
AC 2007-1138: A NAFP PROJECT: USE OF OBJECT ORIENTED
METHODOLOGIES AND DESIGN PATTERNS TO REFACTOR SOFTWARE
DESIGN

Gholam Ali Shaykhian, NASA
Gholam “Ali” Shaykhian Gholam Ali Shaykhian is a software engineer with the National
Aeronautics and Space Administration (NASA), Kennedy Space Center (KSC), Engineering
Directorate. He is a National Administrator Fellowship Program (NAFP) fellow and served his
fellowships at Bethune Cookman College in Daytona Beach, Florida. Ali is currently pursing a
Ph.D. in Operations Research at Florida Institute of Technology. He has received a Master of
Science (M.S.) degree in Computer Systems from University of Central Florida in 1985 and a
second M.S. degree in Operations Research from the same university in 1997. His research
interests include object-oriented methodologies, design patterns, software safety, and genetic and
optimization algorithms. He teaches graduate courses in Computer Information Systems at
Florida Institute of Technology’s University College. Mr. Shaykhian is a senior member of the
Institute of Electrical and Electronics Engineering (IEEE) and is the Vice-Chair (2005-2007),
Education Chair (2003-2007) and Awards Chair of the IEEE Canaveral section. He is a
professional member of the American Society for Engineering Education (ASEE), serving as the
Program Chair and Web Master for the Minorities in Engineering Division of ASEE (2006-2008).
He was an assistant professor and coordinator of the Information Systems program at the
University of Central Florida prior to his full time appointment at NASA KSC.

Rhoda Baggs, Florida Institute of Technology
Dr. Rhoda Baggs Dr. Rhoda Baggs is the Program Chair for the MS in Computer Information
Systems for Florida Institute of Technology’s University College. This program specializes in
object-oriented programming, component engineering, data driven systems, and other related
software, system, and IS topics. She has earned a Ph.D. and an M.S. in Computer Science from
the Florida Institute of Technology and a Bachelor of Science in Computer Science from the
University of Pittsburgh. In between and during academic achievements, Dr. Baggs has worked
primarily as a Software Engineer for such companies as Texas Instruments, Raytheon, JDS
Uniphase, Optical Process Automation, WT Automation, Advanced Manufacturing Technologies,
Inc., and NASA. Research Interests include Multimedia Tutorials and Software Engineering for
the Same, Software Engineering and Reverse Engineering of Legacy Software, Image Processing,
and Systems Engineering. Dr. Baggs is a member of the International Association of Computer
Information Systems, the Association of Computing Machinery, and several ACM SIGs,
including Design of Communication, Information Technology Education, Software Engineering,
and Multimedia.

© American Society for Engineering Education, 2007

P
age 12.74.1

An NAFP Project: Use of Object Oriented

Methodologies and Design Patterns to Refactor Software

Design

Gholam Ali Shaykhian, NAFP Fellow

Engineering Directorate

National Aeronautics and Space Administration

Kennedy Space Center

Ali.Shaykhian@nasa.gov

Rhoda Baggs, Ph.D.

Assistant Professor of Computer Sciences

University College

Florida Institute of Technology

rbaggs@fit.edu

Introduction

In the early problem-solution era of software programming, functional decompositions

were mainly used to design and implement software solutions. In functional

decompositions, functions and data are introduced as two separate entities during the

design phase, and are followed as such in the implementation phase. Functional

decompositions make use of refactoring through optimizing the algorithms, grouping

similar functionalities into common reusable functions, and using abstract representations

of data where possible; all these are done during the implementation phase. This paper

advocates the usage of object-oriented methodologies and design patterns as the

centerpieces of refactoring software solutions. Refactoring software is a method of

changing software design while explicitly preserving its external functionalities. The

combined usage of object-oriented methodologies and design patterns to refactor should

also benefit the overall software life cycle cost with improved software.

