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Developing Skeptical Reverence for Mathematics 
 

 
Abstract 
 
In a prior study of civil engineers, I identified a hybrid disposition towards mathematics that I 
termed skeptical reverence: a balance between seeing mathematics as an indispensible tool and 
understanding its limitations. The current study investigates how engineers develop their 
perspective on the relationship between mathematics and engineering and this disposition of 
skeptical reverence. Ten students (2-3 at each of the four years of an undergraduate program) and 
two new engineers were interviewed twice each; the students also participated in individual 
“think-aloud” problem-solving sessions, in which they worked on an assigned problem set from 
a target course and verbalized their thinking and problem-solving strategies. I used qualitative-
data-analysis methods to characterize the students’ mathematical dispositions and their 
movement towards fully developed skeptical reverence.  
 
Introduction 

 
A major issue in mathematics education is the tendency of students to view mathematics as an 
activity that only takes place in schools and is unrelated to the rest of their lives. This view is 
hypothesized to cause educational trouble, such as a lack of student motivation and thus less 
learning, and students’ inability to apply what mathematics they do learn in the service of solving 
problems outside of school or in other subjects. Many adults have not outgrown this sense that 
mathematics has little utility in their everyday activity or work. Even in engineering, with its 
clear reputation as math intensive and its considerable requirements for mathematical training, 
the amount of mathematics individual engineers actually need to know in order to perform 
everyday work is debated, especially now that computers handle much of the computation.  

 
In prior research1, I showed that structural engineers made daily use of mathematics. The 
mathematical topics they used were usually basic—taught by ninth grade, but these engineers 
demonstrated impressive fluency and flexibility in applying this mathematics. Accompanying 
this fluency was a hybrid attitude towards the role of mathematics in engineering, which I termed 
skeptical reverence: a balance between seeing mathematics as an indispensible tool and 
understanding its limitations. I argued that this disposition was functional and necessary for 
engineers to carry out design and analysis effectively; the wrong level of reliance on 
mathematics—too much reverence or too much skepticism—would incur safety and economic 
risks. Unanswered by this prior research was how these engineers developed their perspective on 
the relationship between mathematics and engineering and this disposition of skeptical 
reverence. This question is taken up by the study reported here.  
 
This study was part of a larger project to investigate how engineers develop as problem solvers 
who apply mathematics effectively. I conjecture that a significant part of this development 
involves disposition—that understanding and appreciating the relationship between mathematics 
and engineering is crucial to learning how to use mathematics in the service of solving 
engineering problems. Unknown is whether this disposition is developed primarily in 
engineering programs or waits until employment, and how it evolves. This study was an initial 
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attempt to map the development of the mathematical disposition necessary to successful 
engineering by examining the attitudes of people along the engineering-development continuum, 
from freshman year into the workplace.  
 
Why are young engineers’ beliefs about mathematics and its relationship to engineering 
important? A key component of the expertise of the experienced engineers I studied was their 
ability to use mathematics to serve their problem-solving purposes. This required a keen 
understanding of the powers and limitations of the formal and informal mathematical tools of 
their practice. Only rarely could mathematical procedures be applied wholesale (as they usually 
are in school); the genius of the engineer was the flexible selecting and adapting—sometimes 
even overriding—of mathematical procedures to model real phenomena, based on a deep 
understanding of the phenomena. Young engineers who see little connection between 
mathematics and engineering, who perhaps believe that “real engineers don’t use math,” would 
seem unlikely to learn to use the mathematics well. Yet, young engineers who view engineering 
as the routine application of known mathematical procedures, or who believe that mathematics 
serves as the ultimate authority for engineering decisions, will be equally impeded in their efforts 
to attain engineering expertise. Although I developed the notion of skeptical reverence based on 
observations of and interviews with structural engineers, it is reasonable to assume that this 
hybrid attitude towards mathematics and its role in real-world problem solving is instrumental to 
many engineering and other mathematized fields. If so, it is important to understand how 
students develop it.  

