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Honest Expert Solutions Towards Cognitive Apprenticeship 
 
Introduction 
 
The use of provided examples as a method for teaching students engineering problem solving 
processes is used in many engineering classrooms. By using this method, instructors are 
attempting to model expert problem solving processes for their students in order to help them 
develop the cognitive and metacognitive strategies necessary to solve many of the problems they 
will encounter when they enter industry or pursue further academic study. This work focuses on 
the development of an intervention meant to provide students with access to the honest problem 
solving processes of experts when solving statics problems. Using cognitive apprenticeship as a 
theoretical framework, we seek to look at the impact that exposure to honest problem solving 
strategies has on novice problem solving skills.  
 
Literature Review and Theoretical Framework 
 
Problem Solving in Statics 
 
The ability to problem solve is a critical skill that is required of undergraduate engineering 
students in the United States. The need for this skill is reflected in ABET Criterion 3. (e) that 
states that students must be able to “identify, formulate, and solve engineering problems” 1. 
While many courses in different engineering curriculums have a focus on problem solving, 
statics is typically the first course in many students’ undergraduate engineering coursework that 
requires them to use an engineering problem solving process. Many researchers have spent 
significant resources investigating how students learn in statics and how to effectively teach 
problem solving in statics courses. For instance, Steif, Lobue, Kara, and Fay developed an 
intervention where students where engaging in talk about salient features of the statics problem2. 
Steif and team found that students that were engaged in body centered talk were better at 
representing unknown forces on free body diagrams than students that did not participate in the 
intervention. Litzinger et al. looked at the differences in cognitive and metacognitive strategies 
between weak and strong problem solvers in statics 3. Litzinger and team found that the weak 
and some of the strong problem solvers relied heavily on memory when attempting to represent 
forces on a free body diagram. They also found that students who engaged more heavily in self-
explanation tended to be stronger problem solvers.  
 
In all of these studies, researchers looked to discover differences between strong and weak 
problem solvers or to develop interventions in order to strengthen the problem solving skills of 
engineering students in statics courses. While these studies have looked at the impacts of 
cognitive strategies or certain pedagogical interventions on problem solving skills, few have 
looked at the impact of an intervention focused on exposing students to modeling of an expert 
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problem solving process on problem solving skills. In the next section, we will discuss why 
modeling of problem solving processes is a key component to helping students learn problem 
solving skills. Specifically, we will highlight the need for exposing students to true expert 
problem solving processes that include a capture of the failures and successes that lead to a 
solved problem.  
 
Cognitive Apprenticeship 
 
In their work on how experts and novices categorize problems, Chi, Feltovich, and Glaser found 
that there is a fundamental difference in how expert and novice problem solvers sort problems 
into categories 4. They found that novices looked at physical features and given information from 
the problem statement to classify problems into categories. Experts used knowledge of the states 
and conditions of the problem to categorize problems. This study identified that different 
cognitive strategies were used by experts and novices in the beginning task of sorting problems 
into categories.  
 
Being exposed to the problem solving processes of expert problem solvers is a critical learning 
activity for novice problem solvers. Brown, Collins and Newman describe a process called 
cognitive apprenticeship where novice problem solvers learn the necessary integration of 
cognitive strategies used by expert problem solvers through an apprenticeship process5. In a 
traditional apprenticeship model, a novice is teamed up with an expert to learn a trade through 
close interaction with the expert. The tasks and strategies used by the expert are observed by the 
novice in order to learn techniques and skills. In cognitive apprenticeship, a similar approach is 
taken where the problem solving process of an expert is made easily observable to a novice for 
the purpose of exposing the novice to proper problem solving procedures and thought processes.  
  
