
Paper ID #10033

A Hybrid Design Methodology for an Introductory Software Engineering
Course with Integrated Mobile Application Development

Vignesh Subbian, University of Cincinnati

Vignesh Subbian is an instructor/teaching assistant in the Department of Electrical Engineering and Com-
puting Systems at the University of Cincinnati. His research interests include embedded computing sys-
tems, medical device design and development, point-of-care technologies for neurological care, and engi-
neering education.

Dr. Carla C. Purdy, University of Cincinnati

Carla Purdy is an associate professor in the School of Electrical Engineering and Computing Systems,
College of Engineering and Applied Science, at the University of Cincinnati and an affiliate faculty mem-
ber in UC’s Department of Women’s, Gender, and Sexuality Studies. She received her Ph.D. in Math-
ematics from the University of Illinois in 1975 and her PhD. in Computer Science from Texas A&M
University in 1986. She is the head of UC’s B.S. in Computer Engineering Program and the coordina-
tor of the Preparing Future Faculty in Engineering Program. Her research interests include embedded
systems and VLSI, intelligent embedded systems, software and systems engineering, computational biol-
ogy and synthetic biology, agent based modeling and simulation, mentoring, and diversity in science and
engineering.

c©American Society for Engineering Education, 2014

P
age 24.56.1

 A Hybrid Design Methodology for an Introductory Software

Engineering Course with Integrated Mobile Application

Development

Introduction

This paper discusses an experimental version of a core undergraduate software engineering

course at the University of Cincinnati (UC). EECE 3093C – Software Engineering is a 4-credit

hour undergraduate course with an integrated laboratory component. It is a required course for

all computer science and computer engineering students. Traditionally, this course consisted of

in-class lectures, along with laboratory projects that required students to develop software for a

serious game based on a discrete-event simulation model using Java. The course design process

was built on the waterfall model, integrated with important concepts from extreme programming

(XP), including test-driven development using three levels of design and testing (system, black

box, and glass box) and an onsite customer. When UC recently converted their academic

calendar from quarters (10 weeks) to semesters (14 weeks), the additional instruction time

provided an opportunity to revisit and expand the design process model of the course. In addition

to the existing features of the course that allow effective instruction in contemporary software

engineering principles, the experimental version of the course incorporated the following

variations:

1. The laboratory project now involves open-source mobile application development;

2. The hybrid design methodology (waterfall and XP) is further explored by incorporating two

or more development cycles into the project, while additional classroom activities further

understanding of connections between the development process and application needs;

3. Five active-learning sessions are included to enable reflection on past co-operative education

or internship experiences and relate them to classroom learning. The objective of this novel

pedagogical strategy, which we call UnLecture, is to bridge the gap between software

engineering practice and computing education.

Background and Review

Software engineering, since its inception as a discipline in the late 1960s1, is continuing to

change and evolve in concert with advancements in computing hardware and software-intensive

systems. Hence, from an educational standpoint, it is important to frequently assess software

engineering practices not only to refresh curricular material, but also to strike a balance between

“aging practices” and “timeless principles” in software engineering instruction2. To this end, the

course EECE 3093, that has been taught for over a decade at UC, has always strived to maintain

a balance between traditional and contemporary concepts and techniques. The primary ABET

student outcomes (a-k) addressed in this course are:

P
age 24.56.2

1. Comprehend software development life cycle models, and project planning and organization,

for both traditional and distributed projects (a, g).

2. Understand how to develop specifications, design, and test code for a set of software

requirements and how to measure the quality of software developed and of the development

process itself (a, e).

3. Use team-building skills to work with the student’s team to plan, design, implement, test, and

develop a mobile application (a, c, d, e, g, k).

4. Comprehend formal software engineering methods (a, e).

5. Apply principles of the ACM/IEEE Software Engineering Code of Ethics to class work (d, f).

A few supplementary student learning outcomes are as follows:

6. Identify and relate real-world/cooperative education experiences to coursework, and reflect

on the connection between classroom learning and software engineering practice (i).

