
Paper ID #10699

Designing, Building, and Testing an Autonomous Search and Rescue Robot
— An Undergraduate Applied Research Experience

Zachary Cody Hazelwood

Cody Hazelwood is currently a software developer at the Alpha High Theft Solutions division of Check-
point Systems. He received the B.S. degree in Professional Computer Science from Middle Tennessee
State University in May 2013. He currently does freelance projects involving mobile software develop-
ment, microcontroller applications, and electronics. He enjoys learning about and testing ways to improve
people’s lives with technology.

Dr. Saleh M. Sbenaty, Middle Tennessee State University

Saleh M. Sbenaty is currently a professor of engineering technology at Middle Tennessee State Univer-
sity. He received the B.S. degree in E.E. from Damascus University and the M.S. and Ph.D. degrees in
E.E. from Tennessee Technological University. He is actively engaged in curriculum development for
technological education. He has authored and co-authored several industry-based case studies. He is also
conducting research in the area of mass spectrometry, power electronics, lasers, instrumentation, digital
forensics, and microcontroller applications.

c©American Society for Engineering Education, 2014

P
age 24.380.1

Designing, Building, and Testing an Autonomous Search and Rescue Robot —

An Undergraduate Applied Research Experience

Preamble

Middle Tennessee State University Undergraduate Research Center, MTSU URC, was created in

2004 to promote research at the undergraduate level and to provide university support for

undergraduate students and the faculty members who mentor them in scholarly and creative

activities. This includes providing information and financial support through Undergraduate

Research Experience and Creative Activity, URECA, grants. The URECA Committee evaluates

proposals based on their merits. This committee is composed of accomplished and passionate

faculty representatives from all five colleges at MTSU.

Universities usually do research as part of their missions (teaching, research, and service). As the

institution with the largest undergraduate population in TN, MTSU is committed to being a

leader in undergraduate education in the state. MTSU is known for student-centered learning and

great classroom teaching. A natural extension of the classroom is the one-on-one interaction

between a research student and his/her mentor that can shape a student's career.

URC Mission

As part of the Office of Research, the URC mission is to be the central hub for

communication about undergraduate research grant programs and other related opportunities

on and off campus and to distribute university funds for undergraduate research and creative

projects and travel to disseminate results.

URC Vision

The URC is pursuing its vision to nurture a culture of research and creative activity through

support for undergraduate students and their faculty mentors.

URC Values

Implement the goals of the University's Academic Master Plan related to the URC mission

with the following values:

 Excellence in research, scholarship, and creative projects.

 Opportunities for student-centered learning.

 Productive internal and external collaborations and partnerships.

 Success in academic and professional careers of our undergraduate students and their

faculty mentors.

P
age 24.380.2

Why Should MTSU Fund Undergraduate Research?

Through URECA grants and other center activities, MTSU invests $120,000 in

undergraduate research grants each year. Research involving undergraduates is a logical

investment because it helps the university to:

 Maintain strong ties with alumni,

 generate a workforce of accomplished and sought-after graduates,

 build strong graduate programs,

 provide the extra challenge and preparation for high-end students going to top-notch

graduate schools, and

 attracting the 'best and brightest' to our campus

We consider undergraduate research to be a signature program at MTSU

Why Should an Undergraduate Student Do Research?

Undergraduate students are encouraged to conduct research since this unique experience put

them a cut above the rest when applying for jobs. This is true since undergraduate research

helps students by:

 Integrating coursework through “hands-on” projects.

 Creating independence and autonomous researcher.

 Building Resume - writing a proposal, completing a research project, writing a final

report, and orally present the results greatly enhance the student’s experience.

 Preparing for graduate school, where a main goal is a research project.

 Developing “soft skills” important for entering into and succeeding in the job market.

 URECA grants allow students to build skills in their chosen fields without having to

work an outside job.

The current paper describes the undergraduate research experience for an applied hands-on

project and how this benefited the student.

