
AC 2007-864: SMART SENSOR INSTRUMENTATION DEVELOPMENT
EXAMPLE INCLUDING THE NEW PARADIGM OF AN FPGA BASED SYSTEM

Jonathan Hill, University of Hartford
Dr. Jonathan Hill is an assistant professor in the College of Engineering, Technology, and
Architecture (CETA) at the University of Hartford, Connecticut (USA). Ph.D. and M.S. from
Worcester Polytechnic Institute (WPI) and BS from Northeastern University. Previously an
applications engineer with the Networks and Communications division of Digital Corporation.
His interests involve embedded microprocessor based systems.

Devdas Shetty, University of Hartford
Dr. Devdas Shetty is the founding chair holder of the Vernon D. Roosa Endowed Professorship at
the University of Hartford, Connecticut (USA), where he is also Dean of Research, which is a
University-wide function. In addition, he is the Director of the highly reputed Engineering
Applications Center (EAC) at the University of Hartford. His areas of expertise are Mechatronics,
Product Design, Manufacturing and Automation.

Jun Kondo, University of Hartford
Mr. Jun Kondo is a research engineer in the Engineering Applications Center (EAC) of the
College of Engineering, Technology, and Architecture (CETA) at the University of Hartford,
Connecticut (USA) M.B.A., M.E., B.S. from the University of Hartford and M.A., B.A. from
Western Illinois University. He is specialized in Data Acquisition using National Instruments PXI
and cRIO systems.

© American Society for Engineering Education, 2007

P
age 12.1282.1

SMART SENSOR INSTRUMENTATION DEVELOPMENT

EXAMPLE INCLUDING THE NEW PARADIGM OF AN FPGA

BASED SYSTEM

Abstract

This paper showcases two complementary approaches for the design and implementation of

smart sensor systems. They are (a) Hardware-in-the loop approach (b) Using a single field

programmable gate array (FPGA) to construct an entire intelligent instrumentation system.

The first example presents a mechatronic approach, which is a blend of mechanical, electrical

and software elements along with smart sensors. The major elements of the hardware in the

loop approach are (1) Use of a language-neutral approach to code development, created using

visual object oriented simulation. (2) Design of the smart sensor that composes of sensors,

DSP unit, data acquisition and PC. (3) Use of system dynamics and computer simulation in

the system development. These basic principles have helped to develop the hardware-in-the-

loop simulation concept and at the same time, assist in rapid prototyping.

For the second approach the paper showcases a new computer engineering paradigm, use of a

single field programmable gate array (FPGA) to construct an entire mechatronic intelligent

instrumentation system, which is uniquely tailored to the application. Apart from the FPGA

itself, this research is based on classical computer engineering principles, where a processor

uses a bus to access peripherals. The elements of the FPGA based system approach are: (1)

Software tools such as the Xilinx embedded developers kit (EDK) are used to implement an

entire microprocessor system using FPGA and an analog adapter board. (2) The operating

system is selected and required libraries and device driver software is written. (3) The

application software is written and tested. While such a processor system is described using a

hardware description language such as VHDL, the resulting description is not considered

software but rather is used to configure the hardware. Once configured, writing the libraries,

drivers, and application involves conventional software development tools.

In contrasting the approaches, the mechatronic approach is more abstract, simulation based,

and eventually produces a PC based system. The second approach involves details of an

FPGA based microprocessor system. The measurement and smart sensing example chosen

here is a new non-contact, in-process surface roughness inspection probe that is portable, low

cost and accurate. Rather than using a contact method such as a contact stylus that could

scratch the sample surface, this new probe was developed by the author’s and it uses a

precision laser and measures the surface scatter to evaluate roughness. The paper highlights

the results of sensor application and provides a comparative evaluation of two instruments.

This new paradigm also provides opportunities for research in combining the two approaches.

Introduction

This paper showcases two complementary approaches to the design of smart sensor systems.

Hardware-in-the-loop simulation is a cost-effective mechatronic approach to perform system

tests in a virtual environment. While conducting system tests, the mathematical models are

used in the virtual environment along with the components undergoing tests in the closed

loop system. As such, rapid prototyping and hardware-in-the-loop simulation are an integral

part of today’s product development process. The use of a single field programmable gate

P
age 12.1282.2

array (FPGA) to construct an entire mechatronic intelligent instrumentation system is a new

computer engineering paradigm. The key to designing with a FPGA is tailoring a system to

the application. Apart from the FPGA itself, the approach is based on classical computer

engineering concepts. Underlying both approaches, the principle objective of this paper is to

present the design and integration of smart sensors into a typical real time control system.