 
Theoretical framework 
 
Students’ dispositions towards and beliefs about mathematics have been theorized to have 
significant impact on learning mathematics2-4. Various scholars have emphasized that 
dispositions and beliefs must be studied in order to fully understand the development of 
mathematical problem-solving ability5,6. Studies have shown that many K-12 and college 
students come to believe that mathematics is a rule-driven, linear, solitary, school-only activity, 
in which problems have one correct solution that should be quickly evident and where true 
understanding requires special talent 4,7. This counterproductive view can intimidate and 
discourage students and filter them out of science, technology, engineering, and mathematical 
(STEM) fields2,8,9. Acknowledging this problem, mathematics-education reformers have made a 
productive mathematical disposition a deliberate goal of instruction10,11. The authors of Adding it 
Up11 identified “productive disposition” as one of five strands of mathematical proficiency, 
describing it as “the tendency to see sense in mathematics, to perceive it as both useful and 
worthwhile, to believe that steady effort in learning mathematics pays off, and to see oneself as 
an effective learner and doer of mathematics” (p. 131). 
 
Of particular relevance to the study reported here is the perception of the usefulness and worth of 
mathematics. Conventional wisdom holds that students see mathematics as a school-based 
practice with little connection to their out-of-school lives and that this view has negative 
consequences for motivation and learning quality. Some scholarship bears this out2,12, but the 
situation may be more complicated. In the 1996 NAEP, about 70% of 4th and 8th graders agreed 
that mathematics was useful for solving everyday problems. However, although they felt that 
mathematics was important to society in general, they did not necessarily believe it was 
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personally important11. Adults, too, have complicated mathematical dispositions. Lave (1988)13  
showed that people avoid using formal mathematics in everyday settings (for example, grocery 
shopping) but still resolve quantitative problems effectively, using informal, contextualized 
methods. Nevertheless, people subscribe to cultural claims about the “hegemony of school-
taught math over everyday practice” (p. 168)—the idea that the formal, general, algorithmic 
mathematics taught in schools should structure the way people resolve all quantitative problems, 
because it is superior to the irrational, situation-specific mathematics that people naturally invent 
and use. As a result, people feel guilty or inadequate for not using formal mathematics and 
sometimes resort to using it post hoc, to justify a solution they arrived at by informal means (for 
example, for the benefit of researchers).  

 
Lave and other mathematical ethnographers14,15 studied “just plain folks” (JPFs)—people 
without advanced mathematical training—in settings that were not highly mathematized. It is 
reasonable to assume that people with high levels of mathematical education who are trained to 
use mathematics in STEM fields might have a different, more productive mathematical 
disposition than JPFs. Interestingly, however, engineers’ self reports on the utility of 
mathematics in their work are mixed, with engineers sometimes downplaying mathematics’ role 
in their everyday work16.17. This may be bravado on the part of engineers, but researchers have 
noted that workers can be blind to the mathematics that they use18,19, in particular if they 
consider “using mathematics” to mean performing standard, formal, advanced mathematical 
procedures by hand. Even engineering educators are divided on the importance and role of 
mathematics education for engineers, and some question whether advanced mathematics is 
necessary20-24. 

 
A few studies characterize the mathematical beliefs of engineering students. Some studies reveal 
that engineering students, like K-12 students, often fail to see the importance of mathematics in 
their training or eventual employment24,25 and may even dislike or fear mathematics26. In 
contrast, perhaps because of their more extensive coursework, the senior-year engineering 
students surveyed by Cardella (2006)27 reported that the content and problem-solving skills they 
learned in their college mathematics courses were useful in their engineering classes, and they 
believed that mathematical ability and the ability to apply mathematics to real-world problems 
were very important for becoming an engineer. Yet Cardella and Atman (2004)28 noted that 
engineering students tend to think of their mathematics courses as providing content, not 
processes or practices. Engineering students sometimes believe that only the mathematical rules 
(not their derivation) matter, or fail to see the connections between the mathematics and 
underlying physical concepts29,30. Further, their understanding of key physical or engineering 
concepts may remain shallow and computationally focused throughout their undergraduate years. 
As Montfort, Brown, and Pollock (2009)31 found, students may continue to “use equations as the 
foundational truth of a concept” (p. 122). 