Introduction

Robotics is a relatively young field. One of the first demonstrations of Robotics as we know it

occurred in 1898 when Nikola Tesla built a remote controlled boat and demonstrated it at

Madison Square Garden. The Unimate, an industrial robotic arm, was first introduced at General

Motors
1
 in 1962. As robotics have improved, they have become very useful, especially in

dangerous situations. They can enter into locations that humans could not without placing lives

in danger. They can be strong enough to lift cars, or they can be accurate enough to perform

delicate surgery. So why do we not use robotics more often? It is because robotics is an

expensive field. For example, including development costs, the Northrop Grumman RQ-4

Global Hawk, currently used by the US Air Force and Navy, NASA, and the German Air Force,

P
age 24.380.3

costs $218 million dollars
2
. Despite these numbers, it is possible nowadays to develop a low-

cost robot prototype that, with some minor physical improvements and up scaling of component

quality, could be used and afforded by small-town law enforcement, rescue, and emergency

management teams. The outcome of the project is important, because it demonstrates that the

accessibility of robotics is increasing rapidly, and that it would be feasible for robots to be used,

even on a budget.

Burning buildings, collapsed mines, and hostage situations all have one thing in common; they

are dangerous for rescuers. Robots are, therefore, a preferred substitute! Robots can accomplish

many tasks without requiring a human being to enter a dangerous location, thereby possibly

saving lives. In the past, robots were not an option due to the high cost involved and the training

required to operate them. However, with modern advancements in technology, robots are

becoming increasingly used in situations and locations that were unthinkable in the past.

The objective of this paper is to develop an inexpensive, easy to operate, autonomous robot that

is capable of navigating itself in dangerous situations. This would be a significant project,

because it would demonstrate that using robots is not too far out of reach, even for local

emergency crews and law enforcements. This project explores artificial intelligence as it relates

to self-guided robots, microcontroller programming and code optimization, wireless video

streaming, and remote control using a smartphone’s or tablet accelerometer. Upon the project’s

completion, the plan is to develop a very simple to use robot capable of driving itself through a

building while sending a video feed from a user-controllable camera back to the smartphone.

The strategy for implementing this project was to use and integrate the knowledge that the

student had obtained from several courses such as Microprocessor Operation and Control,

Intelligent Robot Systems, and Electronics along with open-source hardware and software

libraries to develop a prototype robot. The project started by developing a very simple robot on

which to build a software platform. The initial robot would have a remotely operative design

and then move to the implementation of autonomy. One important issue to keep in mind when

implementing autonomy was that there needed to be a proper balance between full autonomy and

user control. In a search and rescue type environment, because of the unpredictability of an

environment in a disaster situation, it is important that accurate manual control can be obtained if

needed
3
.

Project Background

Carnegie Mellon University is on the forefront of research for Search and Rescue robots. One of

the most notable developments is the Snake Robot (also known as a hyper-redundant robot).

The National Institute of Standards and Technology is also doing research on Search and Rescue

robots. They have created a competition with three arenas of varying difficulties. Participants

are required to navigate through the arenas to complete tasks without damaging the environment

or the manikins. With careful data collection and observations of these competitions, they were

able to explore the variety of robot implementations, the pros and cons of each implementation,

P
age 24.380.4

and human and robot interactions. Researchers are able to use the data collected to learn about

and improve situational awareness, which is essential for robot autonomy.

According to the Springer Handbook of Robotics, there is a lot of work to be done in

autonomous robotics for search and rescue. Due to the unpredictability of the environments

encountered in disasters, better programming algorithms and better sensors need to be developed.

Also, a proper balance needs to be struck between full autonomy and user control. Current

search and rescue robots require hours of training for humans and animals.

This paper summarizes the development process of the robot. It covers the circuitry, hardware,

and software components used (as well as some alternatives) and the reasoning for using those

components. It also covers the results of this project, including reactions from the general

populous upon presentation at the X X State University Scholar’s Week poster presentations.

Methodology

1. Circuit Design

The circuit used for power

distribution had to meet the

following specifications:

It should be powered by a single

7.2 volt 3300 mAh remote control

car hobby battery; should provide

two separately regulated power

sources; providing up to one amp

each; should be compact; and

should be built on a custom printed

circuit board. Based on these

specifications, the 7805-voltage

regulator was chosen.

