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Expanding a National Network for Automated Analysis of 
Constructed Response Assessments to Reveal Student Thinking in 

STEM 

1 Abstract 

Improving STEM education requires valid and reliable instruments for providing insight into 
student thinking.  Constructed response (CR) assessments reveal more about student thinking 
and the persistence of misconceptions than do multiple-choice questions, but require more 
analysis on the part of educators.  

In the Automated Analysis of Constructed Response (AACR) Research Group 
(www.msu.edu/~aacr) we have developed constructed response versions of well-established 
conceptual assessment inventories and created computer automated analysis resources that 
predict human ratings of student writing about these topics in introductory STEM courses.  The 
research uses a two-stage, feature-based approach to automated analysis of constructed response 
assessments. First, we design items to identify important disciplinary constructs based on prior 
research.  The items are administered via online course management systems where students 
enter responses. We use lexical analysis software to extract key terms and scientific concepts 
from the students’ writing. These terms and concepts are used as variables for statistical 
classification techniques to predict expert ratings of student responses. The inter-rater reliability 
(IRR) between automated predictions and expert human raters is as high as IRR between human 
experts.  

We recently received another round of funding to extend our work to provide an online 
community where instructors may obtain, score and contribute to the library of items and 
resources necessary for their analyses.  We provide an overview of the goals of the project and 
introduce the opportunities to participate in the development of a national network of faculty 
using these techniques. 

2 Introduction 

Developing rich, reliable, and robust measures of the composition, structure, and stability of 
student thinking about core scientific ideas (such as natural selection, conservation of mass and 
energy, and genetics) is a challenge that may be too complex to accomplish via multiple-choice 
assessments such as concept inventories (CIs). For example, as Nehm & Schonfeld demonstrate, 
the multiple-choice Concept Inventory of Natural Selection measures whether students 
understand “pieces” or elements of the theory of natural selection, but does not provide any 
measure of students’ abilities to assemble the pieces into a coherent and functional explanatory 
structure 1, 2. Moreover, multiple-choice CIs introduce significant validity threats as they are 
constrained to “either-or” forced-choice (“misconception” vs. scientific key concept) item 
preference and do not typically allow the detection of students who harbor “mixed models” of 
correct and incorrect conceptions 1, 3-8.  

Thus, constructed response (CR) assessments that capture students' explanatory models are 
needed to mitigate the constraints and reveal students’ mixed models. CR assessments, for which 
students have to use their own language to demonstrate knowledge, are widely viewed as 

P
age 24.565.3



 

providing greater insight into student thinking than closed form (e.g., multiple-choice) 
assessments 9. In the past, financial and time constraints made CR assessments significantly 
more challenging to execute in large-enrollment courses than multiple-choice assessments. But 
today, advances in both technology and measurement research make it feasible to apply these 
techniques in instructional settings with the potential to have substantial educational impact 8, 10-

15. In our current work, we employ cutting-edge, lexical and computer analysis technology, 
focusing on the NSF DRL Cycle of Research and Development “hypothesize/clarify” and 
“design/develop/test” phases of the cycle. In this paper, we describe how we are moving to the 
“implement/study/improve” and “scale up/study effectiveness” phases of the cycle to enable 
widespread adoption of CR assessments by faculty nationwide. 

3 Methodological Details of Our Approach 

In this section, we provide an overview of our approach to developing, validating and 
implementing Automated Analysis of Constructed Response (AACR) assessments as 
background. The entire process is captured by the Question Development Cycle (QDC) shown in 
Figure 1. In general, we use linguistic feature-based methods 16 to extract linguistic features from 
students’ writing e.g., WordNet, see 17, 18 and then use those linguistic features as variables in 
statistical models that predict human raters’ scores of the student’s writing. 