 
Less has been written about the mathematical disposition that engineering students should 
develop and that successful engineers have. This is unfortunate. If we take engineers to be expert 
mathematics users—exemplifying the kind of mathematical application in problem solving that 
schools hope to promote—then their mathematical disposition would seem a potential model and 
goal for education. The lack of systematic research on this topic motivated my prior study of the 
disposition of structural engineers towards the role of mathematics in their work1. Through 
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extensive observations of engineers in everyday practice and interviews, I came to characterize 
their mathematical disposition as one of skeptical reverence, in which mathematics is seen as a 
powerful and necessary tool that must be used judiciously and skeptically. This perspective is the 
virtual opposite of the one Lave found in JPFs, who considered mathematics hegemonic over 
human activity, at least for other people, but personally unhelpful. In contrast, engineers 
recognize mathematics in their work as subjective and fallible, not authoritative or hegemonic 
but integrated with and sometimes subservient to social, economic, and other contextual 
concerns. At the same time, the engineers I studied could not conceive of doing their work 
without mathematics; it was their most powerful and ubiquitous tool. Further, their work activity 
occurred within the context of a profession in which mathematics is the mandatory language for 
design and analysis, and mathematical proof the industry standard for final justification. In this 
last point there is some overlap between the perspectives of engineers and JPFs: Both sometimes 
used formal mathematics for post hoc justifications of solutions obtained by other means.  

 
The epistemological aspect of skeptical reverence recalls the broader concept advanced by King 
and Kitchener (1994)32 of reflective judgment. Mainly applied to college students, reflective 
judgment is the endpoint of a developmental continuum corresponding to the recognition of the 
complexity and uncertainty of real-world problems, an awareness of the need to interpret 
knowledge in the context in which it was constructed (and revise it in light of new evidence), and 
the ability to evaluate solutions and knowledge along many criteria, including conceptual 
soundness, fit with evidence, utility, and efficiency. The well-documented development of 
students through the seven stages of epistemic cognition32 lends credence to the idea that 
engineering students might undergo a discipline-specific version, gradually developing an 
understanding of the nature of engineering problems and of what constitutes truth and knowledge 
in engineering.  

 
Indeed, strongly related to the concept of skeptical reverence is that of engineering judgment, a 
profession-wide but ill-defined term. Engineering judgment is cited by engineers as the ultimate 
authority over design decisions and, consequently, over the use of mathematics1,33. The engineers 
I studied construed engineering expertise as the development of engineering judgment, rather 
than as an increased ability to apply mathematical methods. Engineering judgment draws on 
deep domain knowledge about physical phenomena, not on political, economic, or other more 
social kinds of knowledge, although these are also central to engineers’ decision making. 
Exercising engineering judgment requires the engineer to keep mathematical procedures tied 
closely to physical interpretations, recalling a feature of the “street mathematics” of Brazilian 
street merchants studied by Nunes, Schliemann, and Carraher (1993)34. Redish and Smith 
(2008)30 elaborated on engineers’ “blending of distinct local coherences: our understanding of 
the rules of mathematics and our sense and intuitions of the physical world” (p. 302). In contrast 
to a pure mathematician’s view, Redish and Smith explained that for engineers: 

 
• Equations represent relationships among physical variables, which are often empirical 

measurements. 
• Symbols in equations carry information about the nature of the measurement beyond 

simply its value. This information may affect the way the equation is interpreted and 
used. 

• Functions in science and engineering tend to stand for relations among physical 
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variables, independent of the way those variables are represented…. 
Professional scientists and engineers typically interpret what appear on the surface 

to be mathematical equations as physical. There is a strong association between their 
mental spaces that conceptualize the physical system and the mathematical symbols that 
represent various measurements. (p. 302) 

 
Thus, an important aspect of the mathematical disposition of the engineer is the perception and 
constant awareness of a tight relationship between mathematical procedures and physical 
phenomena and an appreciation of the importance of understanding and interpreting procedural 
steps and intermediate and final result values in terms of physical implications.  
 
A disposition of skeptical reverence for mathematics arguably would be highly productive for 
students in engineering and other mathematized fields. However, it is unknown how engineers 
come to posses this disposition. It is unlikely to be innate, as it apparently relies on an 
understanding of the profession of engineering. That is, an engineer’s perspective on the role of 
mathematics in engineering is not necessarily the same as her perspective on the role of 
mathematics in everyday life, which is easier to imagine someone possessing even prior to 
education. Likelier, a view on the role of mathematics in engineering develops during schooling, 
through mathematical engineering courses and learning about engineering itself, and continues to 
evolve once on the job. This study investigates the evolution of engineers’ dispositions with a 
backwards approach: It rests on the assumption, grounded in my prior research, that the ultimate 
mathematical disposition of engineers, that of skeptical reverence, is a productive and desirable 
one for future engineers and other professionals. It then targets individuals at various stages of 
the transition between school and engineering work and explores their evolving perceptions of 
the relationship between mathematics and engineering.  