Mechatronic Design Process

A typical mechatronic design process
1
 is shown in Figure 1. This 11 step design process has

three main phases: Modelling / Simulation, Prototyping and Development. Starting with

steps 5 through 9, software tools are available to aid the designer in creating and debugging

the mathematical system models. Some tools that are particularly useful allow the designer

to represent the system by creating a system block diagram from simple building blocks such

as integrators, gain stages, summing junctions, and non-linear switches. These graphical

simulation tools run on generic platforms such as desktop PC compatibles running

Windows
®
 operating systems and workstations running UNIX. Some examples of these

tools are LabView, LabTech, Lab Windows, Simulink/Matlab, Matrix-x, ACSL, SimPack,

Hypersignal, and VisSim. With any of these tools, the designer can create a plant model,

and then validate it against real-world measurements (step 5). Once the plant model has been

validated, the designer can then design the control system and optimize it until the correct

response is achieved (steps 6 & 7). In some cases, completely accurate plant models cannot

be made and certain assumptions must be made about that plant model that cannot be

validated. In these cases, it is advantageous to be able to test the control system within the

plant environment (step 8). This is sometimes referred to as hardware-in-the-loop simulation

since some of the actual hardware (mechanical and electrical parts) is used in the system

control loop (acting as the plant that is to be controlled). This hardware-in-the-loop

simulation testing provides the designer reassurance that any assumptions made on the plant

model were correct. If any assumptions were incorrect, the designer has the opportunity to

optimize the design (step 9) before committing to the real target hardware platform.

Design

Optimization

Control System

Design

Detailed Modular

Mathematical Modeling

Sensor and Actuator

Selection

Life Cycle

Optimization

Design

Optimization

First Principle Modular

Mathematical Modeling

Conceptual Design and

Functional Specification

Deployment of

Embedded Software

Hardware-in-the-Loop

Simulation

Recognition of

the Need

Modeling / Simulation Development / Life CyclePrototyping

9

7

11

1

2

3

4

5

6

8 10

Information for future modules and upgrades

Figure 1: Mechatronic Design Process

P
age 12.1282.3

Language Neutral Approach

In mechanical engineering, the focus has typically been on machine improvement through

mechanical design. The majority of design solutions are deployed in the mechanical design

itself and do not involve cross-discipline (software and electronic) technologies. One of the

major challenges of any mechatronics sequence is the process for software design,

implementation, and testing. Typically the focus is on the embedded software programming

and embedded hardware aspects, which include language, computer architecture, and

development tools. However, focusing on visual language-neutral programming applications,

such as Simulink, Labview, VisSim, Hypersignal and others, will generate code which does

not require the time needed to gain an intimate knowledge of a specific language and its

development environment.

Smart Sensor Development Using Hardware-In-The-Loop Simulation

Smart sensors are devices that are optimally designed into a system to measure specific

physical phenomenon that are normally difficult to measure. Such sensor systems are

inherently dependent on using microprocessors. So-called hardware-in-the-loop approaches

account for the physical plant and sensors together in a system. There are two main methods

currently used to accomplish hardware-in-the-loop simulation testing
1, 2

. (a) PC based

“Hardware-In-the-Loop Simulation” as in Figure 2. (b) Embedded DSP based “Hardware-

In-the-Loop Simulation” as in Figure 3.

PC based Hardware-In-The-Loop Simulation

This method utilizes the desktop/workstation Graphical User Interface (GUI) coupled with

standard Data Acquisition and Control (DAC) interface card. The interface card is inserted

in one of the PC expansion slots of the chassis. The actual plant environment is used in place

of the plant simulation model, and actual sensors and actuators are connected between the

plant and DAC interface circuit. The control simulation model then is modified by deleting

the plant model, and adding input and output blocks to the interface card. The model is

"executed" through the desktop/workstation operating system. The operating system allows

general calls to be made to the hardware for video display, keyboard input, and interface

card. Figure 2 shows a typical configuration for this type of hardware-in-the-loop system.

Hardware System

Under test

PC with GUI

Simulation Software

DAC card on PC's

Local bus

Screw term.

Board

Figure 2: Typical PC based "Hardware-In-The-Loop" System
3 P

age 12.1282.4

One major drawback that the PC based simulation systems suffer from is the inability to

work in systems where loop responses need to be fast (less than 100ms). This shortcoming is

the result of non-optimized software code running through an interpreter which then

interfaces to a Windows
®

 operating system that is not designed for "real-time" processing.

