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Automatic Generation of SQL Queries

Abstract

Structured Query Language (SQL) is an ANSI and ISO standard declarative query
language for querying and manipulating relational databases. It is easy to write SQL queries
but very difficult to validate them. Often students conclude that a SQL query is correct simply
because the query compiles, executes, and fetches data. Therefore, it is crucial that SQL
assessment tasks are carefully designed and implemented to ensure a deep learning
experience for students. In this paper, we propose an approach to automatically generate SQL
queries for assessing students’ SQL learning. SQL concepts are modeled using RDFS. The
user can select SQL concepts to be included in an assessment and our approach will generate
appropriate queries. The proposed approach is generic and is database metadata driven. A
Web-based prototype system is developed to illustrate the effectiveness of the proposed
approach.

1. Introduction and Motivation

Automatic question generation is an active area of research. Its practical applications are many,
especially in the context of learning assessment. In both online and traditional face-to-face
courses, learning outcomes are used as standards for measuring and comparing performance and
achievement of learners. In a broader context, outcomes-based assessment is widely used in
evaluating and improving academic degree programs. The former plays a central role especially
in ABET accreditation of undergraduate engineering and computer science degree programs.1

Taxonomies such as Bloom’s in the cognitive domain and SOLO are used to provide a shared
language for describing learning outcomes and performance in assessments.7

Contrary to popular belief, online courses require more instructor time relative to face-to-face
courses.8 Factors such as providing immediate and frequent feedback and assessing expected
outcomes objectively assume even greater importance in online courses. In this context,
automatically generating questions that assess a given set of concepts at various levels of revised
Bloom’s taxonomy is a tremendous help for administering both online and face-to-face courses.
This is the driver for our interest in automatic question generation in highly structured contexts.

In this paper, we address the problem of automatic generation of Structured Query Language
(SQL) queries. SQL is a database language for querying and manipulating relational databases.
Writing and executing SQL queries is an integral part of relational database courses. The latter is
a required course in most computer science, information technology, and management
information systems degree programs. SQL is standardized by the American National Standards
Institute (ANSI) and the International Organization for Standardization (ISO).

Since SQL is a declarative query language, it is easy to write SQL queries. A user simply
specifies what data is to be retrieved rather than specifying how to retrieve the data. As a
consequence, it is quite difficult to validate that a SQL query does what the specification has
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called for. Often students conclude that a SQL query is correct simply because the query
compiles, executes, and fetches data. Since typical databases are vast in size and data
relationships are complex, it is not feasible to manually validate SQL queries by browsing the
data. Therefore, it is crucial that SQL assessment tasks are carefully designed and implemented to
ensure a deep learning experience for the students.

Our approach to automatic generation of SQL queries is shaped exclusively by the following
considerations. Generating good questions manually is an intellectual activity and takes time. A
good assessment should test for depth of understanding of the learner at various levels (e.g., six
levels in the revised Bloom’s taxonomy). It should be possible to validate the answers
automatically. Especially for complex SQL queries, there can be multiple correct ways to write
the query. Under this scenario, grading SQL questions can take substantial amount of instructor’s
time. One practical option is to compare the result of executing the SQL query (corresponding to
the instructor’s solution) with that of the result of executing the SQL query provided by the
student. Though this provides some assurance about the correctness of student’s SQL query, but
there is no absolute guarantee since the results may differ for a different database state.

Using question banks for SQL assessment have their limitations. There are only a fixed number of
questions and they will become public knowledge after a few semesters of usage. Furthermore,
typically question banks are tied to a specific textbook. More importantly, test bank questions
may not assess the SQL topics that an instructor has emphasized in the class. Also, test banks
may not assess the topics at desired levels of the revised Bloom’s taxonomy.

The overarching goal for our work is driven by the following considerations: questions should be
generated on the fly, no question bank should be involved; answers to the questions should also be
generated automatically; generated questions should feature all ANSI/ISO SQL concepts,
individually or in permissible combinations; question generation system should work with any
relational database created using any open source or commercial database management systems
(that adhere to ANSI and ISO SQL standards); in addition to the generated questions and
solutions, the system should provide additional information to facilitate self-directed guided
learning.

Answering questions generated using the proposed approach requires deep understanding of SQL
concepts. At the current stage of the work described in this paper, generated questions are meant
for student assessment. These questions can be used for two distinct scenarios. In the first,
students are asked to compute an answer for the query by manually executing it on a small
database. Instructor obtains a solution for the same query by simply executing the query on the
same database. Assessment is manually done, though it can be easily automated. In the second
scenario, students are asked to describe in plain English what problem is solved by a given SQL
query. Currently our system does not provide solutions to these queries. Also, assessment is
completely manual for this category. Since our system does not generate multiple choice
questions, generating distractors is not an issue.

The remainder of this paper is structured as follows. Related work is described in section 2. We
describe our approach to automatic generation of SQL queries in section 3. Finally, section 4
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indicates future extensions of this work and concludes the paper.