 
Methods 
 
This study focused on the 12 participants who were selected to represent early engineer-
development stages: two students in each of Years 1 and 2 of the undergraduate civil-engineering 
program at California State University, Northridge: three students in each of Years 3 and 4 in 
this program, some of whom also had some engineering work experience, and two recent 
program graduates working as new engineers. The investigation of the schooling phase centered 
on four core courses identified by program faculty as central to the development of the students’ 
use of mathematics in engineering problem solving: Calculus (Year 1), Statics (Year 2), Strength 
of Materials (Year 3), and Reinforced Concrete Design (Year 4). These courses were targeted for 
observations and the solicitation of student participants, although students reported on their other 
courses during interviews. From the students who volunteered for the study, I selected those best 
representing the typical student at that point in the program in terms of prior courses, age, and 
work experience. Table 1 shows the participants. 
 
I interviewed each of these participants twice: students at the beginning and end of the semester 
to detect growth during the target course, and new engineers about 9 months apart. The interview 
protocol inquired about participants’ educational background in mathematics and engineering, 
feelings and conceptions about mathematics and its relationship to engineering and the rest of the P
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“real world,” their decision to become an engineer, their use of or learning about technology, and 
their understanding and use of mathematics in problem solving in school or at work.  
 

 
Table 1: Participants 
 
Status Pseudonym Target Course Engineering Work 

Experience 
Other Notes 

Ann None  Year 1 
Albert 

Calculus  
(2nd semester) None  

 
Ben None  Year 2 
Bradley 

Statics 
None  

 
Connor None  
Chuck None  

 
 
Year 3 Claude 

 
Strength of 
Materials 2 yrs (structural) Experience at construction 

and architecture firms 
 

Doug None  
Daniel 3 yrs (land development)  

 
Year 4 

Dmitri 

 
Reinforced 
Concrete Design 9 yrs (civil) Significant mathematical 

training 
 

Naomi 1 yr (environmental)  New 
Engineer Nicki 

(NA) 
2 yrs (civil; recently rotated 
from project management 
to geotechnical design) 

Enrolled in MS program in 
Civil Engineering 

 
 
There were a few differences in the protocols for students and new engineers. The new engineers 
were also asked to compare problems they had solved in school to those they solved today on the 
job and about the difference between novice and expert engineers in their company and how that 
transition occurs. The students provided a second form of data: After each interview, they 
participated in an individual “think-aloud” problem-solving session, in which they worked on an 
assigned problem set from the target course and verbalized their thinking and problem-solving 
strategies.  
 
As the participants in this study represented different stages in an engineering career, it was 
inappropriate to combine the data for general coding. Instead, I approached all data with the 
question, How does this participant perceive the role of mathematics in engineering? For each 
participant, I extracted data relevant to this question from the interview and “think-aloud” 
transcripts. From these extracted data, I created a narrative summary for each participant. Then I 
synthesized these summaries into a case narrative for the group at each stage, highlighting 
patterns but preserving individual differences. In the next section, I summarize my findings. 
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Findings summary 
 
The engineering authenticity of mathematics courses 
 
In general, the students in this study valued their mathematics courses and did not recommend 
eliminating any, though they had mixed predictions about how much school-taught mathematics 
would be used in future engineering courses and work, predictions that seemed unrelated to their 
year in the program. Even if they did not expect many of the mathematics topics to apply, many 
students still viewed their mathematics classes favorably for the mental training they provided, 
which these students perceived as preparation for the logical, structured nature of engineering. 
As Ben (Year 2) said, “It's not necessarily to learn the math, like the material. It’s more to, like, 
train your mind to think a certain way.” Despite doubting that all topics seen in their 
mathematics courses would be relevant to their future careers, a few students essentially equated 
engineering and mathematics. As Connor (Year 3) put it, “You can’t do engineering without 
math.… Engineering is math. It’s just math with meaning behind the numbers…. It’s a way of 
giving an explanation of how things work in the world.” 