The 7805 is low-cost, and it is available locally at electronic and hobby stores. Along with a

couple of capacitors, using two 7805s made it possible to design a single compact circuit board

to power 5 servos, a microcomputer, a microcontroller, a camera, a light, and a handful of

sensors. EAGLE CAD was used to design the schematic and PCB layout.

An assortment of hardware and software was needed for the robot. It needed a method of

wireless communication, a device to host communication and delegate commands, a camera,

sensors, motors, a body, wheels, and a device to control it. The robot was divided into several

phases of functionality, and based on the requirements of those phases, appropriate hardware and

software solutions were chosen.

Figure 1. Power Distribution Circuit Layout

P
age 24.380.5

Figure 2. Power Distribution and Microcontroller

P
age 24.380.6

2. Hardware Design

The first consideration for the hardware was the need for a high-quality video feed while keeping

cost in mind. To tackle this issue, it was necessary to have a quality camera, high-speed data

transfer, and a device to handle the video stream. For the camera, a standard Logitech C310 HD

Webcam was chosen. The HD 310 is highly rated, very easy to obtain, cheap, and it provides

acceptable video quality up to 1280 x 720 pixels with a JPEG-based video stream
4
. For wireless

communication, the 802.11n wireless Ethernet protocol was chosen because of its wide support

and large bandwidth. A TP-Link TL-WR703N was chosen to act as the central point of

communication for the robot. The TL-WR703N is a miniature wireless router with a USB port,

Ethernet port, and 802.11n Wi-Fi support. It is very “hackable” (easy to modify and install

alternative firmware) and has large support in the hobby community. After flashing OpenWrt’s

alternative firmware
5
 and installing MJPEG-Streamer

6
, this wireless router is able to route

network connections to the robot and handle all of the video streaming.

The next consideration for hardware was the need for a controller for motors and sensors. For

this purpose, an Arduino Uno SMD microcontroller was chosen. The Arduino Uno is a very

common open-source microcontroller platform based around an ATmega328 microcontroller.

The ATmega328 provides 6 channels of PWM (pulse width modulation) output and 6 analog

inputs along with several more digital input and outputs, which is plenty of I/O for a simplistic

robot
6
.

The next step in choosing hardware was to find a way to establish communication between the

TP-Link wireless router and the Arduino Uno. There were a couple of options available for this

with large differences in the pros and cons of each method. Adopting the appropriate method

was essential, because this connection is the heart of all communication that occurs with the

robot. The first option was to use an Arduino Ethernet shield. The Ethernet shield provides one

Figure 4. TP-Link TL-WR703N Figure 5. Logitech C310 – Image from Logitech.com

P
age 24.380.7

10/100 Mbit Ethernet port attached to a board that fits on top of the Arduino. This option would

make networking very easy, but because of the speed of the Ethernet connection, it would use a

lot of the Arduino’s available processing power. The next option was to modify the TP-Link

wireless router and use a connection to the built in serial circuit to directly route packetized serial

messages to the Arduino’s serial bus. This option was good, because it required no additional

hardware. It would also have very low latency, because there is no additional device in the

signal chain. However, it would not be expandable

at all, and there is a risk of damage when

modifying a multi-layer machine-soldered circuit

board. The final option was to use a RaspberryPi

to receive communications and pass them on to the

Arduino. This is the option that was chosen,

because it allows for expandability (such as adding

computer vision for autonomy), and it allows more

communications options than just packetized serial.

The RaspberryPi Model-B provides a 700 MHz

ARM11 CPU, a Broadcom VideoCore IV GPU

with OpenGL support, and two USB 2.0 ports.
6

Another important step in choosing hardware was to decide the body style of the robot and the

method to be used for mobility. Since the goal of this project was to create a low-cost prototype,

Polymethyl methacrylate (PMMA) (the proper name for what most people know as Plexiglas or

Acrylite) was chosen. PMMA is easy to work with, and it provides plenty of strength for

developing a simple robot. For movement, tank style treads were chosen. This will allow using

only 2 motors for movement in any direction. Also, tank treads work well in unpredictable

environments due to their large surface area and the teeth that normally characterize industrial

tank tread design. In the case of this project, the treads were plastic. Standard Hitec HS-322HD

hobby servos were used for tilting and panning of the camera. Two Hitec HS-425BB servos

were chosen and modified to be continuously rotational for attaching to gears to drive the robot.

