome
using case study reports and during class disaussitach student was also responsible for a
research report on a contemporary Agile topic.

Working towar ds the Student Scrum

Can Scrum be effectively used as a software dewsop learning vehicle for student teams in
the classroom and on capstone projects? As withralugtrial grade methodology, importing
Scrum into the classroom or capstone setting ptedath challenges and opportunities.

Challengesfor the Student Scrum

The context in which Scrum will be introduced oopted will be driven by the learning
outcomes of the course. Is the course an introglutti software engineering process concepts?
Is the course primarily focused on a technical elsf@rogramming language, web application,
etc.) where Scrum is being used by course progachs? Is Scrum the methodology selected by
a senior capstone team for their project? In aééhscenarios the common denominator is time
or more precisely, the lack of it. This is a unsadrissue for academic projects as the period of
time students are available for collaboration mayestricted to class or lab time only. A related
time issue is the ability to leverage experiencemfcompleted sprints towards improving future
performance. Commercial organizations that havesttianed to Scrum identify the ability to
continually refine their development process basepast experience as one of the keys to a
successful adaptation. These organizations havieaihefit of continuity in team personnel over
a period of many more sprints than can be affotdedstudent team.

Student teams in our class were able to complede tBprints in addition to the time spent
during the Iteration Zero activities. Although e&print was three calendar weeks in length, the

8'2T/.T ¢z abed

actual time the teams spent together working waseclto 8-12 hours. Even though abbreviated,
this still provided teams with the opportunity xperience the mechanics of a Scrum project.
The length of the Sprint was not allowed to be eaéel as it emphasized the value of measuring
the true velocity of a team by the amount of fumadlity that was completely done, as opposed
to time slips for “almost-there” functionality. {(Btents were able to identify this phenomenon as
their Sprint Burndown charts tended to track um@sosed to down - typically indicating overly
optimistic task estimates or missing tasks all toge)

The initial state of the project’s requirementat®ther factor to consider. Classroom projects
need to start with a set of established requiresniendrder to provide time for the students to
achieve the course outcomes relative to other péittge project (design, construct, test, etc.) In
our course the development of user stories waaraiteg outcome, so we traded off less
implementation. Interestingly, in our senior capstprojects we allow the student teams to
select the development process they will followthAlgh many teams gravitate towards an
Agile process, most of their project descriptiotastswith specific, prioritized requirements.
Teams are still encouraged to adopt an incremanthiterative process, but it more closely
resembles McConnell's Staged Delivery Model [17pnhrequirements and architecture are
well established and functionality is deliveredstages over the life of the project. There aré stil
opportunities to incorporate Agile practices irsthodel, however the Agile practices for
managing continually forming and changing requiretaenay used less than in a project with
more volatile requirements..

Scrum defines three project roles — Product Owaenym Master and Team Member. The role
of Team Member actually is a benefit to studenjqmts as it is defines an intentionally flat
organizational hierarchy to encourage shared resipitity for product activities and

deliverables. The role of Product Owner, even enbisst Scrum projects, is often challenging as
it requires an individual who can dedicate exclagime to working with the team in creating,
refiningand validating Product Backlog requirements. Onaayostone project we have sponsors
that can dedicate time for initial requirementsitdition and responding to questions, but not to
the extent a dedicated Scrum Product Owner wouldighe. In the classroom, the source of
requirements is the project description and respditg for clarification falls to the instructor.

As a result the volatility of the requirements rémsdow and the development process again
more closely resembles the Staged Delivery Model.

The role of Scrum Master can be tricky, as thaividdal is responsible for providing the
coaching and guidance for adhering to Scrum pregtiCommercial Scrum projects use
Certified Scrum Masterld 8] that have attended standardized trainingsmairStudent teams
most likely will not have that opportunity, so bdsmn the course context this position may be
fulfilled by the instructor, or rotated through theup based on the team’s level of Scrum
expertise.

Opportunitiesfor the Student Scrum

Despite the inability of student teams to match gmrcial Scrum environments, there is ample
opportunity for them to engage in specific Agilegtices within the framework of Scrum that
support the fundamental software engineering stiiky need to learn and practice.

6'2T/.T 22 obed

Scrum is supported by a disciplined set of profeahagement practices for the identification,
estimation, planning and tracking of activities aleliverables. Students have the opportunity to
develop personal as well as team estimation exsgettiring each sprint planning session. Since
sprints are continuously evaluated on a regulaisptee team is required to make on-going
adjustments by modifying the content and orderifigsks. It allows students to define and
organize their work in manageable durations. Thie@ss also exposes students to topics in risk
management and negotiating feature priorities thiehcustomer. Additionally, a Scrum project
can be managed entirely without the need for speetatools or applications beyond simple
spreadsheets.