7. Comprehend global software engineering concepts and challenges (a, h).

Course Design

Lectures: The course material primarily focuses on the first five Knowledge Areas (KAs) of the

Software Engineering Body of Knowledge (SWEBOK)3: software requirements, design,

construction, testing, and maintenance. While the remaining KAs are covered in a newly

developed upper-level course (CS 6028- Large Scale Software Engineering), a brief introduction

is given to a few topics such as software quality and software engineering methods. In addition

to these KAs, other topics in the course include software engineering ethics and global software

engineering. A detailed list of in-class lecture topics is shown in Table I. Topics with active

learning component (UnLecture) are also marked in Table I.

Table I List of Course Topics (Summer 2013)

ID In-class Lecture Topic # Lectures UnLecture

1 Overview of Software Engineering Principles 1

2 IEEE/ACM Software Engineering Code of Ethics 1

3 Software Development Life Cycle (SDLC) models 3

4 Project Planning and Management 1

5 Software Requirements Analysis 3

6 Software Design and Modeling 3

7 Object-Oriented Programming (Core Concepts) 2

8 Mobile and UI programming, APIs 5

9 Software Design Patterns 2

10 Software Implementation, Re-use, Best Practices 3

11 Software Testing and Quality 6

12 Software Deployment, and Maintenance 3

13 Software Delivery, Business/Legal Aspects 2

14 Formal Software Engineering Methods 2

15 Global Software Engineering 1

P
age 24.56.3

UnLectures: The undergraduate engineering programs at UC include a strong cooperative

education (co-op) program in which students work in industry every other academic semester,

completing five co-op rotations upon graduation. An UnLecture is a participatory session

designed to “tap” the knowledge and expertise that students gain through cooperative education

and utilize this knowledge and expertise to facilitate meaningful discussions related to the course

topics. Each UnLecture involves a reflective writing component before and after a “themed”

active-learning session. Five UnLectures based on the following themes were introduced in the

Summer 2013 class: (1) project management, (2) design and requirement analysis, (3) software

implementation practices in the industry, (4) software testing and maintenance, and (5) software

engineering ethics and technology/patent wars. These five sessions jointly cover nine course

topics as shown in Table I. More details on the pedagogical model of the technique, UnLecture

logistics, and related findings are elaborated on in a separate paper4.

Laboratory project: Students are required to design, develop, and test an Android® mobile

application using a hybrid design process model. This design methodology, as mentioned earlier,

is based on the traditional waterfall model, integrated with important XP principles such as Test-

Driven Development (TDD), small releases, and on-site customer. During the Summer 2013

offering of this course, several other XP principles were also incorporated into one or more

releases. The benefits and pitfalls of using these XP principles in a classroom setting are

discussed in a later section. A total of nine small releases were executed, with each release

emphasizing a waterfall and/or XP principle. Table II shows the list of releases along with the

timeline and emphasis for each release. Although Table II implies multiple incremental releases,

the two pre-alpha releases are in fact not software releases but are actually outcomes of the

requirements and design phases in a traditional waterfall model, and subsequent releases are

biased towards an XP model through incremental application development.

Table II Laboratory Project Release Cycle

Release Name and Version # Timeline Emphasis (Summer 2013)

Zero-feature Release Week 2
System metaphor, software reference

documentation

Pre-alpha 0.1 Week 4 Requirements analysis (vs simple design)

Pre-alpha 0.2 Week 6 Object-oriented modeling, coding standards

Alpha 0.1
Week 8

Week 9 (Design Reviews)

Test-Driven Development (TDD), continuous

integration, pair programming

Alpha 0.2 Week 10 The planning game, TDD, 40-hour week

Beta 0.1 Week 11 TDD, code reviews

Beta 0.2 Week 12 Refactoring, on-site customer

Release Candidate (RC) Week 13 Coding standards, refactoring

Release-To-Manufacturing (RTM) Week 14 On-site customer, collective code ownership

Migrating the laboratory assignments and project from web-based/general-purpose application

development to mobile applications obviously comes with the cost of changing and setting up the

new development environment and relevant tool support. The Android Software Development

P
age 24.56.4

Kit (SDK), however, is relatively straightforward to set up, and comes with complete support for

application development, testing, and debugging, a mobile device emulator, and extensive

documentation. The original version of the course required students to build applications in the

Java programming language. Since Android applications are also written in Java, the only

overhead was adapting to the Android SDK. Furthermore, given the popularity of mobile and

tablet devices, students were generally enthusiastic about learning to build such applications.

