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Abstract 

With the advancements in high performance computer (HPC) computing, it is only natural that 
engineering education also utilizes the massive computational capabilities of large server clusters 
to enhance student learning. This paper presents recent work in developing and implementing 
complex engineering simulations for engineering education. Key aspects of this work include 
developing methods to access the simulations through web pages, creating user friendly input 
modules (web-based), automated job control system for web submission, efficient core 
utilization for a large number of simultaneous users, and display of results on the user’s web 
page. Each of these issues are critical to engineering education due to the unique environment 
required for using computers in classroom and lab settings. 

A detailed working example for torsional stress of non-circular bars is given in the paper to 
illustrate the implementation of a server cluster. Currently, up to 40,000 degree of freedom 
problems can be solved with the system. Execution time varies depending on the number of 
cores devoted to a given problem. But even if only one core is used, the solution time is 10-50 
faster on the cluster than on the client device (laptop, smart phone, tablet, etc.) since the cluster 
solver is compiled C code instead of less efficient Flash ActionScript. All examples used in the 
paper are currently available at www.eCourses.ou.edu.  

The paper addresses the special needs of engineering education when utilizing HPC systems. All 
simulations are web-based, and students do not need special knowledge of clusters, job control, 
or parallel programming. Simulations are accessed through a web page where parameters, such 
as boundary conditions, geometry constraints, loads, accuracy and grid resolution (FEA) are 
specified. The web interface is one of the more difficult aspects of the system. The interface 
needs to be intuitive and accessible on a large number of devices, such as laptops, smart phones, 
and tablets.  

To simplify the development of the user interface, this system used web-enabled Flash Player for 
both the simulation set up and viewing of the results. This allows most devices connected to the 
internet to access the system through a common web page. Utilizing Flash also makes it easier to 
develop advanced user interface graphics such as real-time grid generation, sliders, input boxes 
and graphical result output.  

The paper provides details on how the dedicated 32 node (384-core) engineering education 
cluster was set up using Windows 2008 HPC Server R2. This includes the job control system, 
allocation of core resources, cluster solvers, utilization of math libraries, and network 
communications between the cluster and user during the solution steps. One of the primary goals 
of this paper is encourage others to pursue developing complex simulations for engineering 
education so that students can reap the benefits of the recent advances in cluster computing. 
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Introduction 

Even though desktop and laptop computers have continued to increase in computational speed 
efficiency, smaller devices (tablets and smart phones) have been introduced with significantly 
reduced computational capabilities. This is only natural since these mobile devices where not 
designed to perform intense numerical calculations. However, they have become as common as 
slide rules in the 1960’s or hand calculators for the last four decades. There is now hardly an 
engineer without a smart phone. The question becomes, why is engineering education not using 
smart phones and tables (mobile devices) for complex engineering analysis? Two main concerns 
come to mind immediately, their screen sizes are small when compared to traditional desktop or 
laptop computers, and they are relatively slow (but still faster than desktop computers in the 
1980’s). While the screen size can be a problem, current mobile devices have incredible screen 
resolutions (over 300 dpi in some cases). A recently released smart phone by Samsung, the 
Galaxy Nexus [1], has a resolution of 720x1280 which is the same for most mid-range laptop 
computers. Granted, the pixels are tightly packed, but they are capable of rendering detailed 
stress plots or flow fields.  

The next issue is the relatively slow CPU speed of mobile devices. They are constantly 
improving, but they are not designed with engineers in mind and will always be slow for intense 
numerical calculations like finite element analysis. This paper addresses a solution to this 
problem by off-loading calculations to a server cluster through a web-based analysis tool. While 
clusters are not new, they generally are used in batch mode where input programs are submitted 
through specialized tools, such as PuTTY [2]. But these tools are not conducive for use by 
engineering students in non-computer science courses. Thus, a new method to interface with the 
cluster needed to be developed that is designed for engineering students with no experience in 
cluster computing or finite element method. But this was only one part of the solution. A cluster 
control system also had to be developed to allocate nodes and cores on the cluster to a particular 
analysis and user. Next, the engineering problem had to be solved using various numerical 
methods. Finally, the results needed to be returned to the user and displayed. This all needs to 
take place in just a few seconds, assuming reasonable network bandwidth.  