2. Related Work

In a broader context, there are two major approaches to automatic question generation. The first
approach deals with generating questions from natural language texts. Currently there is a
tremendous interest in this direction.21, 25, 26 A recent edition of Dialog & Discourse journal
features a special issue on automated question generation from natural language texts.22

The second approach deals with generating data and questions in a more structured and
constrained contexts. Our approach to question generation presented in this paper falls under this
category. Generating data and questions automatically that satisfy a given set of constraints has
been actively investigated in diverse contexts.10–14 A taxonomy of questions for question
generation is presented in.16 In the following, we provide a brief description of approaches to
automated question generation. Given the diversity in context, purpose, and approach, it is not
possible to group the approaches into semantically meaningful categories. These approaches are
motivated by very specific practical needs and tend to be tactical rather than formulating a generic
framework for question and answer generation. Also, information about their effectiveness
evaluation experiments is not available in most cases.

An automatic question pattern generation method based on domain ontologies is discussed in.18

A set of question patterns referred to as predictive questions are generated. Query templates
provide answers to these questions. Answers to predictive questions are extracted from a
knowledge base. This approach is motivated by the need for answering questions posed in natural
language against a knowledge base.

Papasalouros et al.19 describe an approach and a prototype implementation for automatically
generating multiple choice questions using domain-specific ontologies. Ontologies are
represented using OWL (Ontology Web Language).

Siddiqi et al.27 describe IndusMarker, an automated short-answer marking system for improving
teaching and learning of an object-oriented programming course. IndusMarker is designed for
factual answers and is based on structure matching.

Al-Yahya2 describes OntoQue system for generating questions for objective assessment. OntoQue
uses knowledge inherent in domain ontologies to generate semantically correct assessment items.

A template-based approach to question generation is presented in.10 A template is associated with
each learning objective. The system is demonstrated for generating questions for tree data
structures assessment.

Question generation component of DynaLearn is presented in.13 It generates 23 different question
types using a four-step question generation process. P
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Li and Sambasivam11 describe a system for tutoring computer architecture and an approach to
objectively assessing difficulty level of questions. The generated questions involve only one
variable. In,12 they extend the work to generate questions that involve multiple variables.

In software testing, assertions are used to uncover software defects. An assertion is a statement
that must be true. An approach to automatically generating assertions to speedup assertion-based
software testing is discussed in.3

Relational databases is an area that requires automatic generation of representative data to
populate databases so that applications can be tested with realistic data.6 Typically real data is not
available in development and test environments due to security and privacy concerns. Automatic
generation of SQL queries required for testing relational database engines is described in.4, 9, 15, 17

Prior24 examines the difficulty of assessing students’ learning in formulating SQL queries. This
study concludes that the conventional approach to SQL assessment — a written test where
students write SQL queries, but the queries are not executed on a database — does little to
encourage students to adopt a deeper learning approach to the subject. AsseSQL – an online
environment for SQL assessment – is described in this paper. AsseSQL allows students to write
and execute their queries and compare the results obtained with expected results. Questions are
drawn from a question bank.

Brusilovsky et al.5 describe SQL Exploratorium — an architecture for integrating tools for SQL
learning. It offers three functions: a large set of interactive annotated SQL examples; SQL
Knowledge Tester (SQL-KnoT), using which students can practice and test their SQL
problem-solving skills; SQL-Lab, which allows students to formulate and execute queries,
observe their results, and test performance of SQL scripts. Annotated examples explain what each
line in a query does. SQL-KnoT generates question text using templates for a set of predefined
databases. Questions are evaluated automatically by comparing the results obtained by executing
the user query and the pre-stored solution query.

3. Proposed Approach to Automatic Generation of SQL Queries

Central to our approach are two knowledge structures: a SQL ontology expressed as RDFS,5 and
metadata about databases. The SQL ontology is available for free download at.20 It has 347 RDF
triples and defines 166 rdfs:Class’s. For the purpose of this paper, SQL ontology models domain
concepts at the right level of granularity. The SQL ontology is the basis for selecting concepts for
automatic question generation. A view of the ontology displayed in Protege is shown in figure 1.

ISO SQL standard specifies a requirement that all relational database management systems
(DBMS) should provide access to database metadata. The latter comprises information such as
names of databases, names of tables in a database, attributes in a given table, database constraints,
and database indexes, among others. In PostgreSQL DBMS,23 metadata information is stored in a
database schema named information schema and the latter has several base and virtual tables
including pg tables, pg attribute, pg constraints, pg database, and pg index, among others.
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Figure 1: A view of the SQL ontology displayed in Protege

Therefore, metadata can easily be retrieved using the SQL language itself.

We have used Java 7, Tomcat, JDBC, JSPs and Servlets, HTML5, CSS3, PostgreSQL, and
JavaScript for developing the Web application. There is no compelling reason to develop the
solution as a Web application but for the accessibility convenience through a Web browser.