3.1 Developing AACR Questions to Assess Core Disciplinary Concepts 
In the first stage of the QDC, we Design New Questions to measure student thinking about 

important disciplinary constructs. Data Collection is typically done by administering the 
questions via on-line course management systems into which students can enter their responses. 
Lexical Resource Development is done using lexical analysis software to extract key terms and 
scientific concepts from the students’ writing. These terms and concepts are used as variables for 

Exploratory Analysis which aid in Rubric 
Development. We use the rubrics, both analytic and 
holistic, for Human Coding of student responses. 
During Confirmatory Analysis the Lexical Resources 
are used as dependent variables in statistical 
classification techniques to predict expert human 
coding of student responses. The entire process is 
iterative with feedback from the various stages 
informing the refinement of other components. The 
final product of the QDC is a Predictive Model that 
can be used to completely automate the scoring of a 
new set of student responses, predicting how experts 
would score the responses.  

An example of an introductory biology question for which we have completed the QDC is: 
Jared, the “Subway” guy, lost over 200 pounds on his diet. Where did his mass go? This 
question is designed to reveal students’ ability to reason about pathways and transformations of 
energy and matter, one of five core biology concepts 19 for which we are developing AACR 
assessments 20-22. In the following sections we elaborate on the lexical resource development and 
exploratory analysis phases of the QDC for the Jared problem. We first outline the process for 

Figure 1 Question Development Cycle (QDC) 
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validating the assessment and then we show how instructors can implement the AACR questions 
in the classroom. 

3.2 Validating AACR Assessments through Lexical and Confirmatory Analysis 
In this example, we describe how we use IBM SPSS Modeler 23 to perform the lexical and 

statistical analyses. Modeler provides data mining tools that can be used to build Modeler 
streams (Figure 2a) to automate analyses by assembling nodes that perform various tasks, such 
as accessing and merging data files, data conversions, lexical analysis, statistical analysis, 
machine learning, and reporting. Following the order of the nodes in Figure 2a, for example, we 
collect student responses (from on-line homework) and select the AACR question to be 
analyzed, in this case the question about Jared’s weight-loss. The responses are processed by the 
text analysis node.  

Figure 2b shows some details of the text analysis node. The software extracts terms -- words 
and phrases in the students’ responses that are relevant to the question (colored text Figure 2b, 
middle panel). These terms are stored in libraries (similar to dictionaries) that come with the 
software or were created by the researchers. Extracted terms that represent homogeneous 
disciplinary concepts are grouped into categories (Figure 2b, left panel), using both automated 
procedures and refinement by content experts. For example, the category glucose/glycogen in 
Figure 2b includes a number of terms (e.g., glucose, glycogen, sugar, and sugar molecules) that 
represent molecules that are metabolized to release carbon dioxide. Each student response is 
classified into one or more categories based on the terms used in that response (Figure 2b, right 
panel). 

Continuing along the 
stream (Figure 2a), the text 
analysis categories are used 
as independent variables in 
statistical analysis or 
machine learning nodes. In 
the exploratory phase, as 
demonstrated in this 
example, we use cluster 
analyses to group 
responses that have the 
most similar sets of 
categories (Figure 3 shows 
cluster results). These 
clusters help researchers 
refine the rubrics that are 
used for human scoring to 
build confirmatory models 
(e.g., discriminant analysis 
and machine learning 
techniques) that predict 
human scoring with 

Sample responses
See Figure 3

Category Means
See Figure 3

Categories
Student Responses

a) IBM SPSS Modeler Stream

b) Text Analysis Node Interface

Figure 2 IBM-SPSS Modeler showing a Report Analysis Stream (a) and Text Analysis 
Node (b) for the assessment question: Jared, the “Subway” guy, lost over 200 pounds on 
his diet. Where did his mass go? P
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computer-to-expert inter-rater reliability (IRR) as good as expert-to-expert IRR 8, 11, 14. The final 
nodes of the stream select examples of student work most representative of the cluster, (i.e. 
closest to the cluster centroid). This information was used to build Just-in-Time-Teaching 
reports. 