The project can be separated into three main parts. The first being the web-based tool that allows 
students the ability to change basic parameters for common engineering problems. The tool also 
plots the results returned from the. The tool must communicate with the server through a 
standard network protocol, such as HTTP or RTMP (Adobe format) [3] and send basic 
information about the design to the server. The second component in the system is the cluster job 
control program. This program is called from the web tool and allocates the cluster resources, 
sets run conditions, and sends the problem parameters to one of the cluster compute nodes 
(attached servers). The actual problem calculations are in the third component of the system, the 
solver. The solver takes the input parameters from the job control, sets up the gird, constructs the 
general matrix, applies the boundary conditions, and solves the resulting set of equations. The 
results are sent back to the job control program (still running), which then sends the results back 
to the client web tool. These basic components or parts are illustrated in Fig. 1.  
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Figure 1. Problem Set and Solution Process  

The three step process is conceptually straight forward, but the actual communications between 
the three components was challenging. The following sections will describe in detail each of 
these components and how they work together to provide a method for solving complex 
engineering problems on any network connected device.  

To illustrate the complete system, a basic demo example will be given. The example is the 
torsion of non-circular bars or shafts. This is a common problem in engineering mechanics but is 
rarely taught since there are few closed form solutions. The tool is also integrated into the eBook 
at www.eCourses.ou.edu [4] for student use. The theory and application of non-circular bars is 
provided at the web site, and the tool allows students to solve advanced configurations.  

User (Client) Interface Tool 

The user interface tool (client) is the key link between the user and the cluster and is the only 
component that the student will interact with. The client can be developed using a variety of 
program application tools, including Flash, Flex, HTML5, and Silverlight. These are the four 
most common web-based application development tools. It is also possible to develop a full “app” 
that can be run outside the browser. “Apps” are common for smart phones and tablets, but this 
route is more complex and will only work on the device that it was developed for. On the other 
hand, web-based applications (not native) can theoretically run in any web page. This allows the 
developer to program it once for all platforms.  

This project focused on web-based applications for the ability to reach a large audience while 
only programming one interface. Each of the four common development tools for web-based 
applications (Flash, Flex, HTML5, and Silverlight) has advantages and disadvantages. Microsoft 
Silverlight [16] has the lowest installed base, and is quickly losing ground to the other tools. 
Flash and Flex are similar tools, both from Adobe [5]. In fact, they both produce a common file 
format type, swf, that can be played in any browser using the Flash Player plugin (>98% 
installed). The main drawback for Flash/Flex is that Apple mobile devices do not support the 
Flash Player, which means iPhones and iPads cannot be used. The final tool, HTML5, is quickly 
growing in popularity, and is support by most browsers. There are two difficulties with HTML5. 
First, it is still a young format, and it not as sophisticated as Flash/Flex or even Silverlight. 
Particularly, the graphics are difficult to program and lack many basic drawing capabilities. 
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Second, HTML5 communication libraries and classes for sending data back and forth between 
servers and clients are limited. HTML5 can work with server sockets, but each browser has 
implemented sockets slightly differently, and this makes it near impossible to have all users 
experience the same high level of performance without developing for multiple socket types.  

After surveying all tools, it was decided that Flex (or Flash) would be the best tool even though it 
excludes use with Apple mobile products. In particular, Flex has advanced graphics for user 
interaction, and a variety of communication functions to interface with the cluster. It should be 
noted, even though Flex and Flash are similar (both use ActionScript programming language), 
their component libraries and third party components are different. Flex is designed to be a full 
application running in a web page. On the other hand, Flash is targeted more for web-based 
animations and simple user interaction. However, either one can perform as the client for the 
front end to the cluster.  

Flex itself can do some calculations, but it is slow and not designed for numerical methods. 
Similar to Java programming language, Flex uses byte-code that must be re-compiled at run time. 
This is important so that it can run on any platform but the penalty is speed. It is an order of 
magnitude slower than a normal C#, C++ or FORTRAN compiled executable program. For a 
small engineering problem, where the number of simultaneous system of equations (degree of 
freedom, DOF) is less than one thousand, most computers can handle it within a few seconds or 
less. However, for large DOF cases, many computers (especially smart phones and tablets) will 
take minutes (or hours) and will time-out. Detailed times are given in the results section. 

The Flex interface program serves two functions. First, it gives the user control over the 
engineering problem such as dimensions, similar to any pre-processor. Second, it serves as a 
post-processor when the calculations are completed. Since the front end functions (pre- and post-
processing) are separated from the core solver routines, it is possible to change the front end tool 
later with another program developed with another language (i.e. HTML5). An example of the 
front end for the torsion example, before and after the solver, is illustrated in Fig. 2.  