P
age 12.74.2

Object-oriented methodology

The software development discipline is undergoing a tremendous metamorphosis,

brought on by the influence of new development paradigms, new development tools, new

technologies, more complex requirements, and ever-shorter development cycles. The

usage of object-oriented methodology in constructing engineering and business

applications has grown exponentially since the early 90’s. In the object-oriented

methodology, the software design focuses on objects instead of functions and functional

decompositions. An object is introduced as a discrete entity, containing its data and

functions. The main aspects of the object-oriented methodology includes encapsulation,

inheritance and polymorphism [3]. Encapsulation refers to wrapping object attributes and

behaviors in an enclosed entity, inheritance deals with object reuse, and polymorphism

concerns with object having access to a behavior where the knowledge to the access is

known at runtime.

Objects encapsulate the related attributes (data or member data) and behaviors (functions

or member functions) of an entity. In practice, an ill design of an object is to wrap a set of

unrelated data and functions enclosed in a named entity; hence making it difficult to

refactor. Representation of an object should provide tight internal coupling of the object’s

data and functions and loose coupling of the object’s external usage. Design of an object,

should be required to encompass only related data and functions of that object. Explicit

definition of an object in this form lends itself to significant software reuse. When

internal members (data and functions) of an object are tightly coupled, changes to a

member’s data are only possible through its corresponding member functions. The

external usage of the object should be loosely coupled to the object and a client should

not directly change the object data. Instead the request to change the object’s data is sent

to the object via the object’s member functions via messaging. If a client wants to change

an object’s data, it sends a message to the object, requesting for the change.

Relationships among objects are similar to those known to us in real life [3]. Suppose an

object of type Student has registered for a course with an instructor. A set of attributes

and behavior describe the student and professor objects. Professor evaluates his/her

student’s paper and exam. A professor is a member of a college/department within the

university. A university has several colleges/departments. A professor object,

college/department, and university have roles and responsibilities in processing a

student’s grade. Object relationships formalize the relationship among objects, these

relationships are knows-a, is-a, has-a, and depends-a. Additional relationships among

objects can be derived from these base relationships: for example with-a.

The knows-a relationship describes an association between two objects; for example, a

student knows his/her professor through registering for a course. This knowledge can be

unidirectional (a professor knows a student) or bi-directional (both the student and the

professor know each other). The has-a relationship is when an object is composed of

other objects. Professors are members of their college/department (college/department P
age 12.74.3

has professors) and a University has colleges/departments. These are examples of the

has-a relationship. The is-a relationship describes inheritance. In our example student is-

a person and also professor is-a person. When there is the need to establish relationships

among objects that deal with limited privileges, these limited privileges can be modeled

as depends-a relationships. For example, a college may want to restrict the creation of

new student objects and only allow certain instructors to have privilege of creating new

student objects. Object dependency can be used to regulate restrictions among objects.

An object can defer binding to its member’s functions to run time. This behavior is

known as polymorphism, and is implemented via dynamic binding or late binding.

Dynamic binding eliminates the implementation of the look up table when similar

functionality is required.

Object Oriented Methodology and Design Patterns to Refactor Software Design

An intrinsic property of software in a real-world environment is its need to evolve.

Software evolution concerns every phase of the software life cycle: the requirements

phase through the maintenance phase. The traditional software life cycle includes phases

for software requirements, implementation, testing and maintenance. Software evolution

may involve 1) introducing new behavior in which case it is considered a maintenance

activity; 2) modifying and extending the existing software design behavior in which case

ill posed requirements may be attributed to the formulation of the software requirements;

or 3) restructuring the software design to improve quality factors such as readability or

improved designed in which case it is considered software refactoring. Refactoring using

design patterns is one of the promising approaches to improve the designs during

development activities, and a crucial issue is to identify when, where and which patterns

could be applied [4]. Refactoring is a disciplined technique for restructuring an existing

design or body of code, altering its internal structure without changing its external

behavior. That is to say, refactoring is a technique to improve the maintainability of

software. By definition, refactoring is the transformations of code and design

specifications while explicitly preserving its unique design and functionalities.

Refactoring tends to permit and reveal numerous opportunities to improve the software.