There are four main components to designing curriculum and environments based on the 
cognitive apprenticeship model: content, method, sequencing, and sociology. The area of content 
focuses on the types of knowledge that one must hold in a content area to be considered an 
expert. The method category refers to the ways that are used to promote the development of 
expertise. Sequencing refers to the order in which learning activities should be presented to 
develop expertise. Finally, sociology refers to the social context of learning environments that 
promote development of expertise. One critical component of cognitive apprenticeship is the 
idea of making the thinking strategies of experts visible to novices. Through the use of modeling 
techniques, an expert should make visible the different types of content knowledge used to solve 
problems 5. Specifically, Brown et al., state that the cognitive and metacognitive strategies of 
experts be highlighted to novices 5.  
 
In an effort to teach problem solving to students in mathematics, Schoenfeld used a model 
similar to cognitive apprenticeship to show the cognitive and metacognitive strategies of an 
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expert to his novice students 6, 7. Instead of showing a clean version of the problem solving 
process, Schoenfeld took a more honest approach to displaying his problem solving process to 
his students. Schoenfeld challenged his students to bring in difficult mathematics problems to 
class. He would then solve the problems in class after seeing them for the first time. Many times, 
the problems would be so challenging that students would observe Schoenfeld have difficulty 
during the process. He would start, stop and restart many times until he came to the correct 
solution. Through using this method, Schoenfeld showed students a true picture of his cognitive 
and metacognitive processes while solving a problem.  
 
We know that it is critical that we model problem solving processes for students in order for 
them to learn how to properly problem solve. We’ve seen examples of how honest versions of 
problem solving processes have been used in teaching expert processes. As we work to teach our 
students to become experts, we next need to consider how to engage our 21st century students 
using 21st century technology.  
 
Technology and Cognitive Apprenticeship 
 
The use of online learning tools and courseware is rapidly growing in the United States. In the 
Fall of 2008, 25.3% of total enrollment in postsecondary education institutions was attributed to 
online enrollment. In that same year, the annual growth rate of online enrollment was found to be 
16.9% 8. A 2013 study by the same authors focused on the rise of Massively Online Open 
Courses, or MOOCs 9. This report showed that teachers and faculty are beginning to make the 
transition to teaching more through online methods. Though not all coursework will and should 
be transitioned to online learning, some vital components of the learning process can be 
transitioned to online to either free up class time for more active learning activities or to provide 
students with additional resources to support their learning.  
 
Some work has already been done to look at the impact of engaging in courseware with 
performance in the statics classroom. Steif and Dollar also looked at the usage patterns of 
courseware software of students in statics courses to determine that students’ self-regulation of 
using courseware may be a predominant factor in learning gains in statics courses10. Moseley and 
Sexton investigated the impact of showing screencasts of problem solving processes to students 
on their conceptual understanding in statics11. They found that students appreciate the 
availability of extra resources that can help them develop their problem solving skills through 
homework assignments and exams. 
 
The purpose of this study is to use the cognitive apprenticeship model by Brown et al. to develop 
a screencasting tool for students in a statics course to use to further develop their problem 
solving skills5. This tool will focus on showing students honest problem solving processes that 
experts use (mistakes, missteps, etc.) to solve statics problems. The next section discusses the 
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research question for the study, the development of the screencasting tool as well as the methods 
for the research study.  
 
Research Question 
 
The research question for this study is:  
 
What is the impact of viewing an honest expert problem solving process on the problem solving 
processes of engineering students solving statics problems?  
 
In order to answer the primary research question, a series of sub-questions were developed. The 
analysis section is framed around the following subquestions: 

1. Were “honest” and “warning” videos viewed similarly by students? 
2. What type of students viewed the intervention videos? 
3. What is the impact of rate of viewing on performance (measured by Exam Practice 

Problems (EPP) and a Statics Concept Inventory (SCI))? 
 
Method 

The basic process of creating screencasts for typical engineering analysis problems is described 
by Moseley 12. This paper is an extension to an earlier study that looked at the impact of using 
screencast technology focused on displaying an expert problem process on the conceptual 
understanding of students in a statics course 11, 13. The study has been extended to include a new 
element: Instead of the instructor selecting problems to use to develop the screencasts, a 
colleague familiar with the course content chose the problem and created the problem statement 
in PDF form, ready for annotation using an interactive display. While setting up the software, the 
instructor glimpsed at the problem statement to make sure it covered the intended topic, but did 
not solve the problem until the screen capture was started. In this way, the process of developing 
the screencasts is very similar to the method used by Schoenfeld in teaching cognitive processes 
to mathematics students 6, 7. 
 