P
age 25.443.5



 

 

 

Figure 2. Torsion Simulator Example  a) User Setting Problem Parameters  b) Solution Results  

The key programming detail with the client program is its communication with the server cluster. 
Flex can make simple HTTP function calls to the website to run server scripts (PHP, Perl, 
ASP.NET, etc.), but this has two major limitations; text is transmitted as strings and it is 
synchronous. A better option is to use a media server on the cluster such as Red5, WebOrb, 
LiveCycle, Wowza, etc. These tools allow Flex to communicate with the server through 
dedicated channels using sockets. This means communications are asynchronous (and in binary) 
which allows the server to communicate with the client at any time, and the client can make 
multiple function calls. This project uses WebOrb [6] since it works with ASP.NET and is free 
for university community licenses.  

Basically, the client invocates a function on the server and transmits the problem parameters. The 
function on the server is part of a compiled DLL (HPC Windows 2008 operating system) that 
acts as the job control program (see next section). At the same time, the remote DLL on the 
server communicates back to the client to update how many cores are available on the cluster. 
The small red squares in Fig. 2 above indicate that particular core is currently solving a problem. 
Each core on the cluster system used for this project has 12 cores (2 cpu’s with 6 cores each).  

Server Cluster and Job Control 

A server cluster is a group of servers that are linked together to perform large scale calculations 
using parallel processing techniques. The capabilities of clusters have increased tremendously 
over the last several decades and are now in the price range of individual researchers or small 
labs. For example, the cost for a moderate size, blade-based cluster of 16 nodes (a node is an 
individual server) that has two cpu’s and each cpu has 6 cores is in the range of $60,000-$75,000 
depending on the memory, cpu speeds and hard disk space. Such a system would likely have a P
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theoretical TFLOPs (tera-floating-point operations per second) of about 2. In 1997, the top 
cluster in the world, Sandia National Lab, [7] was rated at approximately 2 TFLOPs (and filled a 
room and cost millions). The current cluster used for this project at the University of Oklahoma 
has 32 nodes with a total of 384 cores and has a theoretical 4.1 TFLOPs capability.   

A basic cluster configuration requires one node designated as the head node, which controls the 
computer nodes. Depending on the operating system, Linux or Windows, there can be other 
designated nodes for specialized functions. This project used Windows HPC 2008 R2 system for 
all nodes, and is configured for basic operation. The choice of Windows was due, in part, to the 
author’s past experience with Windows, an available site license for Microsoft software, and the 
availability of third party communication software between Windows and Flex. Linux is more 
common for pure cluster configurations where the job submission is not done through web pages. 

The Windows operating system installation for a cluster is similar to any Windows server 
operating system, but there are several special features (or roles) that need to be activated [8]. 
For example, the head node must also work as a DNS (Domain Name System) server, DHCP 
(Dynamic Host Configuration Protocol) Server, Active Directory Server, File Services server 
and an IIS (Internet Information Services) Web Server. These are all used to organize and 
communicate between the head node and compute nodes (and between compute nodes 
themselves). One of the more challenging aspects of this project was learning all these different 
servers and how they are used to facilitate full utilization of the cluster. After the head node 
operating system is set up, a special add-on, HPC (High Performance Computing) Pack 2008, 
needs to be installed. This is separate from the operating system and has a separate license from 
Microsoft. It installs the control programs that turn the basic server into a cluster server. It also 
has utilities that help the cluster administrator organize and maintain the cluster.  

After the head node is set up, the basic Windows HPC 2008 R2 operating system is installed on 
each individual compute node. No special services, features or roles need to be turned on. But 
the add-on HPC Pack 2008 needs to be installed on each compute node. The HPC Pack ties the 
compute nodes back to the head node so that the head node knows they are now part of the 
cluster, and the head node can assign tasks to them.  

The head node has a built in job control program, Cluster Manager, that allows individual jobs to 
be scheduled and submitted. The term “job” refers to the execution of another program such as a 
executable (.exe) file constructed separately. Generally, users submit the jobs; they run, write 
results to a file, and then the user accesses the file to view the results. This is similar to the 
1970’s batch submission concept. (Sadly the author still remembers those days along with the 
frustration of not getting immediate response and having to wait overnight in many cases.)  