The term “refactoring” in software engineering, means modifying design or source code

without changing its external behavior, with the motivation being to improve software

maintenance cost. Refactor to understand is a typical reverse engineering pattern in that it

does not intend to improve the code base or the design itself, but improves the

maintainers understanding. Consequently, less emphasis is put on regression testing, and

more on the composition and verification of hypotheses concerning the code. The

iterative process of Refactor to Understand [5] is described as 1) Read the code, 2)

Evaluate names on their correspondence to the true semantics of the

variable/method/class and rename if necessary, and 3) Evaluate groups of statements on

their semantic coherence [5]. The use of design patterns to implement refactoring is a

promising approach to improve conceptually the productivity of the software

P
age 12.74.4

development process and thus to reduce both the cost and time of developing and

maintaining complex systems.

An example scenario

Earlier in this paper, Student, Professor, College/Department, University, and Course

objects were used to explain the relationships among objects. This scenario explores

refactoring through the use of design patterns. Suppose an instructor wishes to keep a list

of all graduate students who have taken their courses and have earned an “A”. This

particular professor requires all his/her research assistants to maintain an “A” average to

be considered for the assistantship. Also, each department wishes to keep track of

graduate students that have maintained an average of “B” or better. Furthermore, a

student can only work as either a graduate teaching assistant or research assistant but not

both. Students are required to check with their professors or their respective departments

for potential opportunities for teaching or research assistantships. Figure –1 shows the

object relationships among Student, Professor, Department, College and University. Each

department maintains a list of faculties and list of students and tracks those students that

are awarded assistantships.

Figure 1: Object Relationships

Figure-1 uses diagrams which are defined [7] in the Unified Modeling Language (UML),

an object modeling and specification language. UML provides a rich set of diagrams to

represent objects and object relationships. Here only diagrams used in this paper are

described. A class diagram, represented by a rectangle (a box), is used to describe objects

with common structure and common behavior. Object relationships show the

communication path between two objects, the communication paths are knows-a, has-a,

is-a and depends-a relationships. Within UML the knows-a relationship is represented by

a line with an optional arrowhead indicating the role of the object(s) in the relationship,

the has-a relationship is represented by a line connecting two related classes with a

diamond next to the class representing the whole, the is-a relationship is represented by a

line connecting two related classes with a triangle next to the super class (parent class,

base class), and dependency (depends-a) is represented by a dashed line and exists

College

Professor

Student

Person

Department

University

P
age 12.74.5

between two defined elements if a change to the definition of one would result in a

change to the other.

The presented design (Figure-1) uses object-oriented methodologies as the basis for the

software solution. When an object-oriented solution is done correctly, the maintenance

cost of it is less than an equivalent functional solution mostly due to the coupling and the

cohesion factors described below:

• Object data and member functions are encapsulated as one entity.

• Object data are hidden (private member) from the client.

• The accesses to object data are limited to its member functions.

• A client needing object data makes requests through public member functions.

• Changes to object data are possible within the object.

Patterns are a recent software engineering problem-solving discipline that has emerged

from the object-oriented methodologies. A pattern is the abstraction for describing

recurring solutions to common problems in software design [1]. The notion of design

patterns is to build a body of knowledge to support the design and development. Crafting

design patterns during the design phase will allow programs to share knowledge about

their design and is the basis for a recurring solution. More specifically, the concrete form

which recurs is that of a solution to a recurring problem. The origin of design patterns lies

in work done by an architect named Christopher Alexander during the late 1970s.

Patterns have roots in many disciplines, including literate programming, and most

notably in Alexander's work on urban planning and building architecture [1].

In real world scenarios, problems occur within a certain context, and in the presence of

numerous competing solutions. The design analysis and refinement phase propose

solutions in the manner that is most appropriate for the given context. Design patterns are

identified with a unique name, for example, “Abstract Factory”, “Subject-Observer”, or

“Singleton” and a description. The description of the pattern tries to capture the essential

insight which it embodies, so that others may learn from it, hence providing recurring

solutions to common problems.

Use of design patterns to refactor the design also improves the data processing of a

software system, for example:

• Each professor keeps a list of his/her assistants.

• Additional coordination at the college/department level is required to disallow

multiple assistantships to a student.