The screencasts used in this study recorded the instructor’s first attempt to solve the problem, 
without knowledge of the correct final solution. The instructor used a think aloud method as they 
wrote, describing out loud their thought processes on how they analyzed the problem for 
important features, formulated and then executed a plan of action, and checked for errors in 
analysis or calculations. Minor background noise reduction steps were taken during post-
processing of some of the screencasts. 
 
Two different methods of providing students with the expert problem solving processes through 
screencasting were used in this study. One treatment used the “as recorded” or “honest” 
screencast. This treatment presented the instructor’s first attempt to solve the problem exactly as 
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it was recorded—no editing for content, no fixing mistakes after-the-fact, and no pop-up 
annotations. When the instructor did make a mistake, it was eventually noticed, corrected, and 
the analysis continued from the corrected mistake. The intent was to record the instructor’s 
approach as if they had been solving the problem on a whiteboard in front of a class. 
 
The other treatment used the “warning” screencast. This treatment presented the exact same 
analysis as the “honest” screencast with the addition of a short pop-up annotation warning the 
student that the instructor had just made a mistake in numerical calculation, algebraic 
manipulation, application of theory, or incorrect assumptions. The mistake was not typically 
edited out, only noted visually for a few seconds when it occurred. Twelve of the screencasts 
included such mistakes. If no mistakes were made during a screencast, the second treatment 
group received the same video as the first treatment group. In three instances where the mistake 
took a significant amount of time to correct, the flawed analysis was noted and then the 
screencast was skipped forward to where the mistake was corrected.  
 
The subjects of this study were students enrolled in two sections of a one-quarter required 1st 
year Statics and Mechanics of Materials class at a small teaching focused college in the Midwest. 
Each section of the class received a different treatment. Of the 46 total students enrolled in the 
class, 30 participated in this study. Participants were 1st and 2nd year students and were primarily 
mechanical engineering majors. 
 
Data collection for this study involved three primary parts. The first was through tracking student 
access of the screencasts through the course management software, Moodle. The screencasts 
were provided as a link on the main course page with individual links to each screencast, 
showing the topic covered. The screencasts were presented with the following description:  

“Homework Help Videos-- Screencast videos of [instructor name] solving example 
problems that are similar to your HW assignments will be posted here. Watch these 
videos to improve your understanding of fundamental concepts, how to approach the 
problems, what proper documentation looks like, and how to identify mistakes.”  

A screencast was provided for most topics in the course, for a total of 23 screencasts. The 
screencasts were posted to the course Moodle site as the topic was covered in lecture. Students 
were reminded of the screencast availability occasionally throughout the quarter, but viewing of 
the screencasts was not required. Student access times and frequency were gathered for each of 
the screencasts after the course was completed. 
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Table 1. List of screencast topics, noting when the warning treatment group received a 
different screencast, ordered as presented to students. 

Topic # Screencast Topic Notes 
1 2D Vectors  
2 3D Vectors  
3 2D Particle Equilibrium warning version exists 
4 3D Particle Equilibrium warning version exists 
5 Normal Stress warning version exists 
6 Shear Stress warning version exists 
7 Stress on Inclined Planes warning version exists 
8 Stress and Strain  
9 Thermal Strain  
10 Axial Deformation warning version exists and is 3 minutes shorter 
11 Statically Indeterminate Problems warning version exists 
12 Factor of Safety warning version exists 
13 Moment About a Point  
14 Moment About an Axis  
15 Couples  
16 Centroids by Integration  
17 Centroids by Composite Bodies warning version exists 