One of the main goals of this research was to avoid the “batch” method of interacting with the 
cluster by using a web-based interface. This would allow anyone, anywhere, to utilize the system 
without installing any additional software. To do this, job submission had to be done through a 
server job control program and not the built-in Cluster Manager program (Fig. 3). The developed 
job control program accepts problem parameters from the client program (Flex); it sets up the job 
dynamically, assigns tasks to the job (generally, there is only one task per job for these simple 
simulations), specifics the resources (1-12 cores), and set time limits. Once this is set up, then the P
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job is submitted to a compute node for execution. It should be noted, the term “task” will be 
running the actual solver program (third component of the system). The solver program is 
developed separately so that multiple instances of the solver can be run at any given time.  This 
also allows the solver to use any programming language such as Fortran, C++ or even C#, 
whereas the control job program must be done in C# so that it can access all HPC classes built 
into the cluster HPC extensions.  

 

Figure 3. Windows HPC 2008 R2 Cluster Manager  

To summarize, the user sets up the simulation parameters using the client on a web page (Flex). 
Flex sends the parameters (dimensions, grid density, material constants, etc.) to the cluster head 
node by making a remote function call (also called “remoting”) to the server to start the job 
control program. That program then sets up the job for submission to the actual solver executable. 
Now, the final piece of the puzzle is the actual solver (turns out to the simplest part of the whole 
project), and that is discussed in the next section.  

Solver Program Component 

The core program that does the actual calculations is the third component of the system. It is 
called by the job control program on the head node and executed on one of the compute nodes. 
The solver program can be developed in any language and is independent of the job control P

age 25.443.8



 

 
program. It is just a basic executable program that accepts input, solves the problem, and then 
writes out the results. However, there are a number of special considerations when running the 
solver through a job control program. 

The solver receives the problem parameters from the job control (which received them from the 
client) and must pass them onto the solver. This can be done by using arguments input string 
when calling the solver. For example, when running the torsion example, a typical job task 
statement would be, “Torsion_cpp.exe 6 6 6 6 50 mklb 4”. This is set by the job control program, 
and it references the solver input parameters including solver language (C++ version), the 
dimensions of the problem (6,6,6,6), grid density (50), solver routine (mklb), and number of 
cores (4).  

Since the solver is actually run on a compute node, a mechanism is needed to return the results to 
the head node so that the job control program can return the results to the client. This a bit 
convoluted, but the solver cannot communicate directly to the client; it is only solving the 
problem. Thus, the job control program must wait until the solver is finished, then fetch the 
results from the solver, and send it back to the web-based client which then presents the results to 
the user. To facilitate transferring the results between the solver and the job control, a shared 
volume was set up that can be accessed by all nodes. The solver program resides on the share 
volume which makes it easy for the job control program to run from any node. (They all have 
access to the same executable.) The job control program also sets up the file name where the 
solver results are written (on the shared volume) and changes the solver console output to that 
file. When the solver program finishes, the job control is notified and reads in the solver output 
file. The job control packages the data into a data string and sent back to the client. In Flex, there 
is a listener event set up for the return of data which is activated when the data is received.  

Thus, the job control program on the head node sets up a job with a single task of solving the 
problem. The job is submitted to a compute node. Then the solver performs the analysis and 
writes the results to a file on a shared volume in the cluster. The job control reads the file (It 
knows the file name since it redirected the solver output to the file specified in the job control 
program.) and sends the data back to Flex.  

While the solver is working on the problem, the job control program communicates back to the 
client using a dedicated communication channel through RTMP (Real Time Message Protocol). 
This is made possible through the use of WebOrb which is a third party server-based program 
that allows socket communications between the server and Flex clients, or even between 
different Flex clients. It has been used previously to construct real time lecture tools [9]. 

Solver Types 

The solver is the core program that does the actual program calculations. Since it is compiled and 
on the server with a fast cpu, it is generally 1-2 orders of magnitude faster than using the local 
computer. Remember, the local computer, even if it has a fast cpu, is running the Flash Player in 
a browser using ActionScript which not compiled. So by just compiling the solver, the user will 
experience an order of magnitude in execution time reduction. However, the negative side of 
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executing the solver on a server or cluster is added time for the network transmission and large 
string manipulation between the job control, solver and back to the client.  

Various different solvers were developed to test different speeds and conditions. Four different 
computer languages (ActionScript, C#, C++ and FORTRAN) were used, all using the same two 
algorithms to solve the finite element based torsion problem. ActionScript (native language of 
Flex) was included to compare calculations times with cluster-based solver times. The other 
three, C#, C++, and FORTRAN were all developed and compiled for cluster execution. The two 
algorithms used are the Cholesky decomposition for a fully populated matrix (full) and for a 
banded matrix (band) [10]. While all 2D torsion problems can be solved efficiently with the band 
method, the full method was included to compare times when many calculations are needed. 
Both C++ and FORTRAN used Intel compilers, and C# used the native ASP.NET compiler. 
Visual Studio 2010 [15] development tool was used for all languages.  