 
Students who had no workplace experience were likelier to believe that the exercises they did in 
engineering classes replicated those they would see in the workplace. They trusted the 
authenticity of the assigned problems and given numerical values to the extent that they believed 
they could check their solutions based on their real-world reasonableness. Often these students 
lacked the domain knowledge to do this directly; instead, they compared their results to those of 
example problems from class, which they also presumed to be realistic. Only two students, 
Claude and Dmitri, who had the most workplace experience, observed that course-assigned 
problems were sometimes designed inauthentically, for pedagogical purposes. As Claude noted  

 
When I took Dynamics, a lot of the problems were very complicated in that sense, where 
they added a whole bunch of elements that really made life not fun. And in the real 
world, sometimes engineers try to make everything as simple as possible, so we will not 
be adding all these crazy elements into a problem. Like, you can usually simplify things 
down to problems that are doable. So adding all that unnecessary complication I guess is 
to test you on your previous knowledge of math, but not necessarily applicable. (Claude, 
Year 3) 

 
While sophisticated in the sense of being metacognitive, Claude’s observation fails to 
acknowledge that engineers start with complicated problems, and that often the main challenge is 
simplifying them1; in other words, assigning students pre-simplified problems would be even 
less authentic. Claude’s point may have been that school problems do not offer the option to 
simplify.  

 
For the other students, engineering seemed to be essentially equivalent to solving mathematics 
problems, though some, like Daniel, understood that workplace mathematics would be less 
precise and involve more estimation.  
 

A lot of teachers do say engineering is estimation. They say if you’re trying to look for a 
specific answer, you’re not in the right field!... A lot of it is based off safety factors. So, I 
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mean, that safety factor compensates just to cover your butt, in a way. So if something 
says you can only, in an elevator, for example, says you can only apply about 5,000 
pounds or so, it really means you can apply about 8,000 or so before it breaks, you know? 
There’s a lot of leeway you can play with, as far as the design. (Daniel, Year 4) 

 
Making physical sense of mathematical procedures 
 
The students varied in terms of how much physical sense they could make of the problems, 
methods, and variables involved in their coursework. Introductory physics appeared pivotal: 
Many students named this course as the experience that first tied mathematics to physical 
phenomena and showed them the relevance and power of mathematics. But personal experience 
with physical phenomena was also invoked: 

 
[The concept of moment] definitely does make sense, at least partially because of [high 
school] robotics [club]. Because I have turned wrenches on bolts and I know that the 
more perpendicular of the force you apply to the moment arm, or whatever, the stronger 
the force is going to be, or the stronger the moment is going to be. So that definitely does 
make sense. A combination of just my experience just with doing similar problems in real 
life, applying torques and moments, and just logic about it: Well, if I’m pressing directly 
along the moment arm, I know that I’m not going to be turning it either way. I could be 
applying a lot of pressure but not going to be doing anything. (Bradley, Year 2) 

 
That engineering was grounded in real phenomena was valued by most of the students: 
 

Pure math problems can be—they can get—it’s hard to see the forest for the trees, I 
guess. You can get lost in the numbers and not understand what anything means and just 
be computing and plugging and plugging stuff in and really just hoping that you get the 
right answer, and if you don’t you gotta go back and do it all over again. And now it’s a 
lot more things that I can grasp, and quantities make more sense, especially when I have 
been around this stuff for a little while. So just quantities of weight, force, and reaction 
and those things all kind of start making more sense, whereas in math classes, they just 
pick numbers. [Me: Making sense meaning you have a feel for what they should be?]  
Yeah, what they should be, and if you get an answer and you’re, like, whoa, that’s not 
even close to what it probably should be, you can check yourself that way. But in math 
class, it’s all randomly generated numbers usually, so there’s no—you have no way of 
telling if you’re right just by looking at the answer. (Claude, Year 3) 
 

This variance in how much physical sense students were able to make appeared to be more due 
to individual attitude about the importance of independently doing this intellectual work rather 
than due to year in the program. During a think-aloud session, Chuck exemplified those who 
tried to make physical sense: 

 
Here’s the equation: Delta L equals PL over AE. Which makes sense because the longer it 
is, the higher the length, it’ll get bigger; the bigger the pressure, the bigger the length. E, I 
can’t really explain; that’s very in depth. And A is the cross-sectional area. So if you look 
at the cross-sectional area, I guess, if it’s bigger and you pull it won't stretch as much, as 
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opposed to if you have something thinner, and you pull, it’ll stretch more. [Me: So you’re 
explaining why P and L are on the top—] And AE are in the bottom, why that makes 
sense. [Me: Had you gone through that thinking before, or are you just doing that now 
for the first time?] I’d done it before. Every time I see an equation, I try to think of it, so 
if I forget it, I could always come back to it. (Chuck, Year 3) 
 