One additional step in choosing hardware was to determine the needed sensors for autonomy.

Based on the original project specifications of a heat-seeking robot, a thermal sensor was

necessary. Also, as is the case in any autonomous robot, sensors for obstacle avoidance were

Figure 6. RaspberryPi Board

Figure 7. Parallax Ping))) Sensor Figure 8. Sharp IR Sensor

P
age 24.380.8

needed. For the temperature sensor, the Melexis MLX90614 Infrared Thermometer was chosen.

This device is a medical grade temperature sensor that uses the 2-wire I2C protocol for

communication. It can be programmed to have a temperature range of -70 ºC to 382.2 ºC
7
.

For obstacle avoidance, multiple sensors were chosen. A Parallax Ping))) was chosen for the

front of the robot. It mounts on a servo, so measurements can be taken in 180º. For the sides of

the robot, Sharp GPD12 IR sensors were used. These can be used with minimal error as the

robot is moving, so they work well for situational awareness such as centering the robot in

hallways and doors.

The final step in choosing the hardware was to determine a method of remote control for the

robot. Because of the desire to make control as user friendly as possible, an Android smartphone

(Motorola Droid 3) and Android tablet (Asus Nexus 7) were chosen. By developing a remote

control system on a mobile computing device, the learning curve for operation is decreased

significantly as well as the cost of the project.

3. Software Design

The greatest challenge in designing a robotic system from the ground up is the software. For this

project multiples layers of software were needed. It was important to keep the modules

independent so that if one portion of the system changes, the entire software stack wouldn’t have

to be rewritten. The software consisted of modules for the microcontroller, the wireless router,

the camera server, the communication and logic server, and for the Android device that would

issue commands to the robot.

The first stage of software

development consisted of

developing a custom Android

application to control the

robot. This application

needed to be easy to use, able

to drive the robot using the

accelerometer, able to issue

commands to the robot, and

able to view the camera feed.

In addition, it helped to be

able to observe the

temperature readings obtained

by the robot. In order to get

some practice with Android

P
age 24.380.9

development, and to become familiar with the accelerometer API from the Android Software

Development Kit, a simple test application was written to display accelerometer values to the

screen. Once that was completed, the project was copied and modified to add some additional

libraries. The Autobahn WebSocket library for Android was chosen for communication. It

provided RFC 6455 WebSocket support, multi-threading, and an easy to use API.
8
 Next, some

code some code was added from a developer with a forum handle of ‘padde’ that provided a way

to take an MJPEG stream and display it full-screen.
9
 This code was heavily modified to remove

features that were unnecessary, to clean up the coding style, and to increase the efficiency. It

was also modified to allow a custom, resizable SurfaceView to be used, so that buttons to send

commands to the robot could be displayed simultaneously while viewing the camera. Once these

libraries were added, code was written to interpret accelerometer data and send it to the robot.

Once the Android application was complete, it was possible to work on the wireless router. The

factory-installed software on the router was in Chinese, which made operation very difficult. It

was also very limited in features. To overcome these limitations, OpenWRT was installed.

OpenWRT is a custom Linux based firmware that allows heavy customization of the router’s

internal settings.
10

 MJPEG Streamer, a software package that provides a simple web server and

image streamer was also installed. This allowed the router to function as a video streaming

server as well as a communications router.
11

 The Linux install was customized to start streaming

video as soon as it is powered on.

The next phase of software development involved the server (which runs on the RaspberryPi)

and the microcontroller code (which runs on the Arduino). These pieces of software needed to

be developed in tandem, because the logic for operating the robot was shared between the two

components.