This creates "real-time" simulation results that vary depending on what other programs are

running on the PC platform such as network connections, printing utilities, virus scanning

software, disk accesses, etc. Although hardware pricing for PCs continue to decline, a PC

system has many features that are not needed for typical control systems. These added cost

features include large fixed disk drives, high-speed / high-pixel count graphics capabilities,

serial and parallel communication channels, keyboard and mouse interfaces. Once the

control system is designed and debugged, these features are not needed. As a result, most

real-time control systems are not implemented on a PC platform. In addition, since PCs do

require these added features, they are not as portable and as small as an embedded processor

platform. Therefore once the control algorithms are designed and debugged, the algorithms

must then be re-implemented, re-tested and debugged on an embedded platform.

Embedded DSP based Hardware-In-the-Loop Simulation

The second method for accomplishing hardware-in-the-loop testing involves cross-compiling

the control algorithm to target an embedded real-time processor platform. The embedded

processor platform often is a Digital Signal Processor (DSP), with I/O that is tailored for

embedded system products. This I/O may be in the form of analog inputs and outputs as well

as digital inputs and outputs. The cross-compiled code is then downloaded to the embedded

processor, sensors are connected to the inputs of the embedded processor board, and

actuators are connected to the outputs of the embedded processor board. Since DSPs are

designed for signal processing and embedded controls, already proven software routines exist

for each DSP platform. These software routines include optimized code for fixed and

adaptive filters, audio signal compression and decompression, modulation and demodulation

schemes for data communication, and motion control routines such as reference frame

conversions (Clarke & Park Transforms) and pulse width modulation (PWM) schemes.

Figure 3: Embedded DSP based "Hardware-In-The-Loop" Simulation Setup

Embedded processor platforms are designed for reduced cost and increased speed, and as

such they generally do not have video displays nor standard desktop inputs such as full

function keyboards and mouse interfaces. However, DSPs are now becoming available that

have integrated peripheral functions that are useful for signal acquisition and control. These

peripheral functions include multi-channel A/D conversion, quadrature signal decoders for

position and velocity feedback, hardware PWM generation, and serial communication

channels. Until very recently, most embedded processors utilized custom real-time operating

P
age 12.1282.5

systems, or single threaded straight code with no operating system. Figure 3 shows a setup

for a DSP based hardware-in-the-loop testing.

One of the drawbacks until recently for an embedded DSP based hardware-in-the-loop

simulation was the lack of available tools for development, test, and debugging an embedded

DSP. Typically, the programmer must be very familiar with the details of the DSP control

registers, must program in C or DSP assembly language, and must rely external devices such

as logic analyzers in order to debug the code. However, many PC based block-diagram

simulators now do provide a code generation function that allows the designer to create C

code that can be ported to the target system of choice. Some of the block diagram simulation

software that support embedded DSP platforms are: LabView, Simulink/Matlab, DSpace,

Matrix-x, and Hypersignal. These simulation tools allow one to create block diagrams that

can be simulated and tested on the PC. Then with relative ease, the blocks can be compiled

and executed on the DSP platform, with the PC acting as the user I/O. Therefore if it is

possible to simulate the plant, the programmer can debug the control algorithm while

simulating the plant, then port the control algorithm to the DSP hardware, and perform the

hardware-in-the-loop simulation.

Smart Sensor Development Using an FPGA Based System

We next outline a new design approach made possible by the field programmable gate array

(FPGA). Such a system is used in manner like Figure 3, but the DSP board is replaced with

an FPGA system board. The FPGA takes a prominent role in the creation of this smart

sensor. Code written in a language such as VHDL is compiled, producing an image file or bit

file, used to configure the FPGA. Despite being produced by a high level language, the

image file is not an executable program but rather is a microprocessor system that can

execute machine code. An FPGA is initially an array of uncommitted resources, and quite

literally is configured to become the system you describe. Three companies supporting this

approach include Actel
4
, Altera

5
, and Xilinx

6
.

The PC based and DSP based design approaches each focus on the application itself. In

contrast, the key to designing with an FPGA is tailoring a system to the application. With an

FPGA there is an enormous flexibility that allows the system to be as simple or as

sophisticated as is required. This observation suggests that design can start with a

preliminary PC based or off-the-shelf DSP based system. Once the characteristics of the

application are well understood, design of an FPGA system can follow. The surface

roughness probe we consider follows this approach.