3.3 Pilot Study: Implementing AACR Questions for Just-in-Time Teaching 
To enhance the infrastructure for education and improve undergraduate STEM education 

nationally, the tools we develop must be broadly available for faculty to use for Just-in-Time 
Teaching JiTT, 24. To test the feasibility of accelerating the QDC (Figure 1) and rapidly making 
the research results available to faculty in near real time, we conducted a JiTT pilot study during 
fall, 2012, in three sections of an introductory cells and molecules biology course for science 
majors at UNIVERSITY 25. We administered 15 different homework questions in four subject 
areas: biomolecules, genetics, metabolism, and thermodynamics using the university’s Learning 
Management System (LMS). Questions were asked pre-instruction, so that the responses could 
be analyzed and a report returned to the instructors to allow them to address misconceptions 
during the next class period. Some questions were also asked post-instruction, which allowed 
instructors to see how students’ explanations had changed. We collected 12,677 student 
responses and used previously created SPSS Modeler streams (Figure 2) to generate the JiTT 
reports. For each question we asked, data collection closed at midnight; analysis and report 

preparation began the following morning; and 
reports were completed and emailed to instructors 
in the afternoon for use during the next class 
period.  

Some features from a report for the Jared 
question are presented in Figure 3. Reports 
included the question asked, the category means 
within each cluster (the percentage of responses 
classified in this category within a given cluster), 
cluster descriptions, example student responses that 
were most representative (defined by the statistical 
distance from their cluster centroids) and a web 
diagram showing the relationships among 
categories in students’ answers. For most questions, 
responses were classified into 3-5 distinct clusters. 
The most important categories in the predictive 
model (as indicated by cluster analysis results) 
were included in the report, along with the 
frequencies distributions of categories in each 
cluster.  

For the analysis of the Jared question (Figure 
3), we see that students in Cluster 1 write about 
Jared’s mass being converted to carbon dioxide and 
expelled from the body. Student answers in this 
cluster had high means (frequencies) for carbon 

Figure 3 Subset of Pilot Study JiTT Faculty Feedback 
Report Features 
Legend: Circle size corresponds to the frequency of 
responses containing a category.  
Lines indicate the percentage of shared responses. Solid 
lines indicate >50% shared responses. 
Dashed lines indicate 25-50% shared responses.  
Nodes < 25% shared responses were not linked. P
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dioxide (65% of the responses in Cluster 1) and breathe/exhale (61% of the responses in Cluster 
1) categories. The web diagram shows that responses in Cluster 1 have strong associations (solid 
line) between these two categories, as shown in the Cluster 1 example student responses, 
meaning that students in Cluster 1 tend to write about these ideas together. Cluster 2, however, 
had high means for the categories energy, converted, and fat. These students wrote that Jared’s 
mass was converted into energy, revealing a common misconception for introductory biology 
students 20 as shown in the Cluster 2 example student answers. 

3.4 Pilot Study: Instructor Use of the Reports 
We conducted focus groups with the four pilot study instructors throughout the semester to 

introduce them to the AACR assessments, explain the analyses and reports, and address 
difficulties they encountered. They discussed how the reports informed their awareness of 
students’ thinking and how they used the reports to modify their instruction. Some of the 
seasoned instructors proceeded to create new instructional materials, such as sequences of clicker 
questions, to address these challenges. Others indicated that they would have preferred such 
materials to be provided for them. Although these instructors were previously aware of some of 
the concepts students found challenging, they pointed out that the written assessments provided 
insight as to why students struggled with these ideas. For example, in a question about genetics, 
one instructor noted that the reports revealed that many students thought that transcription and 
translation are the same process. 

We learned valuable lessons from this pilot study about 1) how to improve the presentation 
and user-friendliness of reports; 2) how to improve the scheduling of the AACR assessments and 
to incentivize homework assignments; and 3) the need for professional development to support 
faculty use of these assessments. These lessons are reflected in the proposed activities. 

Overall, our previous work shows that 1) it is possible to create scoring models that predict 
human scoring with IRR approaching that of well-trained expert raters across multiple topics; 2) 
AACR questions reveal the heterogeneity of student thinking that cannot be revealed by 
traditional multiple-choice items; and 3) we can capture, represent, and analyze this 
multidimensional information in a variety of ways that provide instructors rich insights into 
student thinking. The speed with which we can now accomplish these goals means that 
instructors in large enrollment courses can assign AACR questions and a few days later, use the 
information to transform their teaching.  

4 Current Project Scope  

We have recently received five years of funding from NSF to expand our work nationally.  
This section describes the five project goals, how they interrelate, and how we are implementing 
them. 

