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A Study of Individual Learning in Software Engineering Team Projects 

Abstract 

A large scale experiment to determine if improved team cognition leads to improved individual 
learning has been designed.  Specifically, the goal of this research is to determine if working on 
an effective team benefits or impedes a student’s learning of the course content.    The literature 
appears to focus on team performance, team outcomes, and benefits of teams by combining 
individual resources; but does not focus on the benefits of the individuals on the team, where a 
benefit could be learning for example.  Our results, however, do not support the hypothesis that 
the guidelines that facilitate effective student teams also improve individual team member 
learning. 

 
Introduction 

Software engineering projects at anything other than the smallest scales involve teams of 
engineers. It is not surprising then, that courses in software engineering often include group and 
team projects as part of both the students’ learning and their assessment. An informal survey of 
the courses in our own graduate software engineering program revealed that over half include 
group projects that contribute significantly (30% or more) to a student’s final grade. This is 
apparently in line with other engineering disciplines.  In a survey of instructors at eight 
engineering schools Felder6 found that 24% always assigned a group project while another 52% 
assigned them in some courses, while a second broader survey showed that 80% of capstone 
courses included  team-oriented projects10.  

Given the prevalence of team projects we have conducted a number of experiments over the last 
three years to investigate the effectiveness of engineering teams, and mechanisms to improve 
that effectiveness2,3,5. Through these experiments we have established a simple model for student 
collaboration that aids more rapid convergence on the problem at hand and the chosen solution. 
We have further demonstrated that the efficacy is borne from greater team mindshare – more 
correctly termed shared (or team) mental model convergence4. While we have established that 
the collaborative model aids a team in achieving its purpose, we still wanted to test whether 
improved team outcomes also implied improved individual learning for each student. That is to 
say, do the team outcomes reflect individual learning in the team members?  

The implications of this, if not the case, are broad. Grades assigned to individuals based upon a 
team project would be inaccurate representations of those students’ true attainment and the role 
of team projects would be questioned. Of course, one could still argue that provided a team 
delivered a successful product or project, one that is analogous to ‘real world’ software projects, 
the goal of the educational program is achieved, but we would still like to know that successful 
outcomes are borne of individual learning rather than simply effort or repetition. 
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The collaborative model employed is Cognitive Collaborative Model (CMM) and is a six-stage 
cognitive model that takes into consideration the cognitive and social activities that occur during 
collaborative problem solving by facilitating problem formulation, problem analysis, and design 
tasks during collaboration1.  The CCM model prescribes tactics to ensure collaboration, but does 
not imply any specific analysis or design techniques, and thus does not impact any techniques 
taught to the students such as object-oriented analysis and design.  

Using pre- and post-testing, we studied course outcomes of software engineering graduate 
students learning software systems design that have also utilized the CCM in a systems design 
project and contrasted these results with a control group.     

 
 
Background 

Anecdotally we frequently hear from employers that it is “soft skills” that they most desire in 
their engineering and technical staff. While this is likely only true when those employees are 
proficient engineers, it is clear that engineering is a team activity11 and the ability of an engineer 
to work effectively in a team is a keenly sought after skill12. 

Beyond the external need for team-oriented engineers, there is evidence that collaborative 
learning methods are more effective than teacher-centered methods17,18 and even when compared 
to active learning and constructivist approaches19. We would expect, then, that engineering 
students working in teams would see improved individual learning. Of course, a critical aspect is 
the nature of that teamwork. Kittleson and Southerland [2004] observed engineering capstone 
teams and found that they were cooperative, in that they divided the work between the team 
members, rather than collaborative – an outcome we have seen in our courses, and a motivating 
factor behind the CCM. This divide-and-conquer approach was also seen in a study of pair-
working in engineering labs, and it led to significant declines in individual achievement7. This 
implies that team discourse (the degree and nature of interaction between the team members) is 
an important factor in individual learning 15 and is certainly in keeping with social constructivist 
learning theory. 