• Students are required to regularly check with their faculties for research

assistantships.

• Students are required to check with their department/college for teaching

assistantships.

P
age 12.74.6

The “Abstract Factory” and “Subject-Observer” design patterns [1] are well suited

candidates to offer an enhanced design for this problem and to demonstrate the use of

refactoring of the software design.

Figure 2: Use of Design Patterns

In Figure-2, Student and Professor inherit from Person class (is-a relationship),

University has Colleges (has-a relationship), College has Department (has-a relationship),

University, College and Department are associated with the Abstract Factory (knows-a

relationship).

The intent of the Observer pattern is to define a one-to-many dependency between

objects so that when one object changes state, all its dependents are notified and updated

automatically. For example, all students will receive notifications of assistantships when

it becomes available eliminating the need for students to regularly check with

college/instructors for the availability of assistantships. The Abstract Factory provides an

interface for creating families of related or dependent objects without specifying their

concrete classes [1].

Design depicted in Figure-2 consolidates object creations since all students and professor

objects are created in the Abstract Factory class. Student objects register their interest

with the Observer class to receive notifications of when assistantships become available.

The notification message may include professor and department/college information

offering the assistantship, hence eliminating the need for students to constantly check

University

Student

{Subject}

Professor

Person

Department

Abstract

Factory

College

Observer

P
age 12.74.7

with their instructors or department/college of availability of assistantship opportunities.

Furthermore, the use of Abstract Factory eliminates the need for each professor to keep a

list of his/her assistants or requiring additional coordination at the college/department

level since all objects are only created in factory.

Table 1 – Abstract Factory C++ code

Table-1 shows a partial C++ [2] implementation code for the Abstract Factory design

pattern. Student and instructor objects are created in the factory. Attempt to create objects

elsewhere will result in a compile time error. Regulating this violation through design

/*
Abstract Factory -- Intent: Provide an interface for creating families of related or
dependent objects without specifying their concrete classes

Singleton -- Intent: Ensure a class only has one instance, and provide a global
point of access to it.

*/

#include <iostream>
#include "Student.h"
#include "Professor.h"

class Person;
class PersonFactory{
public:
static PersonFactory *instance()
{
 if(!PF) {
 PF = new PersonFactory(); }
 return PF;
}
Student * createStudentObject()
{
 return new Student();
}

Person * createPerssorObject()
{
 return new Professor();
}

protected:
 PersonFactory(){}
private:
 static PersonFactory *PF;
};

P
age 12.74.8

helps reduce software maintenance costs since it is not required to manually inspect all

code to make sure no violation is made.

/*

Observer -- Intent: Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified and updated
automatically

Singleton -- Intent: Ensure a class only has one instance, and provide a global
point of access to it.

*/

#include <iostream>
#include <list>
#include <iterator>
#include <algorithm>

using namespace std;
class Person;
class Observer {
public:

static SubStation * instance()
{
 if(!SS) {
 SS = new SubStation; //singleton object, only executed once
 }
 return SS;
}

void registerStudent(Person * objectPtr)
{
 RegisteredObjectList.push_back(objectPtr);
}

void notify()
{
 list<Person *>::iterator i;
 for(i = RegisteredObjectList.begin(); i != RegisteredObjectList.end(); i++)
 {
 (*i)->noticeAssistantship(message);
 }
}
private:
 string message;
 static Observer *SS;
 // RegisteredObjectList list of all dependent objects When one object changes

P
age 12.74.9

 // state, all its dependents are notified and updated automatically.
 static list<Person *> RegisteredObjectList;
};

Table 2 – Observer C++ code

The Observer design pattern in Table 2 keeps a list of all students who are qualified for

assistantships in the RegisteredObjectList container object. The
(*i)->noticeAssistantship(message)

line in the notify member function sends a message to all student objects, notifying them

of the availability of an assistantship.