Even the students most motivated to make physical sense of the concepts could be stymied by 
the more abstract concepts and were then reduced to trust. When asked what sense Chuck made 
of the concept of Mohr’s Circle (a graphical representation of the state of stress on a point on a 
body, in which the x-coordinate represents normal stress and the y-coordinate shear stress), he 
admitted 

 
[The instructor] didn’t show us how it came about, but I trust that it looks like it works! 
So, to answer your question, yes it makes—No, it doesn’t make sense, ‘cause I don’t 
know how it came about but, yeah, it makes sense as in it works, so I trust it. (Chuck, 
Year 3) 

 
Some complained about limited time to make this kind of sense. Asked how hard he tried to 
relate statics concepts to physical phenomena, Ben replied, “Sometimes I do wonder about it, but 
I have so much other stuff to do, there’s just no time to really think about that. I mean, it works, 
so—.” Similarly, Dmitri, after working out a problem, reported: 

 
I just feel fuzzy about [my solution] because I don’t feel like I spent the time to really 
understand what everything stands for… I’d want to think what a term represents to make 
sure I’m not skewing any units, make sure I have like quantities, and referring to 
everything by proper terminology. So I think: force to force, strain to strain, stress to 
stress, square inches to square inches, that sort of thing. (Dmitri, Year 4) 

 
Doug and Daniel, in contrast, focused on the procedural nature of engineering, rather than 
physical meaning. This view of engineering was evident in Doug’s work on the think-aloud 
problems, which he deemed easy because he could follow a given procedure: “It was basically 
like reading a book, almost, like you just follow the story.” When asked whether a particular 
variable had physical meaning for him, Doug replied with a chuckle, “No, not at all. To be 
honest, most of this I don’t have a physical sense.” He based his confidence in his solving on his 
ability to follow the given procedure and the nearness of his results to those of class examples, 
and he caught one error by the latter means. Daniel, with three years of experience in a land-
development firm, also perceived engineering as being highly structured and “cookbook”—he 
even expected design to be “cookbook” once he had more experience with it; by implication, he 
saw mathematics as a means to carry out established engineering algorithms. Daniel dismissed 
the instructor’s real-world references during lectures as unimportant tangents to the “real” stuff 
of the course: 
 

[Year 4 Instructor] is very structured. I mean, he does go off on tangents talking about 
engineering stuff but I guess he covers the material that we need to know. [Me: When you 
say structured, I’m not sure what you mean.] When he’s presenting the material, it’s very 
organized how he presents it, like, in a logical fashion, and makes sure we get it. [Me: 
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Those tangents: Are they really tangents? Do they do anything for you?] Related to the 
class? No! [Laughing] I think they’re just pretty much talking, conversation! (Daniel, 
Year 4) 

 
Several students noted that computers in the workplace would perform many of the mathematical 
routines they were now being taught to do by hand, but they parroted their instructors’ 
admonitions against blindly trusting computer output. Some students saw mathematical 
proficiency as a route to an understanding of the concepts underlying the computer programs that 
would prevent blind use and errors. 

 
Building a building is not like stacking a bunch of Lego’s together, you know, just in a 
bigger form. There’s a lot of things taken into consideration. And [students] can’t really 
understand that unless they actually take the math courses that apply to those things… 
Even if I’m not going to apply [mathematics], and I know for a fact that many engineers 
don’t—and it’s not that they don’t want to, it’s that the jobs don’t require them to; 
everything’s on the computers—I think it’s important to know, have an actual 
understanding of what you’re doing, even if the computer’s doing it for you. It’s 
important to have an actual understanding of what’s going on, because if there's mistake 
you can intuitively see it. (Connor, Year 3) 

 
Yet it was not always clear whether the concepts of which the students spoke were mathematical 
or engineering concepts, or whether these students even saw a clear difference. Asked why 
engineering students are required to take many mathematics courses, Daniel replied:  

 
I guess it’s to understand the concepts, where they come from. Like, the background. 
Most of our equations are derived from it, so I guess we’ve got to know the theory before 
we actually apply it. [Me: When you say understand the concepts: Mathematical 
concepts? Engineering concepts?] Mathematical concepts. [Me: So they make you take 
math to understand the mathematical concepts?] Right. And then engineering is based on 
that, for the most part, so I would say a lot of our equations that we use are derived from 
the basics. (Daniel, Year 4) 