Student Assessment: Exams, individual assignments, and participation in UnLectures and

associated reflective writing constitute 50% of the grade. The laboratory project constitutes the

remaining 50% of the course grade, and students are assessed based on both individual

contribution and team performance. Every release (see Table II) is graded based on their

documentation, design reviews, code correctness, and demonstration. Design reviews are

delivered in the form of in-class oral presentations. Code correctness is assessed by running

various test cases written as a part of TDD. Each team is also required to maintain a productivity

chart to track progress and guide development plans for upcoming releases. Releases are held

biweekly during the first half of the term to allow for students to become acclimatized to the

development environment and the design process model of the course. After the midterm,

releases are held on a weekly basis. Thus, the release cycle, in effect, emulates a waterfall model

at the beginning by providing sufficient time to carry out detailed requirements analysis and

design, and tends to shift towards an agile/XP model once the implementation has begun.

Benefits and Pitfalls of using XP Principles in a Classroom Setting

With the intention of evaluating our hybrid design methodology in a classroom, a subset of the

12 generally accepted XP practices5 was integrated with some aspects of the traditional waterfall

model. The extent of conformance and the feasibility of each practice, as observed in the

Summer 2013 laboratory, are as follows.

Simple design and the planning game: A key difference between the waterfall and XP models is

that the waterfall model would tend to gather the requirements and define the specifications at

the beginning, whereas XP starts with the “simplest possible” design and then builds/modifies

the system gradually, with each iteration starting with user stories about what should be added or

modified next. User stories and iteration planning, collectively referred to as the planning game,

are not always suitable for applications where safety and security are major concerns, and are not

part of the development process at many of the local companies where our students co-op and

often become full-time employees. Alternatively, detailed requirements analysis and object-

oriented modeling using UML6 is used to derive specifications early in the development process.

Test-Driven Development (TDD) and small releases: Once the design and requirements analysis

phases are complete, implementation and testing are done incrementally in the form of small

releases. The practice of “small releases”, as shown in Table II, was perceived to be extremely

useful for both the instructor and student teams in evaluating and keeping track of progress in

P
age 24.56.5

system development. TDD in the hybrid methodology is defined as follows: a tester first defines

boundary tests for the modules to be added or modified by treating them as “black boxes” and

then hands them off to a developer. The developer would then write the code, and also “white

box” tests to make sure that their code does what it is supposed to. The developer would also

need to make sure that inputs and outputs are consistent with the specs they were given, to

facilitate integration. After a module passes both white and black box tests, the team qualifies it

to be a candidate for integration into the system. Students are also required to write and maintain

system-level User Acceptance Tests (UAT) based on user/customer requirements for functional

and quality testing purposes. Although this testing strategy may not be defined exactly as it is in

XP, it is very similar to XP’s TDD, and it has evidently served the students well in familiarizing

them with the different levels of software testing.

Pair programming: Each project team in the Summer 2013 class consisted of a student pair.

Teams were directed to work as a driver (coder)-navigator (reviewer) pair on a single

workstation, and swap roles frequently. Students were also advised to swap developer-tester

roles every time they took the driver’s seat so that both team members receive implementation as

well as testing exposure. Virtual pair programming was encouraged when physical team

meetings were not possible. Some teams, especially students who have tried a pair programming

model in their industry co-op or internship assignment, suggested that this work model was not

efficient for academic projects and that it is sometimes difficult to follow, especially while

writing black box tests. This is contrary to findings from other case studies in undergraduate

classrooms7. However, there was at least one team that used this model by projecting their work

on a large screen and following a driver-navigator scheme during almost every programming

session. This team claimed that the model helped them in both learning and productivity. Since

this may not apply to all teams and/or student personas, systematic code reviews were strictly

enforced and documented during every release, and the emphasis on “single workstation” pair

programming was relaxed.