3.1 Automatic Generation of SQL Queries

The home page of the Web application for automatic generation of SQL queries is shown in
figure 2. A user first selects a database against which to generate queries using the dropdown list
at the center-top. Using the link immediately below one, the user can view the data model of the
database. The left column radio buttons are used to indicate how many tables the query should
involve (one, two, or more than two). Alternative, the user can indicate specific tables that should
appear in the query using the list box right below the radio button group.

The SQL ontology is displayed in the form of a tree in the center scrollable list box. The user can
check one or more SQL concepts to indicate which concepts should appear in the query. SQL
query is generated by clicking on the button labeled Generate Query.

Successful generation of the query involves randomly selecting the required number of tables (if
the user has not explicitly indicated table names) so that the generated query illustrates the chosen
SQL concepts. The system also needs to deal with situations where the user has specified less
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Figure 2: Web application for automatic SQL query generation

than the number of tables required to generate the query. For example, if the user has specified
only one table and has selected inner join SQL concept, the system must determine the name of
other table which has referential integrity relationship with the table specified by the user. The
metadata table named pg constraints is queried to determine the table name.

3.2 Automatic Generation of Solutions to SQL Queries

Since the Web application is connected to a PostgreSQL server, executing the generated SQL
query is simply sending the query to the server using JDBC and displaying the results returned
(see figure 4). These results are compared with those obtained by executing the SQL query
written by the student. As noted earlier, multiple solutions can exist for complex SQL queries and
this is an automated way to validate student queries very quickly.

3.3 SQL Questions Encompass all ANSI/ISO SQL Concepts

This feature primarily depends on the comprehensiveness of the SQL ontology. The mapping of
user specified SQL concepts to question templates is stored in XML files. Replacing one SQL
ontology with another requires changes only to this XML file, and no source code changes are
required. The query generation templates construction takes into account the grammatical
structure of SQL queries (figure 4). A basic SQL query can be constructed using only constructs
in the first two lines. The remaining four clauses are optional. Not all the four need to be present
(i.e., a subset is permitted). However, if a subset of them are present, they should appear in the
order shown in figure 4. P
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Figure 3: Query to illustrate SQL LEFT OUTER JOIN concept

Figure 4: General structure of SQL queries

3.4 Dealing with Different Open-source and Commercial Databases

Though the ANSI/ISO SQL standard exist, not all DBMS vendor products comply with the
standard. Typically, commercial vendors implement a subset of the SQL standard and also
provide additional SQL features that are unique to their products. Open source DBMS products
often implement only a subset of the SQL standard and provide no additional features unique to
their products. DBMS vendors vary widely in how metadata is stored and managed. This makes it
difficult for automated SQL generators to work with diverse open source and commercial DBMS
products.

Our approach to this problem is to use a software design pattern called strategy. The latter allows
for defining a family of algorithms, encapsulating each one, and making the algorithms
interchangeable. We have defined a generic interface for metadata access to relational databases.
An algorithm corresponds to providing a concrete implementation of this generic interface for a
specific DBMS such as MySQL. Strategy design pattern lets these algorithm vary independently
from the Web application for automatic query generation. This work is in progress.
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3.5 Facilitating Self-directed Guided Learning

There are two scenarios for self-directed guided learning. In the first scenario, the system
generates the query and asks the user to explain what the query does. In the second instance, the
user is given the query in natural language and is asked to write the corresponding SQL query. In
both cases, the user may request hints and the system responds appropriately so that the solution
emerges incrementally.

Consider the first scenario. For any given SQL query, following are the standard set of hints:

1. Where does the data come from? That is, which tables do you need to access? (partial
FROM clause).

2. Which columns do you need to retrieve? (the SELECT clause). If the data comes from
more than one table, how do you associate the data in a table with its related data in another
table? (specifying JOIN conditions)

3. How do you restrict rows from each table? In other words, how do you specify the WHERE
clause?

4. Do you need to group data? If so, on what columns do you group data? In other words, how
do you specify the GROUP BY clause?

5. Do you consider all groups? If so, what criteria do you use to determine which groups to
keep and which groups to reject? In other words, how do you specify the HAVING clause?

6. Do you need to sort the data? On what columns? In which order? In other words, how do
you specify the ORDER BY clause?

The second scenario is more involved. The system needs to generate textual description of the
auto generated query. Once this is done, the second scenario is identical to the first. Generating
textual description requires parsing the auto generated SQL query first to construct the
corresponding Abstract Syntax Tree (AST). Text generation algorithms will be used to produce
textual descriptions of SQL queries. This work is also under progress.

4. Conclusions and Future Work

In this paper, we have described a Web-based system for automatically generating SQL queries.
Given the difficulties in validating SQL queries, it is important to ensure that students learn SQL
concepts by using appropriately designed learning activities and assessments. The system
described in this paper is our first step towards achieving this goal.

Our future research direction is multifold. First, we will implement the strategy design pattern so
that our system can work with databases which are managed by MySQL, Oracle, and Microsoft
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SQL Server. The second one involves generating natural language description of an auto
generated SQL query using textual generation algorithms. Third, we plan to extend the approach
to generate multiple choice questions. Fourth, we will measure the effect of the Web-based
system on student learning by having control and experimental groups.
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