4.1 Goal: Create a community web portal for automated analysis of AACR assessments to 
expand and deepen collaborations between STEM education researchers and instructors  

To facilitate building on-line communities of practice 26, it is critical that the software 
infrastructure be usable, reliable and robust, be maintainable and extensible, and be scalable as 
the communities grow. We will employ user-centered design to build on the technical and 
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operational lessons we have learned to develop and test a social collaboration community web 
portal. User-centered design involves users throughout all stages of development in order to 
meet users' needs (http://usability.gov).  

The functional structure of the proposed web portal is shown in Figure 4. We describe each 
of the components below. 

Major user interactions are shown in the purple boxes. The target portal users are faculty 
who teach courses in the disciplines for which we have questions and STEM education 
researchers who are investigating student writing and/or developing the resources to support the 
automated analyses. The Web Server provides the user interfaces for the various types of users of 
the system. We describe portal functionality in the context of basic use cases 
(http://www.usability.gov/methods/usecases.html) for the target users below. 

Public information about the project will be accessible without an account or login. This 
information will include a background statement about the group, links to our publications, news, 
and events. Faculty who are interested in other resources will be able to create free accounts to 
access them. 

Faculty will be able to search for questions. Associated with each question will be the 
concepts it tests, common student misconceptions about the topic, and technical reports about 
question development (i.e., numbers of students that have responded to the question; rubrics used 
for human scoring; and reliability and validity evidence). 

After selecting questions, faculty will then use the LMS at their institutions to administer the 
questions and collect student responses. All LMS allow faculty to download student responses to 
questions in spreadsheet format. Faculty can then upload student data with their responses to the 
web server which passes them to the analysis and reporting server which stores the responses in 
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the database, then invokes the appropriate question analysis stream for each question. Some 
questions (currently cellular biology, genetics and chemistry) are analyzed using IBM-SPSS 
Modeler streams created by our research team, so they are passed to the modeler server for 
analysis. Other questions are analyzed using machine learning tools in Evograder (currently 
natural selection and evolution), so they are passed to the Evograder server 
(http://evograder.org) for analysis. After analysis, the results are returned through the analysis 
and reporting server, to the web server where faculty can download reports with analyses of 
their students’ writing.  

The web server also provides a social collaboration environment for building professional 
development communities. For example, faculty may upload and download instructional 
materials that are aligned with each assessment. Discussion forums will allow interaction among 
faculty.  

Researchers can download research data, anonymized student responses to questions, for 
research purposes. The database maintains anonymized student responses to questions along 
with metadata about the questions (e.g., class and institution in which they were administered) 
and human scoring for student responses. As more faculty use the web portal, the data repository 
will grow, supporting ongoing research and refinement of the analytic resources in the DRL 
Cycle of Research and Development. f 

Researchers can create scoring rubrics for questions and score data using the rubrics. The 
scores are stored in the database and can be used for confirmatory analysis on questions (see 
Figure 1). Researchers can also develop analysis streams for new or existing questions for 
automated analysis via the portal.  

Since the primary goal of the portal is to support the transportability of the AACR research 
into practice among faculty, the only users we intend to support directly are faculty and 
researchers. There are, however, a wide range of possibilities for implementing AACR questions 
via on-line systems with which students directly interact and could receive immediate feedback. 
We will develop Application Programming Interfaces (APIs) to allow on-line systems with 
which students interact directly, such as LMS, publisher e-Text systems and Massively Open 
Online Courses (MOOCs) to interface with the analysis and reporting server.   The APIs will 
allow these systems to administer AACR questions to students then submit the student responses 
to our analysis and reporting server and have a report returned to those systems where the 
students and their faculty can receive the feedback, expanding the transportability of this project.  

4.2 Goal: Transport these innovations by providing faculty professional development –  
If you build it, they will (not necessarily) come. 