There may be other factors, however, that inhibit learning in engineering teams. Cognitive style, 
the problem-solving preferences of individuals, appears to influence learning. We have 
previously investigated the impact of one aspect of cognitive style, Adaption-Innovation 
theory20, and found that while teams comprised of diverse problem solvers (some who prefer to 
adapt existing solution versus those who prefer to create new solutions) may encounter greater 
difficulty in collaborative working, those issues appear to be resolved with the facilitated 
teamwork that comes with the CCM3. An alternative cognitive style theory (Field independence / 
Field Dependence9 may be more revealing, however as it classifies people as independent or 
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dependent learners, where independent learners prefer, as one might expect, to work alone, and 
often have poor interpersonal skills8. Furthermore, the skills of independent learners align more 
closely with engineering than those of dependent learners, which leads to a tendency for 
engineers to be independent learners13. The impact of this on their ability to work collaboratively 
in a team, and further, for them to learn through teamworking and collaborative approaches may 
be substantial and may require additional training in interaction14. 

 
Theory 

The main goal of the CCM is to assist in facilitating critical thinking and effective problem 
solving among collaborators. The CCM described briefly in this paper is made up of six stages: 
Problem Formulation, Problem Analysis, Solution Design, Solution Translation, Solution 
Testing, and Solution Delivery. Each stage is further broken down into three phases.  For the 
purposes of this study we will only focus on the details of the first two stages of the CCM: 
Problem Formulation and Problem Analysis. The three phases of the Problem Formulation stage 
(stage 1) are: Preliminary Problem Description, Preliminary Mental Model, and Structured 
Problem Representation. The goal of this stage is for the team to answer questions and gather 
information for each team member to understand the problem. In addition, the individuals need 
to communicate effectively and the group also needs to listen and make sure each member has 
the correct understanding of the problem. 

For example, in the first stage the collaborators are to agree upon a preliminary problem 
description to make sure each team member has the same understanding of the problem. The 
model guides each team member to create a description in their own words and share it with each 
team member. Each team member discusses and votes to determine one problem description.  
Next, the team is charged with answering questions to develop a preliminary mental model. For 
example, the questions help the team to discuss and determine givens, unknowns, conditions and 
constraints on the problem. The final part of this stage is where the team will identify and 
organize any relevant information of the problem thus creating a knowledge base from which the 
team will begin their Problem Analysis (stage 2).  

The three phases of the second stage of the CCM, Problem Analysis, are: Critical Analysis of 
Problem Scope, Scope Refinement, and Scope Modeling. The goal for this stage of the CCM is 
for the team to answer questions and gather information to further analyze the problem. 
Specifically, they are going through the process of goal decomposition where they are refining 
goals into smaller sub-goals that are more easily solved.  For example, in the initial phase of 
stage two, the team is beginning to critically analyze the problem scope. The team members then 
share their ideas for use cases.  A vote commences to determine the direction that will be 
followed. Now that the team has agreed upon direction, the scope of this direction is refined 
where detail is added to use cases for phase 2 and a design class diagram is the output of phase 3. P
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In the remaining four stages of the CCM the team would be translating the plan into a detailed 
design, implementing the design, testing, and finally delivering the solution. Working through 
the first two stages of the CCM, the team is able to conceptualize the problem resulting in a more 
effective plan and in theory implementing a better solution. 

 

Hypothesis and Experimental Methodology 

The goal of this research was to investigate the individual learning on successful engineering 
teams.  In previous publications we have shown support of the following three hypotheses: 

H1.Use of the CCM by team members will improve the project outcomes for that team. 

H2.Use of the CCM will facilitate the forming of a team mental model. 

H3.Use of the CCM will facilitate team learning. 