System metaphor: Using a system metaphor is perhaps one of the most questionable and not

clearly understood practices of XP. It is essentially a “story” (a word, phrase or sentence) that

describes the system’s core functionality using a simple metaphor. To test the usefulness of this

practice, every team came up with a system metaphor for their application during the zero feature

release and used it to explain their project to on-site customers, visitors, and reviewers. It was

fairly easy to find system metaphors for some applications. For example, “punch card” was used

as a system metaphor to describe a mobile application that will be used by freelancers to manage

billable hours and tasks for various clients. Based on the system metaphor, different components

of the system (classes) were also named metaphorically, for example, clients, services, and

timestamp. On the other hand, it was relatively difficult to come up with metaphors for some

applications. For example, one of the teams had difficulty in finding a metaphor for an

application that will generate and manage internet memes. While there are ways to overcome P
age 24.56.6

difficulties in finding a good metaphor8, it does not seem particularly useful from an educational

perspective.

Collective code ownership, continuous integration and refactoring: Each team maintained a

central repository to version control their source code and related documentation. Teams were

advised to run tests and check-in frequently so as to maintain quality during integration. While

students learned the fundamentals of software maintenance, the concept of “collective code

ownership” does not fit well with the idea of “independent testing”, especially when there is only

a semester to learn, set up and use the testing protocol. Nonetheless, when a fully-operational test

suite is ready, which is usually towards the end of the release cycle (see Table II), students are

exposed to practices such as refactoring and continuous integration.

40-hour week: It is assumed that students are enrolled in at least four courses during an

academic semester. In order to account for the workload in all the courses, a 10-hour week (4 in-

class/lab hours + 6 out-of-class hours per week) was recommended.

Coding standards: This is one of the most useful XP practices for students to learn and conform

to. Hence, reference documentation and Android/Java coding standards were heavily emphasized

throughout the release cycle.

On-site customer: The course instructor played the role of an on-site customer for the most part,

and provided feedback after every release. Additionally, software developers and project

managers from the university’s IT services were invited to serve as reviewers during beta

releases. This allows students to develop interpersonal skills, specifically personal effectiveness

and customer interaction skills.

In summation, agile programming models such as XP or scrum, especially as presented in 14

weeks in a classroom setting, where many of its requirements cannot be adequately enforced,

may not be appropriate for systems where safety and security are of paramount importance. For

example, in the embedded systems industry, there is an increased emphasis on formal methods

for designing and testing safety-critical systems such as medical devices. XP practices such as

“user stories” would not be enough to drive specifications and testing in such applications, and

much more detailed requirements would need to be elicited. Hence, computer engineers and

scientists need to learn systematic design approaches such as UML, which will enable them to

design reliable and secure software systems. On the other hand, it is reasonable to expose

students to agile models, as there are situations where agile programming by itself is appropriate,

and many engineering teams use this kind of model in industry. Therefore, some aspects of XP

can be presented and integrated into the hybrid methodology.

Course Assessment

Student demographics: Ten students (5 computer science, 4 computer engineering, and 1

computer engineering technology) enrolled and successfully completed the course during

P
age 24.56.7

Summer 2013. The enrollment was significantly lower than the average enrollment due to the

fact that this was the first summer term in the semester system and many students were on a co-

op rotation in order to account for the academic calendar conversion. The small class size,

however, provided an opportunity to implement and carefully assess changes in course delivery.

Course evaluation results (Summer 2013): Table III shows student responses to course-specific

questions and excerpts from student feedback. While most of the excerpts come from class

surveys, some comments were taken from students’ reflective writing assignments. UnLecture

evaluation results are presented in a related paper4.Table IV shows a longitudinal assessment of

student learning in this course. It can be observed that there has been significant improvement in

confidence levels in the following areas: mobile programming, design and modeling, and

software testing.

Table III Course Evaluation Results

Course-specific Question
Strongly

Disagree
Disagree Neutral Agree

Strongly

Agree

Using a SDLC model in the course project aided in both writing better

software and understanding various software engineering principles
0% 0% 0% 10% 90%

Applying Waterfall and XP practices to the course project improved my

understanding of the two SDLC models itself
0% 0% 0% 20% 80%

Excerpts from student feedback

1
“Requirements analysis, design, and modeling in this course surpass any previous experience that I have had….UML diagrams

were completely new to me, and opened up a more appealing structured design and analysis process.”