Developing and testing reformed-based curricular materials and then disseminating them to 
faculty does NOT result in widespread adoption and implementation 27-32. Therefore, a key 
feature of this proposal is the integration of ongoing faculty professional development (PD) 
to support the transportability 33 of the assessments and to help faculty persist in their use 
of the assessments. Critical features of PD programs that successfully promote change among 
faculty 29 include: 
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1. An extended period of professional development. One-time workshops do not support 
sustained adoption. Successful PD usually includes ongoing support lasting a semester or 
more. 

2. Performance evaluation and feedback. It is important for the adopting faculty to interact with 
the curriculum developers throughout implementation to ensure implementation fidelity and 
to promote faculty metacognition about how those materials fit within a larger model of 
learning and instruction.  

3. A focus on changing faculty conceptions about teaching and learning. STEM faculty rarely 
have formal training in teaching or learning theory, but they often have implicit conceptions 
about teaching and learning “folk pedagogies”, 34. Therefore, faculty may need explicit 
support for their own conceptual change 35 to facilitate reformed teaching. 

4.2.1 Professional development activities for faculty users of AACR assessments 
To support faculty awareness, adoption, and sustained use of AACR assessments, we will 

provide and promote multiple PD opportunities. Our prior research has produced a suite of 
AACR questions in biology, so we will begin PD activities in the field of biology and extend into 
chemistry, chemical engineering and statistics in year 4.  

1. Instructional materials: In our JiTT pilot, some participating instructors asked for curricular 
materials to address students’ misconceptions identified by the AACR assessments. 
Therefore, we will create instructional materials – including clicker questions, case studies, 
small group activities, and exam questions – that are adaptable to various classroom sizes and 
instructional methods. Each set of materials will go through an iterative process of 
development, implementation, and revision at four different institutions. To foster faculty 
conceptual change, we will also provide information about the most effective implementation 
of the instructional materials 36-42, including videos that show faculty demonstrating high 
fidelity implementation of the materials. We will also discuss the implementation of 
instructional materials during workshops and mentoring interactions (see below).  

2. Workshops: We will offer workshops to introduce faculty to the AACR assessments and 
instructional materials. Since one-time workshops are unlikely to lead to effective 
implementation 29, 32, we will encourage participants to become involved in additional 
opportunities, such as mentoring and the on-line community described below. Workshops 
will be held at professional meetings, led by various members of the research team.  

3. Mentoring: We will provide mentors for extended personalized support to facilitate 
continued participation in the assessment community. Mentors will provide one-on-one 
support for mentees (new faculty) throughout their first semester of implementation of the 
AACR assessments and instructional materials. Mentors will also discuss conceptions (folk 
conceptions, misconceptions) about teaching and learning, and engage mentees in evidence- 
and theory-based ways of thinking about AACR assessments and the broader context of 
teaching and learning.  

4. On-line community development: The social collaboration environment of the web portal 
will support virtual communities among mentors, mentees, other faculty users, and the 
research team. This collaborative environment is particularly important for peer support so 
faculty can share their successes and challenges using the AACR assessments and 
instructional materials. Asynchronous interaction with other users in on-line community via 
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the web portals discussion forums and synchronous interaction via video-conference will 
help provide a support network for faculty. 

The full selection of activities will be made available to faculty when they register on the 
website for the first time. Given differences in faculty members’ interests and motivation 43, 44, 
their desire to contextualize the innovation for their own classroom conditions 30, 42, and their 
personal time constraints, we expect that faculty members will select PD activities according to 
their desired level of engagement. PD activities will be designed so that faculty at different levels 
of engagement will receive the support and feedback necessary to sustain their involvement. 

4.2.2 Research on professional development 
To understand the impact of the AACR project on faculty, we will investigate several 

research questions.  

4.2.2.1 Which PD components influence sustained adoption of AACR assessments? 

Although previous studies 29, 30, 32 have shown that PD and extended support facilitate 
sustained adoption and high-fidelity implementation, we have no a priori way to determine 
which components of the PD programs for the AACR assessments are most effective. Therefore, 
we will investigate how various components of the on-line assessment community and PD 
activities influence faculty participation. Using mixed-methods, we will analyze the potential 
impact of variables such as having a mentor, frequency of website visits, and classroom size. 
These data and others can be readily collected from registration for workshops or regular 
interaction on the portal, such as signing up for mentoring, registering to use assessments, and 
commenting on website content. Statistical models will be used to determine the relative 
contributions of these components to sustained adoption of AACR assessments. 