major topic of Exam Practice Problem 2 
18 Distributed Load Equivalents  
19 FBDs of Rigid Bodies  
20 Equilibrium in 2D  
21 Equilibrium in 3D warning version exists and is 2 minutes shorter 
22 Friction warning version exists 
23 Frames & Machines warning version exists and is 10 minutes shorter 

major topic of Exam Practice Problem 3 
 
The second data collection part was through analyzing the students’ analysis process on 
ungraded exam practice problems, given one or two lectures before the exam. The practice 
problem was developed at the same time as the exam itself with the goal of making the practice 
problem equivalent to a problem that would be seen on the exam. Students were told to approach 
the practice problem exactly as they would an exam problem so that they could self-identify if 
they should spend more time studying the topic covered by the practice problem. Students were 
given approximately ten minutes to complete the problem, their work was collected, and then the 
instructor’s solution was shared and discussed.  

After the course was completed, this ungraded assignment was assessed using a rubric that 
measures the performance of key problem-solving tasks in the subject—picking out key features 
of the problem, deciding on an analytical approach to use, correctly applying that approach, and 
checking the reasonableness of the result. The rubric focuses on procedural tasks, assigning a 
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score based on how well the student demonstrates their ability to follow the standard procedure. 
The rubric was developed by the instructor using a similar approach to Shadle, Brown, Towns, 
and Warner, and vetted by colleagues who regularly teach the same course14. 
 

 
 

Figure 1. The Exam Practice Problem 2 (EPP2) handout is shown on the left and the 
evaluation rubric is shown on the right. The topic is finding a centroid by composite shapes. 

  

 
 

Figure 2. The Exam Practice Problem 3 (EPP3) handout is shown on the left and the 
evaluation rubric is shown on the right. The topic is finding all forces exerted on a member of a 
multi-link frame. Because of the length of the problem, most students did not get far enough in 
their analysis to check their result, so the “check result” category was dropped for scoring. 
 
The third data collection part was through pre-class and post-class concept inventories located at 
cihub.org. On the first day of class, students completed the Force Concept Inventory (FCI)15. 
During the last week of class, students completed the Concept Assessment Tool for Statics 
(CATS), referred to here as the Statics Concept Inventory or SCI16. The FCI results are intended 
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to allow comparison of how well individual students are prepared for the course by assessing 
their understanding of fundamental concepts related to the analysis of forces. The SCI results are 
intended to allow comparison of how well individual students have learned fundamental statics 
concepts after they have completed the course. 
 
The data collected in this work are presented in Appendix A. 
 
Analysis 
 
In order to answer the main research question for this study, we first will address the sub-
questions that were developed. 
 
Were “honest” and “warning” videos viewed similarly by students? 
 
In order to determine the impact of both video treatments, we first must determine the usage rate 
of each treatment. To do this, we ran a two sample t-test assuming equal variance between the 
honest and warning groups. Treatment 1, the “warning” group, had a viewing average of 10.4 
and a standard deviation of 15.5. Treatment 2, the “honest” group, had a viewing average of 13.6 
and a standard deviation of 23.0. The two-sample two-tailed t-test assuming equal variances 
found p = 0.664. Students’ usage of the screencast resource does not seem to be affected by the 
“honest” or “warning” differences. The data does not reject the null hypothesis that the two 
treatment groups’ viewing frequencies were the same. 
 

 
Figure 3. Box plots of screencast views shows no significant differences in the number of raw 
screencast views between the two treatment groups. A similar result holds for the non-repeat 

view data. 
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What type of students viewed the intervention videos? 
 
Next, we looked at what types of students viewed the intervention videos during the quarter. To 
do this, we took the FCI score as an estimate for preparation for the class with regard to 
fundamental ideas of forces. The high-viewers (those with a raw view of 8 or more times) came 
from low, medium, and high ranges of FCI score. Conversely, low-viewers also came from a 
wide range of FCI scores. From this, we concluded that a wide range of students (more prepared 
vs. less prepared) used the intervention videos during the course.  

 

 
Figure 4. Students with a wide range of incoming FCI score ended up being high-viewers of the 

screencasts (those with 8 or more views). 
 