In general terms, designers can use pre-written peripherals or write their own. A range of

pre-written and third-party peripheral descriptions exist, ranging from simple parallel input-

output devices that provide a modest user interface, to local area network hardware and video

devices that provide a PC like experience. Likewise, the options for system software range

from having no operating system, to a real-time operating system, to a modern operating

system such as Linux.

Producing a system involves selecting a processor, collecting the descriptions of needed

peripherals, writing driver software, and then writing the application software, itself. We

have two options for the microprocessor. Some FPGA chips have one or more actual

microprocessor cores fabricated along with the FPGA fabric. Such a microprocessor is

referred to as a hard-core. In such a device, the FPGA fabric is used to implement required

P
age 12.1282.6

peripherals. Xilinx Virtex-4 series
7
 FPGAs have the option for one or two Power-PC 405

processor cores to be fabricated in the FPGA chip.

Conversely, if the image file also includes the description of a microprocessor core in the

FPGA fabric, then once configured the FPGA will execute machine code in the same manner

as any microprocessor. Such a configured microprocessor is said to be a soft-core. The

Xilinx Microblaze soft core processor is a fairly generic 32-bit pipelined RISC style

architecture that can be configured into any Xilinx FPGA
6
 currently being manufactured. As

an alternative to designing a PC board, many options exist for off-the-shelf development

boards and embedded system boards
8
.

Application to Non Contact Surface Roughness Sensing

Surface roughness has been conventionally measured using contact type instruments that

traverse along the lay of the surface of measurement. Contact with the surface is made by a

stylus that records the undulations of the traverse. These undulations are recorded as the

surface roughness value. However, the contact method is time consuming. Light scattering

has become a practical tool for measuring surface finish. It is a quick method that is

sensitive, area sampling, and is an inherently absolute method. The diffraction pattern from

the surface consists of identifiable diffraction spots of maximum and minimum intensity of

light as a function of angle. The determination of the frequency of diffraction spots leads to

the information of the surface. The necessary link between scattering and surface topography

can be made using either empirical correlation or an appropriate scattering theory. For

implementation of the integrated intelligent system, this can be accomplished by feeding the

appropriate input/output to the relationship. An object and its far-field diffraction pattern

have a Fourier Transformation relation with each other. If the object distribution is

represented by f (x, y), its Fourier transformation F(x,y) is given by,

F(x, y) = f (x,y)e
-2p(xu+uv)

dydx

where x and y are spatial coordinates; u and v are spatial frequency variables. The basic light

scattering principle is shown in Figure 4. For example, an electromagnetic wave of known

wavelength is incident upon the rough surface at an angle θ1. The scattering surface where

the light is projected may have either one or two-dimensional roughness. Machined surfaces

tend to exhibit a grating structure on account of tool marks made during the machining

process. In the case of periodic roughness on a machined surface, the scattering is made up of

a specular component, at an angle predicted by ray tracing optics, and discrete components at

angles predicted by the grating equation as shown in (1).

 θθθθ2m = Sin
−−−−1

(Sin θθθθ1 + m
λλλλ/T) (1)

where: m = 0, ±±±±1, ±±±±2,

 T = Surface period

P
age 12.1282.7

The angle of diffuse scatter, θ2m , is related to the period of the roughness.

 θθθθ-2m

 y

 θθθθ+2m

 θθθθ1

 θθθθ2m

 x

Figure 4: Basic Scattering of Diffracted Light

It could be concluded that the diffraction patterns for machined surfaces, resulting from laser

light at different incidences to the surface, are characteristic of that surface. Therefore, from

this data, a determination of the type of machining performed on the surface can be made.

The amount of dispersion in a diffraction pattern is directly related to the surface roughness

of the material. This is true in the case of the non-machined as well as the machined surfaces.

The method developed by Shetty and Neault
14

 takes advantage of the fact that a light source

reflected off the surface of a work piece provides a signature pattern based on the roughness

of the surface. Since surfaces produced by various processes exhibit distinct differences in

texture, the specimens of the machined surfaces can easily be identified by looking at the

diffraction pattern - such as ground, shaped, milled or turned work pieces. Also, combined

with a simple computer algorithm, the engineering surfaces in question can be classified by

means of the measurement of the scattering intensities of the diffracted image. The basic

principle of the technique, therefore, involves using the diffracted light parameter off an

engineering surface plane, digitizing it and further comparing it to a calibration curve. It

offers a simple, reliable, and robust approach of evaluating the surface finish of engineering

surfaces regardless of the work piece orientation. Figure 5 shows a miniaturized surface

roughness probe developed as a part of this research project.