Summary

In this paper, the focus is on refactoring software through design patterns. This is

achieved by first defining objects and relationships among objects. The goal of applying

design patterns to refactor software design is not to present entirely novel solutions to

problems, but to disseminate good solutions known to experts and to provide a

vocabulary for talking about these solutions. Design patterns have proven valuable for

bringing design reuse to object-oriented programming, for establishing common practices

and for providing a vocabulary among scientists, engineers and educators.

Bibliography

1. Gamma, A. Helm, R. Johnson, R. and Vlissides, J., Design Patterns, Elements of Reusable Object-

Oriented Software, New York: Addison-Wesley, 1995.

2. Stroustrup, B., The C++ Programming Language, New York: Addison-Wesley, 2000.

3. Shaykhian, G.A., Implementation of Business policies using object-oriented methodologies and design

patterns. Proceedings of the 2005 American Society for Engineering Education Annual Conference &

Exposition.

4. Muraki, T. and Saeki, M., Metrics for Applying GOF Design Patterns in Refactoring Processes.

International Workshop on Principles of Software Evolution (IWPSE), Vienna, Austria, 27-36, 2001.

5. Bois, B.D., Demeyer, S. and Verelst, J., Does the ”Refactor to Understand” Reverse Engineering

Pattern Improve Program Comprehension? Proceedings of the Ninth European Conference on

Software Maintenance and Reengineering (CSMR’05), IEEE Computer Society, 1534-5351 (2005).

6. Buckley, J., Mens, T., Zenger, M., A. Rashid and G. Kniesel, Towards a taxonomy of software

change. Journal of Software Maintenance and Evolution: Research and Practice, Published online in

Wiley InterScience (www.interscience.wiley.com), 17:309–332 (2005).

7. Blaha, M. and Rumbaugh J., Object-Oriented Modeling and Design with UML, 2/E, Prentice Hall,

2004.

P
age 12.74.10

Gholam “Ali” Shaykhian

Gholam Ali Shaykhian is a software engineer with the National Aeronautics and Space

Administration (NASA), Kennedy Space Center (KSC), Engineering Directorate. He is a

National Administrator Fellowship Program (NAFP) fellow and served his fellowships at

Bethune Cookman College in Daytona Beach, Florida. Ali is currently pursing a Ph.D. in

Operations Research at Florida Institute of Technology. He has received a Master of

Science (M.S.) degree in Computer Systems from University of Central Florida in 1985

and a second M.S. degree in Operations Research from the same university in 1997. His

research interests include object-oriented methodologies, design patterns, software safety,

and genetic and optimization algorithms. He teaches graduate courses in Computer

Information Systems at Florida Institute of Technology’s University College. Mr.

Shaykhian is a senior member of the Institute of Electrical and Electronics Engineering

(IEEE) and is the Vice-Chair (2005-2007), Education Chair (2003-2007) and Awards

Chair of the IEEE Canaveral section. He is a professional member of the American

Society for Engineering Education (ASEE), serving as the Program Chair and Web

Master for the Minorities in Engineering Division of ASEE (2006-2008). He was an

assistant professor and coordinator of the Information Systems program at the University

of Central Florida prior to his full time appointment at NASA KSC.

Dr. Rhoda Baggs

Dr. Rhoda Baggs is the Program Chair for the MS in Computer Information Systems for

Florida Institute of Technology’s University College. This program specializes in object-

oriented programming, component engineering, data driven systems, and other related

software, system, and IS topics. She has earned a Ph.D. and an M.S. in Computer Science

from the Florida Institute of Technology and a Bachelor of Science in Computer Science

from the University of Pittsburgh. In between and during academic achievements, Dr.

Baggs has worked primarily as a Software Engineer for such companies as Texas

Instruments, Raytheon, JDS Uniphase, Optical Process Automation, WT Automation,

Advanced Manufacturing Technologies, Inc., and NASA. Research Interests include

Multimedia Tutorials and Software Engineering for the Same, Software Engineering and

Reverse Engineering of Legacy Software, Image Processing, and Systems Engineering.

Dr. Baggs is a member of the International Association of Computer Information

Systems, the Association of Computing Machinery, and several ACM SIGs, including

Design of Communication, Information Technology Education, Software Engineering,

and Multimedia.

P
age 12.74.11