Four separate experiments were conducted to test the three hypotheses.    The first two 
experiments focused on H1 by examining the project outcomes from graduate student 
engineering teams.  The third experiment addressed H2 by eliciting and assessing each team 
member’s mental model of the project using concept maps.  In the fourth experiment both the 
individual course assessments as well as the team’s project artifacts were evaluated to address 
H3. 

In this fifth experiment, we tested a fourth hypothesis: 

H4.Use of the CCM in teams will improve individual learning. 

Specifically, the goal of this experiment was to determine if individual learning would be 
enhanced by teams utilizing the CCM.  The subjects participating in the study were 39 graduate 
software engineering students in two sections of the same course, taught from the same 
materials.  One section was provided the CCM guidelines for their team projects at their first 
team meeting as a paper handout.  The students were assigned to random teams of three or four 
people where they were given one of four equivalent assignments. 

Rather than assess the artifacts created by the teams, as we have done in previous reported 
experiments, we chose to conduct pre- and post-testing to determine the degree of individual 
learning. As the pre-test, all students were given a benchmark exam that tested their 
understanding of the course topics before any material had been covered. At week five (of the 7 
week course) each student was then assessed again, through a second exam similar in nature to 
the first as the post-test.   

The course, software systems design, focuses on the principles of object-oriented analysis and 
design.  This course covers the basics of object-orientation (coupling, cohesion, encapsulation, 
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inheritance, polymorphism, etc.) as well as the principles of analysis, design, and architecture of 
object-oriented software systems and their representation using the UML.   

The pre-test consists of eight questions (seven short answer and one multiple choice) assessing 
what the students already knows about basic object-oriented concepts.  The post-test covers the 
UML diagrams, notation, and semantics as well as other analysis techniques related to a use-case 
driven development process. 

To grade the pre- and post-tests we employed three judges: a professor with experience teaching 
the course, but not involved in either section (Judge 1), the instructor for the control group 
(Judge 2), the instructor for the CCM condition (Judge 3).  To avoid any instructor bias, the 
instructors did not evaluate their own course assessments, thus we had two sets of results for 
each test.    Each instructor employed a common rubric point system agreed upon prior to the 
start of the courses.  The rubric included specific point values associated with various plausible 
answers.  Below is an example pre-test question with its corresponding point system: 

_____________________________________________________________________________________________ 
What is an object (instance) and what is a class? (4 points) 
 

• A class is an abstraction that encapsulates data and its related operations. It is used as a 
blueprint to create an instance of itself called an object. (4 points) 

• A class implements a specification used for creating objects that share the same 
attributes and behavior. (4 points) 

• A class is a blueprint for an object and an object is an instance of a class. (3 points) 
• A class is used for creating objects. (2 points) 
• Class and object are object-oriented concepts. (1 point) 

 

Data Analysis and Results 

To determine if the condition group saw greater improvement, on average, than the control group 
we used a T-test statistic on the differences between the Post- and Pre-test scores for each group. 
The individual scores by each judge, for each student in each group, are shown in Table 1and 
Table 2.   

 

Table 1: Pre- and Post-test scores (%) for each student in the Control group. 

Student Judge 1 Pre Judge 3 Pre 
Average 

Pre Judge 1 Post Judge 3 Post 
Average 

Post Post-Pre 
1 21.9 40.6 31.3 80.2 70.9 75.6 44.3 
2 21.9 25.0 23.4 57.0 59.3 58.1 34.7 
3 0.0 3.1 1.6 80.2 76.7 78.5 76.9 
4 43.8 53.1 48.4 77.9 75.6 76.7 28.3 
5 28.1 71.9 50.0 80.2 83.7 82.0 32.0 
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6 25.0 68.8 46.9 54.7 57.0 55.8 8.9 
7 9.4 31.3 20.3 34.9 41.9 38.4 18.1 
8 12.5 37.5 25.0 53.5 62.2 57.8 32.8 
9 25.0 43.8 34.4 72.1 73.3 72.7 38.3 
10 65.6 59.4 62.5 83.7 83.7 83.7 21.2 
11 53.1 75.0 64.1 89.5 85.5 87.5 23.4 
12 46.9 90.6 68.8 61.6 59.9 60.8 -8.0 
13 31.3 43.8 37.5 73.3 75.6 74.4 36.9 
14 18.8 28.1 23.4 83.7 76.7 80.2 56.8 
15 12.5 18.8 15.6 81.4 77.9 79.7 64.0 
16 31.3 68.8 50.0 73.3 72.1 72.7 22.7 
17 21.9 43.8 32.8 79.1 79.7 79.4 46.5 
18 15.6 37.5 26.6 77.9 82.0 79.9 53.4 
 