Figure 5: Miniaturized Surface Roughness Probe

Procedures of Measurement – Hardware in the Loop Method

The operation of the instrument is simplified by means of a microcomputer-based procedure

which provides the operator interaction in the form of a menu-driven graphical interface. This

P
age 12.1282.8

helps to guide the operator through the requirements for each phase of the process. There are

two phases during the operation, i.e. calibration and measurement. The calibration phase is

performed using two standards of high and low roughness values between which the

roughness value of the measured sample is expected. This procedure establishes the

calibration curve, which is to be followed any time any changes are made. These changes

could be related to the machining process or the reorganization of the machine set-up.

In the measurement phase, the data acquired in the measurement procedure is compared to

the data acquired in the calibration procedure. The objective of classifying surface roughness

of a machined work piece is attained in a measurement method utilizing laser and a

microcomputer-based vision system. The intensity of the collimated monochromatic light

source diffracted in the spectral direction is captured by a video system that provides an

analog signal to a digitizing system for conversion to digital information which is

subsequently modified to display the surface roughness value. The intensity of the diffracted

light is measured as a function of the gray levels of the image. It is then processed by the

digitizing circuit and compared against the previously defined calibration standard (Figure 6).

Results of the surface roughness experiments are calculated using computer algorithm. The

surface roughness probe is mounted on a Computer Numerically Controlled Machining

Center and programmed to take measurement periodically during machining operation.

 CNC MACHINE MICROCOMPUTER ANALYZER

Figure 6: Surface Roughness Sensing System on a CNC Machining Center

In this experiment, three ground samples of 16 µin, 32 µin, and 63 µin were used. Once the

sample was set up inside the machining center, the surface analyzer is then used to inspect

surface roughness at several different sections of the workpiece. The experimental values

were then averaged. The procedures were repeated for the two other samples. The values

obtained from the on-line inspection technique were compared with the roughness

measurements from the same samples taken using the standard contact-type profilometer.

Figure 7 shows that good experimental results of the measured average roughness value, Ra,

were obtained with the non-contact optical method as compared to the contact type method.

REFERENCE

TOOL PATH

CONTROLLER DIGITAL

I/O CARD

GRAPHIC-

BASED

SEQUENTIAL

ALGORITHM

ROUGHNESS

EVALUATION

ALGORITHM

DIGITIZING

SYSTEM

CCD

CAMERA

P
age 12.1282.9

Experimental Comparison of Roughness Measurements

0

10

20

30

40

50

60

70

Grind 1 Grind 2 Grind 3 .

Roughness Samples

R
o

u
g

h
n

e
s
s
 V

a
lu

e
s

(m
ic

ro
in

c
h

e
s
)

Optical Method
Profilometer

Figure 7: Comparison of Surface Roughness Measurements (Hardware-in the loop method)

Procedures of Measurement - FPGA Based System

For this research, we are currently using a Xilinx Spartan-3 series FPGA configured with the

Microblaze processor
9
 on a Spartan-3 starter board, from Digilent Inc

10
. The FPGA system

itself is designed using classic microprocessor design principles. Figure 8 outlines the

surface roughness measurement system. On the FPGA the processor (PROC) connects to

peripheral devices using the on-chip peripheral bus (OPB). Each such device is referred to as

an IP core. In this example, the probe acquisition circuit has a digital component (ACQD) in

the FPGA, as well as an external analog component (ACQA). Input-output logic (I/O)

provides a user interface (U.INT). The external memory controller (EMC) provides access to

additional memory (MEM). In general terms, apart from the use of an FPGA, this is truly an

embedded microprocessor system.

ACQA
PROC.

OPB

BUS

FPGA EMC MEM

I/O U.INT

ACQD

Figure 8: FPGA based processor system

For the surface roughness measurement system, a custom interface adapter card is designed.