2
“…learned that meticulous documentation of requirements is important as it is hard to work in teams when the requirements

largely exist in only one person’s head.”

3 “Learning how to do a wide of array of testing was useful”

4 “I would’ve liked to have seen more lab classes in which we were taught about testing.”

5
“…while that (design) takes up a lot of time, it does stay relatively organized. There is also less waiting around time using this

(hybrid) model. You make test cases before you start, implement one goal at a time, and then test if it works.”

6
“This class has given me the vocabulary to make sure I am asking the right questions. Earlier (in my co-op), I simply didn’t

know the questions to ask.”

7 “I have enjoyed the course immensely, great content, interesting lectures, and interesting unlectures. Thank you.”

Table IV Assessment of Student Learning

Expertise Assessment
Rating*

Pre-class Mid-term Final

Rate your expertise in high-level programming in general 6.8 7.1 7.6

Rate your expertise in Mobile programming (Java/Android) 3.6 5.7 7.0

Rate your "confidence-

level" (or awareness)

in each of the

following topics

Project Management

N/A

7.1 7.9

Requirements Analysis and Specifications 7.9 8.3

Design and Modeling 6.4 7.7

Object-Oriented Programming 7.8 8.6

Software Testing 5.7 7.5

Code Maintenance 7.1 7.9

Ethics in Software Engineering 7.7 8.0

* Average of students ratings on a scale of 1-10, 1 being least confident and 10 being highest level of confidence

P
age 24.56.8

Overall, the course was successful in implementing a hybrid software development life cycle

(SDLC) model for the laboratory project. “Structured design up front” and “Test-first

development” are highlights of our laboratory’s hybrid model, and they are also important

student learning outcomes (SLOs) of the course. Other educators have also observed similar

hybrid models to be effective for classroom instruction purposes9.

Conclusion

In summary, the software engineering course design provides simple solutions to effectively

integrate a hybrid design methodology, mobile application development, and active-learning

techniques. It is anticipated that this work will be especially useful for first time course

developers and/or instructors interested in migrating from general-purpose/web application based

software engineering courses to mobile application-based courses. Furthermore, the paper also

addresses the following aspects from a classroom instruction perspective: (1) the importance of

structured design and requirements analysis in building secure and reliable software systems, (2)

the benefits and pitfalls of using XP in a classroom setting, and (3) the need to introduce

concepts important for secure and safety-critical systems into introductory software engineering

courses.

References

1. M. Shaw, “Prospects for an engineering discipline of software.” Software, IEEE 7, no. 6, pp. 15-24, 1990.

2. B. Boehm, “A view of 20th and 21st century software engineering.” In Proceedings of the 28th International

Conference on Software Engineering, pp. 12-29. ACM, May 2006.

3. “SWEBOK: Guide to the software engineering Body of Knowledge” IEEE Computer Society, 2004.

4. V. Subbian, C. Purdy, “UnLecture: Bridging the gap between computing education and software engineering

practice,” in ASEE Annual Conference, Indianapolis, IN, 2014 (accepted).

5. K. Beck, “Embracing change with extreme programming,” Computer, vol. 32, pp. 70-77, 1999.

6. M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Language. Addison-Wesley

Professional, 2004.

7. K. M. Slaten, M. Droujkova, S. B. Berenson, L. Williams and L. Layman, “Undergraduate student perceptions

of pair programming and agile software methodologies: Verifying a model of social interaction,” in Proc. Agile

Conf., pp. 323-330, 2005.

P
age 24.56.9

8. R. Khaled, P. Barr, J. Noble and R. Biddle, “System metaphor in “extreme programming”: A semiotic

approach,” in 7th Int’l Workshop Organ. Semiotics, 2004.

9. A. Shukla and L. Williams, “Adapting extreme programming for a core software engineering course,” in Proc.

15th Conf. Software Eng. Edu. and Training, pp. 184-191, 2002.

P
age 24.56.10