Looking at the data in a retrospective way, the high-viewers also seemed to end up with a wide 
range of SCI score at the end of the class. 
 

 
Figure 5. High-viewers of the screencasts (those with 8 or more views) had a wide range of SCI 

scores upon completing the class. 
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What is the impact of rate of viewing on performance (SCI and EPP)? 
 
To look at the impact of rate of viewing the intervention videos on performance in the course, we 
used regression analysis. Due to the potential impact of pre-existing knowledge on performance 
in the class, we also included the FCI score into each regression model. First, we can look at the 
impact of rate of viewing on performance on the EPP’s. Table 2 presents the regression analysis 
of EPP2 score with the variables FCI score and number of video views.   
 

Table 2: Regression Analysis for Impact of FCI and Views on EPP2 
Regression Statistics 

Multiple R 0.06 
R Square 0.00 

Adjusted R Square -0.08 
Standard Error 0.97 
Observations 28.00 

  

 Coefficients 
Standard 

Error t Stat P-value 
Intercept 1.86 0.50 3.70 0.00 

FCI 0.21 0.86 0.24 0.81 
Views 0.00 0.01 -0.21 0.83 

 
Table 3 presents the regression analysis of EPP3 score with the variables FCI score and number 
of video views.   

Table 3: Regression Analysis for Impact of FCI and Views on EPP3 
Regression Statistics    

Multiple R 0.22    
R Square 0.05    

Adjusted R Square -0.02    
Standard Error 1.15    
Observations 29    

     

 Coefficients 
Standard 

Error t Stat P-value 
Intercept 1.81 0.58 3.11 0.00 

FCI 1.03 1.01 1.03 0.31 
Views -0.01 0.01 -0.59 0.56 

 
Both Tables 2 and 3 show little to no prediction power in the regression models (EPP2 R2 = 0.00; 
EPP3 R2 = 0.05). Thus we can conclude that the variables of FCI score and number of views 
provide little ability to predict a student’s score on exam practice problems.  
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Next, we can look at impact of viewing on SCI score. Table 4 presents the regression analysis of 
SCI score with the variables FCI score and number of video views.   
 

Table 4: Regression Analysis for Impact of FCI and Views on SCI 
Regression Statistics    

Multiple R 0.65    
R Square 0.42    

Adjusted R Square 0.38    
Standard Error 0.14    
Observations 29    

     

 Coefficients 
Standard 

Error t Stat P-value 
Intercept 0.14 0.07 1.98 0.06 

FCI 0.52 0.12 4.35 0.00 
Views 0.00 0.00 0.24 0.82 

 
The regression analysis for SCI score shows that the variables FCI score and number of views 
can explain 42% of the variation in SCI score (SCI R2 = 0.42). From this model, FCI score is a 
significant contributor to the model (FCI p = 0.00) while number of views was found not to be 
significant (Views p = 0.82).  
 
The regression analyses for EPP scores and SCI score indicate that there was no significant 
relationship between how many times a student viewed the intervention videos and performance. 
Due to this result, there was no need to look at the difference between the honest and warning 
videos. While there could be many contributing factors to the results of this analysis, the most 
influential factor is likely the small sample size in the first round of data collection. Further 
rounds of data collection will occur in order to develop a more robust regression model.  
 
Discussion 
 
We now revisit the primary research question: 
 
What is the impact of viewing an honest expert problem solving process on the problem solving 
processes of engineering students solving statics problems?  
 
Based on the analysis of the data collected, viewing honest expert screencasts makes no 
measurable impact on demonstrated problem solving processes of students solving statics 
problems. 
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Students accessed the screencasts in equivalent numbers, regardless of the presence or absence of 
a warning about a mistake that was made by the expert. It seems that the time spent inserting a 
mistake warning in a screencast of an analytical solution might not be necessary. 
 
The students who accessed the screencasts had a wide range of incoming conceptual preparation, 
as measured by the FCI, and also had a wide range of outgoing conceptual performance, as 
measured by the SCI. High-performing and low-performing students appear to be equally 
represented in the screencast viewing records. 
 