The acquisition peripheral comprises the actual probe, the interface card (ACQA) containing

analog electronic components and an analog to digital converter (ADC), as well as digital

logic (ACQD) on the FPGA. In selecting an ADC for this application, the following design

goals are selected:

• Operation with 3.3 volt power

• The sensitivity must be suitable to measure input changes in the order of millivolts to

a bias voltage of approximately half that of the power supply

• A sampling rate of approximately ten Hertz

P
age 12.1282.10

• The time for the ADC to settle, allowing a first measurement must be less than two

seconds

In this application, changes to the input that are of the order of 1 mV, or 64dB smaller than

the bias voltage are typical. An ADC with a 3.3 Volt reference producing 14 bit values has a

discretization size of 0.2 mV, which is reasonable for such measurements. Several options

exist. To make more use of the FPGA resources, we use the circuit in Figure 9, which is

adequate for low-bandwidth applications. Xilinx application notes
11

 describe a similar

circuit. This ADC directly tracks the input using an up-down counter (Up/Dn) that provides

an estimate of the resultant code, which acts as a threshold for the pulse-width modulator

(PWM). The PWM and local low-pass filter act together as a digital to analog converter,

producing the local comparison voltage. The comparator is the only active analog

component in this circuit.

Digital − Discrete Time

Compare Synch. Up/Dn

Low
Pass Lcl PWM

Low
Pass Rcv

Rcv

Analog − Continuous Time

Figure 9: ADC Block Diagram

In hindsight however, given the state of the art in monolithic ADCs, companies such as

Analog Devices
12

, Maxim
13

 and others provide many options in terms of devices that are

small, efficient, and cost effective. While 14 bits may be adequate, with such parts,

producing a 16 bit value as with the PC design approach may be more standard.

Figure 10 is the prototype FPGA based surface roughness sensing unit consisting of surface

probe, FPGA board, and a display module with MicroBlaze 32-bit RISC soft-processor

architecture. The probe is attached to the vertical stand. Below the probe is a plate with

calibration surface samples. The FPGA board is inside the black box to the right, providing

RS232 serial output as well as LED visual output. The main program is written in C, and as

outlined earlier, the peripherals are described with VHDL.

Figure 10: FPGA Based Surface Roughness Sensing Prototype

P
age 12.1282.11

Figure 11 summarizes measurements taken with the FPGA based surface roughness sensing

prototype probe. The results are in agreement with the typical reading obtained by contact

type surface roughness measurement units such as Talisurf.

Figure 11: Comparison of Surface Roughness Measurements (FPGA results)

Conclusion

This paper has demonstrated a unique approach for the design and implementation of smart

sensors. The research highlights how the mechatronic system design principles can be

extended to the domain of embedded process and rapid prototyping. The procedure offers the

design engineer, a level of interaction with the modelling of a system before committing to

the real target hardware platform. Testing and development times for the sensor prototype

are substantially reduced. Microcontrollers embedded in the sensor makes the sensor more

cost effective, modular and easy to use in a wide variety. The paper also demonstrated how a

sensor instrumentation can be implemented using two different approaches (a) mechatronic

hardware-in-the lop (b) FPGA techniques. The test results show high level of agreement

Output Viltage versus Roughness (Ra)

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

1 2 3 4 5 6

Sample Number

O
u
tp

u
t
V
o
lt
a
g
e

Surface Roughness Samples

Roughness

Values

Surface Roughness Values (calibrated output voltage)

plotted against known values

P
age 12.1282.12

Bibliography

1. Shetty, D. & Kolk, R. (1998), Mechatronics System Design, International Thompson

2. Bhatt, S. (2001), Design and Development of Smart Sensors, Master Thesis, University of Hartford

3. Bogli, C. (2000), Study of a New Design Approach to Mechatronics Real-Time Hardware-In-The-

Loop Testing, Master Thesis, University of Hartford

4. Actel, http://www.actel.com/products/arm7/

5. Altera, http://www.altera.com/technology/embedded/emb-index.html

6. Xilinx, http://www.xilinx.com/

7. Xilinx, http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/capabilities/index.htm

8. Xilinx, http://www.xilinx.com/products/devboards/index.htm

9. Xilinx, http://www.xilinx.com/bvdocs/ipcenter/data_sheet/MB_sell_sheet_s3.pdf

10. Digilent, Inc., http://www.digilentinc.com/

11. John Logue, “Virtex Analog to Digital Converter,” Xilinx Application Note XAPP155, Sept. 23, 1999,

http://direct.xilinx.com/bvdocs/appnotes/xapp155.pdf

12. Analog Devices http://www.analog.com/

13. Maxim / Dallas Semiconductors http://www.maxim-ic.com/

14. Shetty and Neault (U.S. Patent) Methodology and Techniques for Surface Roughness Evaluation Using

Non Contact Techniques, 1993

P
age 12.1282.13