We will also use qualitative methods, interviewing faculty to understand the factors 
influencing faculty adoption decisions such as 1) knowledge of how to use AACR assessments; 
2) knowledge of the theoretical underpinnings of teaching tools like AACR assessments; 3) 
interactions with other AACR assessment users; 4) perceived barriers to, and benefits of, using 
AACR assessments; 5) compatibility of the AACR assessments with overall goals for their 
classrooms; and 6) engagement with a mentor 29, 45. We will select faculty for a series of six 
semi-structured interviews over a two-year time period. As some faculty may discontinue use of 
the AACR assessments during the study, we will also be able to immediately investigate barriers 
to sustained use of the AACR assessments. 

4.2.2.2 What characteristics of faculty PD engagement are associated with student learning?   

Though improving student learning is a primary goal of STEM education research, evidence 
that the implementation of innovative teaching strategies actually improves student learning is 
sparse 29. We are well-positioned, however, to address the relationship between faculty adoption 
of innovative research-based instructional activities and student learning. To determine whether 
faculty engagement with PD is positively associated with student learning of concepts, we will 
examine the relationships between student learning gains from pre-post analysis of AACR 
assessments and their relationships with faculty use of professional development components 
and instructional activities. 
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4.2.2.3 How do faculty interact in an on-line community environment? 

We will study the relationships among participants in the on-line community using social 
network analysis to determine their patterns of interaction and information flow through the 
community. Data collection will be coordinated via the IBM Collaboration and Deployment 
Services. User interactions through the portal will be recorded and statistical analyses will be 
conducted using social network analysis 46 modeling features available in IBM SPSS Modeler. 

4.3 Goal: Expand our basic research to chemistry, chemical engineering, and statistics 
In this project, we are also adding additional collaborators to expand our disciplinary scope: 

1) chemistry which is a foundational science for biology and engineering in which multiple 
representations are barriers to student learning; 2) chemical engineering with a focus on 
thermodynamics; and 3) statistics where understanding probabilistic thinking is challenging for 
students across disciplines.  We will support researchers in these disciplines who will explore 
AACR techniques through all phases of the QDC (Figure 1). We will also continue to advance 
our current work by 1) improving the assessments (e.g., validity, reliability) and experimental 
designs; 2) creating additional confirmatory models; and 3) refining our models of student 
reasoning.  

4.3.1 Investigating Student Representations in Chemistry 
We will adapt and develop a range of chemistry questions to probe three inter-related 

chemistry concepts: structure, properties, and energy changes. Previously we have developed and 
validated instruments to assess students understanding of structure property relationship 47 and 
have been able to compare achievements for students in a new chemistry curriculum to an 
equivalent cohort of students in a more traditional chemistry course 48. In this project we will use 
a similar experimental design will be used to achieve three goals: 

1. Compare student responses to existing questions (for which the AACR project already has a 
large database of responses) about acidity and basicity, with responses to questions where 
students must draw models and construct arguments. This comparison will provide 
convergent validation of student responses to the AACR questions, with their drawings, 
models and arguments about the same concepts. 

2. Compare student responses to the existing AACR acid-base questions using two equivalent 
cohorts of students taken from the CLUE general chemistry and traditional general chemistry 
courses to investigate whether the AACR system can detect different types of responses from 
students. 

3. Develop a set of AACR questions that probe student understanding of chemical energy, a 
topic that is highly problematic for students at all levels 49. 

4.3.2 Chemical Engineering  
Thermodynamics is a key concept that cuts across chemistry, biology and chemical 

engineering. We will coordinate with the work in on chemical energy to evaluate questions in 
Chemical Engineering Thermodynamics, a course taught to sophomores and juniors in the 
Chemical Engineering program. The course develops students’ skills for energy balances of 
processes with multiple units; calculation of thermodynamic properties of fluids; modeling of 
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phase equilibriums. A similar thermodynamics course is required in all chemical engineering 
curricula.  