No significant results were found to show that the treatments affected the outcomes measured— 
either through post-class SCI score or through exam practice problem scores. 
 
However, there is something about the screencast resource that some students find appealing.  
 
In this admittedly small study, honest expert screencasts are not shown to be a revolutionary idea 
that transforms the learning experience for an entire class. Yet, some students considered the 
screencasts as helpful—they watched them for many different topics and watched some of them 
multiple times. Informal verbal feedback throughout the quarter supported this feeling. What is 
still left to answer is what exactly students see as the benefit of these screencasts. Do they use the 
screencasts as an opportunity to practice along with the expert or do they sit back and watch 
what happens without working along? Do they focus on getting the correct final answer or do 
they try to practice the formal solution method that is being modeled? Does expert modeling of 
the identification and correction of errors help students in a homework or exam situation identify 
and correct their own errors? Finally, does showing that an expert does make mistakes improve 
their confidence in their ability to succeed in an engineering discipline? 
 
Future plans for this research area include expansion of the treatment sample size and qualitative 
investigations to begin understanding why students choose to use the screencast videos. 
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Appendix A 
 
Participating students were randomly assigned an IDcode, with 100 designating treatment 1, 
“warning” videos, and 200 designating treatment 2, “honest” videos. Video views data is 
presented as both the raw number, counting the number of videos that were accessed, and as the 
non-repeat number, counting all accesses of the same video in succession within the same hour 
as a single access. Concept inventory results are presented as percentage scores. Exam practice 
problem scores are presented in total, out of a maximum score of 4. Data is sorted by the number 
of raw video views. 
 

Table 5. Data for Treatment 1 group—“warning” videos, n = 13 
 Video views Concept Inventories Exam Practice Problems 

IDcode raw non-repeat FCI score SCI score EPP2 score EPP3 score 
154 55 51 40.0% 25.9% 2.5 4.0 
108 22 18 83.3% no data no data 1.0 
182 21 14 63.3% 55.6% 2.5 2.5 
175 16 16 43.3% 44.4% 2.0 1.0 
183 6 6 30.0% 37.0% 1.0 3.0 
156 5 5 63.3% 59.3% 1.0 2.5 
176 4 3 33.3% 40.7% 1.0 3.5 
143 3 3 50.0% 37.0% 1.0 4.0 
133 1 1 90.0% 51.9% 3.5 1.5 
160 1 1 56.7% 44.4% 1.5 3.5 
196 1 1 36.7% 11.1% 2.0 1.0 
159 0 0 33.3% 48.1% 2.0 3.0 
197 0 0 30.0% 37.0% 1.5 3.0 

 
Table 6. Data for Treatment 2 group—“honest” videos, n = 17 

 Video views Concept Inventories Exam Practice Problems 
IDcode raw non-repeat FCI score SCI score EPP2 score EPP3 score 

261 95 80 43.3% 33.3% 2.0 1.5 
284 35 34 63.3% 37.0% 2.0 1.5 
278 26 24 33.3% 40.7% 0.5 3.0 
282 14 12 96.7% 63.0% 3.0 2.0 
256 12 11 33.3% 51.9% 1.0 2.5 
291 11 9 30.0% 25.9% 0.5 0.0 
288 9 9 33.3% 14.8% 1.5 0.0 
230 8 8 70.0% 51.9% 2.0 3.0 
258 8 8 40.0% 29.6% 2.0 1.0 
281 4 4 26.7% 14.8% 1.5 1.5 
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254 3 2 86.7% 37.0% 1.5 no data 
219 2 2 50.0% 25.9% 2.0 2.5 
269 2 1 83.3% 77.8% 4.0 2.5 
277 2 2 66.7% 66.7% 3.0 3.5 
225 1 1 70.0% 25.9% 2.5 1.5 
231 0 0 93.3% 81.5% 4.0 4.0 
237 0 0 43.3% 40.7% 1.5 2.5 
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