 

Table 2: Pre- and Post-test scores (%) for each student in the Condition group. 

Student Judge 1 Pre Judge 2 Pre 
Average 

 Pre Judge 1 Post Judge 2 Post 
Average 

 Post Post-Pre 
A 21.9 21.9 21.9 48.8 55.8 52.3 30.5 
B 9.4 34.4 21.9 47.7 38.4 43.0 21.1 
C  18.8 40.6 29.7 74.4 66.3 70.3 40.7 
D 12.5 25.0 18.8 69.8 80.2 75.0 56.3 
E 28.1 53.1 40.6 73.3 84.9 79.1 38.4 
F 9.4 25.0 17.2 72.1 74.4 73.3 56.1 
G 25.0 31.3 28.1 77.9 84.9 81.4 53.3 
H 21.9 37.5 29.7 77.9 83.7 80.8 51.1 
I 15.6 34.4 25.0 47.7 51.2 49.4 24.4 
J 53.1 65.6 59.4 79.1 93.0 86.0 26.7 
K 43.8 62.5 53.1 70.9 73.3 72.1 19.0 
L 34.4 59.4 46.9 53.5 48.8 51.2 4.3 
M 3.1 21.9 12.5 41.9 38.4 40.1 27.6 
N 28.1 53.1 40.6 72.1 86.0 79.1 38.4 
O 28.1 37.5 32.8 88.4 90.7 89.5 56.7 
P 50.0 71.9 60.9 86.0 87.2 86.6 25.7 
Q 34.4 59.4 46.9 69.8 70.9 70.3 23.5 
R 34.4 71.9 53.1 84.9 89.5 87.2 34.1 
S 43.8 59.4 51.6 68.6 77.9 73.3 21.7 
T 25.0 34.4 29.7 87.2 86.0 86.6 56.9 
U 12.5 34.4 23.4 77.9 80.2 79.1 55.6 
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Since this analysis involves the averaging of the two judges’ scores for each group, we must first 
test the inter-rater reliability of the two pairs of judges for each group. Tables 3 and 4 show the 
comparison statistics of the evaluations from the two judges who assessed the CCM condition 
pre- and post-tests.  Tables 5 and 6 show the comparison statistics of the evaluations from the 
two judges who assessed the control groups assessments. 

Table 3: Inter-rater reliability for Pre-test in the Condition group. 

 Judge 1 Judge 2 
T = -3.84 µ = 26.3 µ = 44.5 
p = 0.0 σ = 13.8 σ =16.7 
 

Table 4: Inter-rater reliability for the Post-test in the Condition group. 

 Judge 1 Judge 2 
T = -.71 µ = 70.0 µ = 73.4 
p = .481 σ = 14.0 σ = 17.1 
 

Table 5: Inter-rater reliability for the Pre-test in the Control group. 

 Judge 1 Judge 2 
T= -3.02 26.9 46.7 
p = 0.005 σ = 16.5 σ = 22.4 
 

Table 6: Inter-rater reliability for Post-test in the Control group. 