4.3.3 Statistics  
We will complete the QDC (Figure 1) for two sets of questions designed to assess student 

understanding in two areas of statistical thinking. The research team will write and pilot open 
response questions for those concepts, completing the rubric development, human coding and 
question modification portion of the QDC for questions related to the selected statistical topic. 
These data will be hand and machine scored and will be used to create scoring models that can 
be uploaded to the portal, completing the confirmatory analysis, predictive model, data collection 
and text analysis resource development phases of the QDC. Concurrently, a second set of 
questions designed around a second statistical concept found to be problematic to students will 
be piloted. The research team will complete the confirmatory analysis, predictive model, data 
collection and text analysis resource development for the second identified statistical concept and 
will load the questions associated with the first concept into the portal to start enacting the 
exploratory phase of the QDC. Finally, statistics instructors not associated with the research 
team, both at UGA and elsewhere will be invited to use the questions in the portal and the UGA 
research team will provide instructors with the PD necessary to incorporate the student results 
into classroom instruction.  

4.4 Goal: Engage in ongoing project evaluation for continuous quality improvement   
There is an external evaluator for the project, independent of the project research team.  

Project evaluation will use a formative-summative design focused on project objectives. 
Formative evaluation will provide timely feedback to the research and development teams to 
improve programming. Summative evaluation will focus on project effects on participants, 
including changes in faculty pedagogical content knowledge 50 and instructional and assessment 
strategies and in students’ abilities to provide high-level explanations of their content learning. 

The purpose of the evaluation will be to 1) determine the impact of the program on 
participating faculty and project staff, and therefore the projects potential impact on prevailing 
models of undergraduate STEM education; 2) provide evaluative data to staff to improve 
programming; 3) assess progress toward project objectives, especially in regard to implementing 
results in new contexts; and 4) identify strengths and limitations of the proposed project. 
Audiences for the evaluation will include project staff and funders. The evaluation will be 
framed by four key evaluation questions which are presented in Figure 5 along with benchmarks 
of accomplishment and data collection procedures. 

Evaluation will be a collaborative effort between project staff and the project advisory 
board. Standard quantitative analysis methods will be used for survey and systematic observation 
data; appropriate qualitative methods will be used for interview and general observations. The 
evaluation staff will prepare data collection instruments and procedures, gather data, compile and 
analyze data, and prepare reports. Evaluators will serve on the project management team. 
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4.5 Goal: Lay the foundation for sustainability  
There are opportunities for the application of these techniques to on-line and other systems 

with which students interact directly. The current enthusiasm for Massively Open On-line 
Courses (MOOCs), moves by publishers into interactive e-text books, and competition among 
LMS vendors to provide more detailed learning analytics and other automation, suggest that 
these are potential revenue sources that could be used to sustain the operation and maintenance 
of the Web Portal. This model would allow individual faculty members to utilize the Web Portal 
for no charge as we are proposing, with the infrastructure maintained by fees generated by 
licensing to for-profit entities. The development of the API to interface between our portal and 
these systems will provide the technical foundation for these interfaces. In the final two years of 
the project, we will approach commercial interests to explore these possibilities.  

5 Conclusion 

If we are to heed the call for promoting higher order student thinking and providing more 
opportunities for students to write, while at the same time containing costs, we must find ways to 
leverage technology in the service of supporting and evaluating constructed response 
assessments. This project builds upon our extensive research in science education, assessment 

Figure 5: Evaluation Plan Logic Model 
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and student cognition to expand a collaborative network to create and automatically analyze 
constructed response conceptual assessments that provide insight into student thinking and 
learning about key STEM concepts. The results of this project will be available for use by STEM 
faculty and science educators to gauge the efficacy of instruction or instructional change or to 
give an instructor a unique perspective on students’ conceptual understanding, even in large 
enrollment STEM courses. By integrating a faculty professional development program that is 
grounded on research in faculty change, this project will facilitate the NSF DRL Cycle of 
Research and Development by bringing together STEM education researchers, faculty interested 
in discipline-based education research (DBER), Scholarship of Teaching and Learning (SoTL) 
and instructors who teach foundational STEM courses and meets the desired societal outcome of 
improving STEM education and educator development at the undergraduate level.  
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