Before beginning development, a method of communication between the RaspberryPi and the

Arduino needed to be chosen. The first method chosen was a library called Firmata. Firmata is

an application that can be installed on the Arduino that allows nearly complete control of the

board via serial. JohnnyFive, an asynchronous JavaScript library to interface with Firmata, was

chosen for the server side. Tests worked extremely well for motor control and even turning an

LED on and off fast enough to simulate PWM, however when adding in the time-sensitive Ping

sensor, motors became jerky and the communications became unreliable.

The next method chosen was a system of short numeric codes that was created to allow very

short serial messages to be sent. The server section of the code was based on the Node.JS

platform. Node.JS was chosen, because it provides an asynchronous JavaScript based

programming environment that is great for rapid development of scalable web applications.
12

 By

using web technologies, the application becomes extremely flexible, and very easy to develop

cross-platform. Although this isn’t technically a web application, it is important to have an

P
age 24.380.10

asynchronous application, because network

connections and robot communications need

to occur simultaneously. The Node.JS

application used the Serialport-Node
13

 library

and the WebSocket-Node
14

 library to receive

JSON (JavaScript Object Notation) messages

over a WebSocket network connection, parse

and process the messages, and send them over

serial to the Arduino. The Arduino software

would receive messages, process these

messages, and then send the appropriate

messages to the motors. The Arduino was

also responsible for sending temperature

readings back to the client application. The Arduino stored states for motors and also handled

obtained sensor readings when necessary.

For autonomous operation, the Arduino handled all logic. Communications were still maintained

with the remote control client so the user can stop and start, reposition the camera, and take over

manual control if needed. The autonomous system used the subsumption reactive robot

architecture. The potential fields were used to process sensor information to avoid obstacles and

move towards heat.

4. Project Assembly

Assembly was the last

phase of the project. A

frame for holding treads, a

bottom panel, and a rear

panel were designed using

AutoCAD. The designs

were uploaded to a laser

cutter where the PMMA

could be shaped to the

design specifications.

Pieces of PVC pipe were used for mounting sensors that needed to be elevated as well as the

camera and its pan and tilt servos. Once the pieces were cut, the frame was assembled using

machine screws and a gel-based cyanoacrylate glue. Wires were laid out and cut to length. The

power distribution board was populated and tested. Connections were soldered, and heat shrink

was applied. Once everything was tested to be working, zip ties were used to keep the

appearance of the wiring clean.

Code Message Code Message

1 Stop All 20 Camera Left

2 LEDs On 21 Camera Right

3 LEDs Off 22 Camera Up

4 Autonomy On 23 Camera Down

5 Autonomy Off 24 Camera LR Stop

10 Drive Left 25 Camera UD Stop

11 Drive Right 26 Camera Stop

12 Drive Forward 29 Camera Dir

13 Drive

Backward

14 Drive F Left

15 Drive F Right

16 Drive Stop

Table 1 – Numeric Message Codes

Figure 8. Prototype Tread Frames

P
age 24.380.11

Figure 9. Final Robot Assembly

Results

Running at full power, the battery lasted about 45 minutes. Running without motors, the battery

lasted about 3 hours. This demonstrates that the power distribution circuitry is fairly efficient

and is good enough for usage in a real world application. The battery life could be improved by

either using a larger battery or by using more efficient voltage regulators.

The hardware chosen fulfilled the project’s specifications. The drive servos turned out to be

slower than expected. One of them also had to be replaced during testing. The drive system

could be greatly improved by using gears to drive the tank treads. Also it would be better if the

servos were not supporting any weight from the robot. The wireless router was determined to be

unnecessary, as a USB 802.11n Wi-Fi dongle could have been used to provide an Ad-Hoc

network from the RaspberryPi and the MJPEG Streamer software is also compatible with the

RaspberryPi. Since the router was already purchased, it was used anyway in the design.

However, one advantage of using the router is that if something malfunctioned with the robot,

video was still available. Also, keeping the video separate allows many people to view the video

stream without compromising communication with the robot.

Software development accounted for a very large portion of the project’s total time. A lot of

research and trial and error went into the process of choosing various libraries and determining a

P
age 24.380.12

method of communication among all of the devices. In testing the software, the best-case time

for the robot to respond to a message from the Android device was undetectable by the human

eye. The worst-case time was still less than one second.