 
Subjectivity and the primacy of domain knowledge 
 
Only two students, Chuck and Dmitri, articulated the subjectivity inherent in the role of 
mathematics in engineering. For Chuck, this had come as a recent revelation: 

 
Everyone thinks engineering is a science. But then [Year 3 instructor] goes, “It’s an art!” 
I never thought of it like that. And then when you think of it like that, it opens up a whole 
new realm of, like, thinking about engineering. It’s like, wow, this is pretty cool. [Me: 
What do you think he means when he says that?] Well, he said you can manipulate the 
problem any way to make it get results that you want. So in that sense, and in the sense 
of, um, it’s just, well [long pause]—It’s art in the way that you’re building something and 
you have to make it work. (Chuck, Year 3) 
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Dmitri was also one of only two students (with Connor, Year 3) to express an understanding of 
the primacy of domain knowledge in engineering problem solving. Dmitri, with nine years in an 
engineering firm, frequently found himself able to perform the mathematical aspects of problem 
solving in his workplace but lacking other knowledge—about code and zoning requirements, 
what types of devices existed and which would work in a given situation, and costs—that he 
needed to solve complete problems independently. He observed that, in school, “legalities and 
economics go out of the window, but those two end up being the driving forces in actual design,” 
and without fluency in these, he found himself “floundering” at work. Indeed, Dmitri had 
observed engineers using mathematics post hoc, as a means to “prove” their designs. He saw this 
mathematical ability setting the engineer apart from drafters and contractors, who could 
accomplish most of the same design tasks from experience but perhaps not as quickly or safely 
as the engineer: 

 
An engineer is someone who can build for 50 cents what anyone can build for a dollar. 
[Me: And math is the difference?] Yeah. Because the alternative is to spend $1.50 or 
$2.00 to build a dollar model and that doesn’t work, to build a 25-cent model that falls 
apart, and then, oh, the 50-cent model, that works. And that’s the minimum that does—
That’s a whole lot more expenditure when you’re talking about actual construction than 
to sit down ahead of time and say, based on what I know, I can show that under these 
conditions, this is the 50-cent model that we should build. It comes down to saving 
money and saving lives. (Dmitri, Year 4) 

 
New Engineers 
 
In general, the new engineers had similar views to the students. One notable difference was the 
new engineers’ somewhat deflated view of the use of mathematics in everyday engineering, at 
least as manifested in their current jobs. While disappointing, this view had not tarnished their 
appreciation for mathematics and approval of mathematics courses. They saw the latter as 
instrumental for supporting the learning of key engineering concepts. They also echoed the 
students’ notion that mathematics courses promoted “mental training” in the ways of thinking 
that were important for engineers, to which Nicki added a recruitment rationale: 
 

The pure applied math doesn’t help me in my job today. But I wouldn’t not have that 
information. Like, I wouldn’t have wanted to not have gone through that. I think that it 
separates—it’s like a filtering process. Like, are you smart enough to get through the 
math so that you can actually become an engineer? Same with the physics. Are you smart 
enough to get through the physics? Are you smart enough to get through the chemistry? 
Are you able to get through those core curriculum in order to see that you have the 
capability to solve these real-world problems? (Nicki, New Engineer) 

 
A year or two into their careers, however, they had not yet witnessed the kind of flexible and 
powerful use of mathematics that I observed in veteran engineers, nor had they been exposed to 
the skepticism that accompanied this use. Still, Nicki sensed that something was missing; she felt 
she was not yet doing real engineering because there was no mathematical challenge to her work. 
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Discussion 
 
This study has significant limitations and can only be considered an exploratory step towards 
mapping the development of individual engineers’ understanding of the relationship between 
mathematics and engineering. The small number of participants, of course, does not represent all 
students at each stage, nor can this single program represent all of undergraduate engineering 
education (although it is probably typical of programs at large, regional campuses). Indeed, the 
variation among the two or three participants at each stage of this study portends broad diversity 
in the larger population. At best, this study begins to paint a picture of the transition from high-
school student, with little conception of the usefulness of mathematics, to veteran engineer, with 
an attitude of skeptical reverence towards mathematics. Also, this study reifies and attends to an 
aspect of engineering education that is generally overlooked and left to develop automatically; 
more explicit attention to this transition may permit educators and mentors to speed or enhance 
it. Finally, this study clarifies what further research would enable painting the picture in greater 
detail and understanding how to positively impact the development of skeptical reverence. 