 Judge 1 Judge 2 
T = 0.01 µ = 71.9 µ = 71.9 
p = 0.994 σ = 14.0 σ = 11.5 
 

While the post-test results for both the condition and control groups were reliable, (Tables Table 
4 and Table 6) with no significant difference between the judging (p=.481 and p=.994), the pre-
tests (Table 3 and Table 5) show a significant difference between the judges scores (p=0.0 and 
p=.05).  This potentially confounds the results, so that averages across judges may not be 
reliable. We will therefore show the overall statistics for the condition versus control groups for 
all judges as well as the average.   

A T-test was performed to assess the resulting differential for each student between the two 
groups (CCM vs. No CCM) to determine if the groups were significantly different.  The results 
of the analysis are summarized in Table 7.    P
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Table 7: T-test of the difference between Post- and Pre-test results for the condition and 
control groups. 

  CCM  (n=21) Control (n=18) 
Judge 1 T = -0.25 µ = 43.6 µ = 45 

p = 0.599 σ = 14.5 σ = 17.9 
Judge 2 (CCM) vs 
Judge 3 (control) 

T = 0.53 µ = 28.9 µ = 25.2 
p = 0.3 σ = 18.7 σ = 24.6 

Average T = 0.21 µ = 36.3 µ = 35.1 
p = 0.419 σ = 15.7 σ = 20.3 

 

These results reveal that Judge 1 found that the control group marginally outperformed the 
condition group, while a comparison of the two judges involved in teaching the respective 
sections reveal marginally better performance from the condition group. Neither result was 
significant however (p=0.599 and p=0.3, respectively), and the overall average of all judges was 
also not significant (p=0.419) and thus the hypothesis, H4, that use of the CCM, and therefore 
effective teamwork, will facilitate improved individual learning is not confirmed. A valid 
question to ask here is whether the experiment design was flawed; that perhaps the post-test 
assessment was not sufficiently demanding to discriminate between high and low performing 
students. Looking at the average percentages for the post-test scores (71.7 for CCM, 71.9 for 
control), however, reveals that there was still significant margin for improvement in the CCM 
group had their learning been improved. Thus we will explore alternative explanations in the 
proceeding discussion. 

Discussion 

Clearly we anticipated that the guidelines and practices that we have found to improve team 
effectiveness would also lead to improved learning, and that hypothesis was not supported. 
Reflecting upon the result there may be several explanatory factors. First, the work of the teams 
on their projects may reflect operational competency rather than deep understanding of the 
course content. For example, despite the relatively large scale of the projects tackled, and their 
relative complexity, the solutions exercise only a small cross-section of the concepts and 
theoretical foundations covered in the class, which is partly why multiple assessment techniques 
are employed in this course.  

Furthermore, while the CCM guidelines encourage the team members to work collaboratively 
rather than cooperatively, we do still find that students eventually experience role specialization 
where each team member takes on primary responsibility for some aspect of the project21, and 
therefore becomes relatively expert in only a limited portion of the course content.   

Finally, the issue raised earlier in the paper regarding cognitive, and therefore learning, 
preferences may be critical. If engineers are more prone to be field independent learners, any 
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learning modes oriented towards collaborative working may run counter to the preferences of the 
individual, and this would raise questions regarding the use of social constructivist and 
collaborative experiential learning approaches in engineering education. 

Conclusions and Future Work  

The goal of this study was to determine the impact of an individual on an effective team in a 
learning environment.  Previous studies investigated the factors for team success as well as the 
degree by which those factors facilitated team cognition.  The results of this study showed that 
despite team learning and improved project outcomes, the individuals with access to the CCM 
did not learn any more effectively than those without it.   

Thus, our future work will focus on determining the factors to facilitate both team success and 
individual learning. Of particular interest is the efficacy of collaborative learning approaches in 
general for engineering students. We remain committed to these approaches and question 
whether team projects, which exercise operational effectiveness rather than collaborative 
learning, per se, should really be considered a learning experience at all, and instead simply 
summative assessment of the ability of students to apply an admittedly limited portion of the 
course content. 
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