The first demonstrations of the robot’s teleoperation occurred in small settings early in the

project’s development. Based on feedback from alpha-testers, accelerometer algorithms and

camera control methods were modified until they were more comfortable to use. The result was

very simple robot operation.

The robot was publicly demonstrated at the Middle Tennessee State University Scholar’s Week

Poster Presentations. The response from the public was highly positive. The MTSU UAV

program as well as a forensic anthropologist that works for MTSU were interested in further

discussions on ways the technology developed in this project could be used in their respective

fields.

Further testing shows great success with the robot’s teleoperation, however, there were many

improvements that need to be made to the autonomy. Using computer vision to assist in tracking

objects as well as implementing path planning algorithms would make the robot much more

reliable. Also, modification of the heat sensor to allow it to focus better or adding a thermal

imaging camera to be processed with computer vision would allow a much better tracking of

heat.

Conclusion

This project was a very large undertaking for a first research project. Although the teleoperation

portion of the project was very successful, the fully autonomous operation could not be

completed in the URECA project timeline of 200 hours. Despite this shortcoming, the outcome

of this project was still a success. This project proves that developing a robot for search and

rescue that is within reach of local emergency crews is something that could occur in the very

near future. With some minor hardware changes, an upgraded chassis, and additional software

development time, a usable product is not far off from the prototype developed in this project.

P
age 24.380.13

Appendix A: Project Timeline

P
age 24.380.14

References

1. Isom, James. "MegaGiant Robotics." MegaGiant Robotics. 2002. Web. 20 Apr. 2013.

2. Drew, Christopher. "Costly Drone Is Poised To Replace U-2 Spy Plane." The New York Times. The New

York Times Media Group, 2 Aug. 2011. Web. 20 Apr. 2013.

3. Wolf, Alon, Howard H. Choset, Benjamin H. Brown, and Randall W. Casciola. "Design and Control of a

Mobile Hyper-redundant Urban Search and Rescue Robot." Advanced Robotics 19.3 (2005): 221-48. Print.

4. Logitech. "Logitech HD Webcam C310." Logitech. Web. 20 Apr. 2013.

5. "Arduino Uno." Arduino. Arduino. Web. 21 Apr. 2013. <http://arduino.cc/en/Main/ArduinoBoardUno>.

6. "RPi Hardware." ELinux.org RaspberryPi Wiki. Web. 22 Apr. 2013. <http://elinux.org/RPi_Hardware>.

7. Melexis. "Melexis MLX90614 Datasheet." Microelectronic Integrated Systems, 30 Mar. 2009. Web. 22

Apr. 2013. <https://www.sparkfun.com/datasheets/Sensors/Temperature/SEN-09570-datasheet-

3901090614M005.pdf>.

8. "Autobahn|Android." Autobahn. Tavendo. Web. 22 Apr. 2013. <http://autobahn.ws/android>.

9. Padde. "MJPEG on Android Anyone?" Anddev.org. Web. 22 Apr. 2013.

<http://www.anddev.org/mjpeg_on_android_anyone-t1871.html>.

10. "TP-Link TL-WR703N." OpenWrt. Web. 22 Apr. 2013. <http://wiki.openwrt.org/ru/toh/tp-link/tl-wr703n>.

11. "Mjpeg Streamer." Sourceforge. 9 Apr. 2010. Web. 22 Apr. 2013.

<http://sourceforge.net/apps/mediawiki/mjpg-streamer/index.php?title=Main_Page>.

12. "Node.js." Node.js. Joyent. Web. 21 Apr. 2013. <http://www.nodejs.org/>.

13. Voodootikigod. "Node-serialport." GitHub Node-serialport. 24 Aug. 2012. Web. 21 Apr. 2013.

<https://github.com/voodootikigod/node-serialport>.

14. Worlize. "Websocket-Node." GitHub. Jan. 2013. Web. 21 Apr. 2013.

<https://github.com/Worlize/WebSocket-Node>.

P
age 24.380.15