 
In general, I found engineering students and new engineers optimistic about the value of 
mathematics education for their careers, while somewhat unclear on the reason. This optimism 
may extend back before college, which might indicate that K-12 students who intend careers in 
engineering have more positive attitudes towards mathematics than their peers. Most participants 
claimed to have liked mathematics or at least have been good at it prior to college, which alone 
would distinguish them from many K-12 students. Conversely, it is possible that the move from 
high school to undergraduate engineering program causes an immediate shift in their perspective 
on mathematics. Such is suggested by the students’ remarkable trust in the authenticity of the 
exercises assigned in their engineering classes and even college calculus—a belief that the 
numerical values and the solving processes reflect real engineering work. Despite the fact that 
these exercises (to me) resembled the word problems in a high-school mathematics textbook, the 
students overestimated their authenticity, seemingly reversing many high-school students’ 
underestimation of the utility of secondary-level mathematics. What explains this sudden 
perspective shift? One possibility may be that the students view the engineering program as pre-
professional, vocational—a hybrid stage between school and work, with instructors who live in 
both the college and engineering worlds. Whereas high school offered no association with a 
specific career or group of professionals (other than teachers), the engineering program may feel 
like an early stage of professional participation, with instructors playing the roles of mentors and 
gatekeepers into the profession. An area for further study would be to compare the mathematical 
dispositions of high-school students who intend to enter engineering (or other STEM fields) with 
those who do not, to help understand whether a positive attitude towards mathematics is more the 
cause or the result of entering a college engineering program. 
 
While heartening, the optimism these participants displayed towards mathematics fell short of, or 
was vaguer than, the reverence that experienced engineers hold. Seeing some of the mathematics 
they had learned in school being applied in engineering contexts gave the students faith that most 
of the rest of it would eventually be applied, too. Especially for those with no engineering-work 
experience, however, their notion of mathematics’ role was to support the cookbook, algorithmic 
problem solving that they believed engineering comprised, a view that was hardly disturbed in 
later years in the program. In this sense, these students seemed to exemplify the earlier, “pre-
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reflective” stages on King and Kitchener’s (1994)32 continuum, where students “do not 
distinguish between well- and ill-structured problems, viewing all problems as though they were 
defined with a high degree of certainty and completeness” (p. 16). Students and new engineers 
expressed the sense that mathematics was scaffolding for engineering concepts and processes—
scaffolding that was necessary during school but could fall away once on the job, where the 
engineering concepts and processes could stand without active mathematical support (often 
because a computer would do the computation). In addition, the students valued mathematics 
education for the general mental training and discipline they felt it provided. To them, 
engineering-problem solving and mathematical-problem solving felt similar—both were logical, 
sequential, and algorithmic. In this respect, these students differed from those studied by 
Cardella and Atman28, who did not view their mathematics courses as providing processes or 
practices. The idea that mathematics education offers general mental training has been 
historically pervasive35, observed across college students36, and even attributed to veteran 
engineers37 despite their recognition that their work is far from algorithmic. That studying 
mathematics increases general reasoning ability, however, has been challenged by 
neuropsychological evidence35,38 as well as situated-cognition theories39. 
 
In general, these engineering students’ positive dispositions towards mathematics would surely 
seem productive in terms of motivating mathematics learning, but they hardly capture the 
challenging, flexible, and open-ended uses of mathematics required of practicing civil engineers. 
Nor do they acknowledge the central and essential role of domain knowledge, which enables the 
broader judgments and decisions to which the mathematical methods are subordinate. And if the 
students had not attained the mathematical reverence held by veteran engineers, they were even 
further from veterans’ mathematical skepticism. Most students expressed little recognition of the 
limitations and subjectivity of mathematical methods in engineering and of the challenging 
decisions and exercise of judgment that would be required when solving quantitative problems in 
practice. The exception was Dmitri, with his extensive mathematical training and workplace 
experience. Further research could explore whether (and what kind of) work experience is 
responsible for the development of this skepticism, and whether it can be instilled in school. 
Much of the subjectivity and limitation of mathematical methods arises in the context of the 
mathematical modeling of physical phenomena, but modeling was outside these students’ sphere 
of awareness (see Gainsburg40 for further discussion of this topic). Without explicit attention to 
mathematical modeling and its role in engineering work, it would seem difficult to develop an 
appropriately skeptical disposition towards mathematics’ role in engineering.  
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