Among Agile’s largest contribution to the softwalevelopment community has been a renewed
awareness in the value of testing throughout thieeeproject life-cycle. Students and industry
alike often view testing as an end-of-the projetivity, which usually absorbs the schedule
delays of the activities preceding it. [19] Estabing a rhythm of test case definition and
execution is a key Scrum practice in eliciting, dmenting and validating product features. At
the unit or component level, unit testing concegpts be reinforced though test first design
techniques and the automation of test cases toosumgression testing and continuous
refactoring. Since development is proceeding ialsincrements, a failed test typically points

to the last completed implementation step as thecsf the defect. Automation also supports
the seamless collection of testing metrics — testssucceeded, failed per sprint or user story to
allow teams to use objective data in evaluatingounaity product releases.

Scrum provides teams with a consistent forum fonmminicating progress and identifying
issues. Though deceivingly simple in format, gotasthd-ups work towards building trust and
promoting the self-organizing characteristic whighital to good team chemistry. Stand-ups
encourage a more humane and mature work environnyealtowing the team to collaboratively
help each other in solving individual challenges.

As Scrum is a framework, and is not prescriptivetentypes of project artifacts to be created
and maintained, it can be tuned to accommodateeth@rements of a course or project. The
Iteration Zero activities preceding the first spgan be designed to support the initial definition
of targeted artifacts, such as an architectureesigth document. As the project proceeds, tasks
are identified during sprint planning to accounttfte time and resources required to support the
artifact’s evolution.

Conclusions

The use of Scrum or Student Scrums in the classpromides a consistent framework for both
managing projects and introducing good softwarérergging practices. Student Scrums may
need to deviate from traditional Scrum practiceth@assignment of roles and time duration of
development sprints. Students derive benefit frioenuse of Agile practices within the Scrum
framework that are related to requirements enginggproject planning and tracking, testing
and effective team collaboration. The Scrum framé&vi®flexible enough to accommodate a
variety of software engineering courses outcomessapport student teams on capstone
projects. The use of Scrum is most effective ifiednave the opportunity to complete multiple
iterations and apply process improvement initisiae they progress.

0T'2T.1 22 obed

The author would like to acknowledge Google foiitigenerous donation of the Android mobile
phones used by student teams in the Agile Softbakelopment class.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

9]

(10]
(11]

(12]

(13]

(14]
(15]
(16]
(17]

(18]

Boetje, J., Foundational Actions: Teaching Software Engineeitiigen Time is Tight"ITiCSE '06, June 26-
28, 2006, Bologna, Italy

Bernstein, L., Klappholz, D., Kellet, C.Efiminating Aversion to Software Process in Comp8&ence
Students and Measuring the Resul®tpceedings of the f5Conference on Software Engineering Education
and Training (CSEET '02)

State of Agile Survey, 2009, VersionOne
http://trailridgeconsulting.com/surveys/state-oftegevelopment-survey-2009.pdf

Benefield, G “Rolling Out Agile in a Large Enterprise'Hawaii International Conference on System
Sciences, Proceedings of thé'#nnual, Jan 7-10, 2008

Zwicker, M. “War Stories — Fighter Jets and Agile Developmerit@ckheed Martin” Agile Journal, April,
2007

Kessler, R. and Dykman, Nintegrating Traditional and Agile Processes In tiidassroom”,SIGCSE '07,
March 7-10, 2007, Covington, KY

Rico, D. and Sayani, H:Use of Agile Methods in Software Engineering Ediaal’, 2009 Agile Conference

Reichlmayr, T.,"An Agile Approach to an Undergraduate Software Emgring Course Project”33rd
ASEE/IEEE Frontiers in Education Conference, Na®, 2003, Boulder, CO

Schneider, J and Vasa, RAdile Experiences in Software Development — Expeee from Student Projects”,
Proceedings of the 2006 Australian Software EngingeConference (ASWEC’06)

Forrester/Dr. Dobbs’s Global Developer Techapipics Survey, Q3 2009

Schwaber, K. and Beedle, Mgile Software Development with ScruPnentice Hall, 2002

Takeuchi, H. and Nonaka, TThe New New Product Development Ganigtvard Business Review,
January-February1986.

Adzic, G,Bridging the Communication Gap — Specification lpfEple and Agile Acceptance Testingeuri
Limited, London, UK, 2009

Android Development Tools (ADTHttp://developer.android.com/sdk/eclipse-adt.html

Cohn, M.,Succeeding With Agile — Software Development USargm Addison Wesley, 2010
Cockburn, A.Agile Software Development — The Cooperative Gafi&dition, Addison Wesley, 2007
McConnell, SRapid Development — Taming Wild Software SchedMliespsoft Press, 1996

Scrum Alliance - Certified Scrum Mastéitp://www.scrumalliance.org/scrum_ certification

T1'2T.1 22 abed

[19] Shepard T., Lamb, M. and Kelly, IMore Testing Should Be TaughtCommunications of the ACMune
2001, Vol. 44, No. 6, pp. 103-108

2121122 abed