Neither the band matrix nor full matrix algorithm will work on multiple cores, since the 
Cholesky method is inherently solved sequential and difficult to apply parallel programming 
techniques. But the main goal of this project was to utilize multiple cores to quickly solve 
problems. Thus, two additional methods were added using the Intel MKL (Math Kernel Library) 
[11]. The Intel MKL has hundreds of efficient algorithms for most numerical math routines. For 
solving fully populated matrices, the LAPACKE_dposv routine was used. For banded matrices, 
the LAPACKE_dpbsv routine was used. The implementation of both routines requires the matrix 
to be converted to a single dimensional column array. The number of cores that can be used 
varies from 1 to 12 (maximum cores per node) since this project currently does not use special 
shared memory techniques between nodes to allow for more than 12 cores. This would add more 
overhead to the programming, and it was found most problems only need 2-4 cores to solve 
quickly. Also, it is expected that dozens of users will be using the system simultaneously and 
thus no one user should use more than 12 cores so that all users will experience a quick response. 
However, future work will involve moving beyond 12 cores for particularly complex simulations. 

After testing solution times for various matrix sizes (degrees of freedom for torsion example 
problem), it was found that C++ was fastest for the full matrix solution method as shown in Fig. 
4. For the full matrix, it was substantial. The actual code algorithm was exactly the same in all 
three test cases. Some speed difference could be due to array allocation. No special language-
specific optimization was done to enhance the speed. The banded solution method was not as 
dramatic. All tests were done using a server with Intel x5650 cpu operating at 2.67 Ghz. 
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Figure 4. Solver Solution Times a) Full Matrix, b) Banded Matrix  

The next comparison is between Flex using ActionScript (AS) and C++. As expected, 
ActionScript is an order of magnitude slower than compiled C++ (Fig. 5). This is one of the 
reasons a cluster server is needed to solve complex engineering problems. This issue is even 
more problematic when the user tries using the torsion example problem on a slower smart 
phone or tablet.  

 

Figure 5. Solver Solution Times Between Flex (ActionScript - AS) and C++  

The final set of test cases involves solving the torsion problem using the Intel Math Kernel 
Library (MKL) that is available from Intel for its FORTRAN and C++ compilers. It is a large 
collection of routines for numerically intensive calculations. Furthermore, many of the routines 
can utilize multiple cores if they are present. The LAPACKE_dposv routine used to solve the full 
matrix did allow the program to set the number of cores to be used. The test case looked at the 
solution times for 1, 2, 4, 8 and 12 cores in solving degree of freedom problems up to 19,600. As 
expected, when more than one core is used, the solution time does decrease but it is not a linear 
relationship. In Fig. 6a, the raw times are given. To better understand this nonlinear relationship, P
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the times were plotted as a ratio of single time to the multiple core time (Fig. 6b). If it was a 
perfect system, then using 2 cores were decrease the time by 50%. But there is always 
inefficiencies and overhead with using multiple cores, especially for smaller problems. It is 
interesting to note, as the problem size increases, the efficiencies increases, especially for low 
number of cores. When using 12 cores, even at 19,600 degree of freedom, the efficiency only 
approached 8 (not the theoretical possible 12). To maximize the use of the cluster, 4 to 8 cores 
should be used. More cores will have less effect (law of diminishing return).  

      

Figure 6. Solver Solution Times Using MKL Library  
a) Actual Times, b) Ratio of One-Core Time to  Multi-Core Time 

It should be noted, no attempt was made to utilize more than 12 cores on a single problem. To do 
this requires additional programming and the use of Message Passing Interface (MPI) between 
physically separate nodes. Since it is expected to have dozens of users requesting cores at any 
given time, it would be unwise to allow each of them to use more than 12 cores at a time. 

Torsion Simulation Development and Results  

The test case for this paper is calculating the stresses for a non-circular bar or shaft. This is a 
basic structural mechanics problem that has been solved for only a few cases. The most common 
is the circular bars or shafts. Other closed form solutions include elliptical, rectangular and 
triangular cross section [12]. To allow students to visualize and try different cross sections, the 
torsion simulator (or Torsion Solver) was developed (Fig. 7). 
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Figure 7. Torsion Solver Test Case (12 by 12 Square Cross Section) 

The Torsion Solver uses the finite element method to solve the problem. Only a basic triangular 
element type is implemented for this example. The development and programming for this type 
of element can found in most finite element textbooks [13]. The core equation that is solved is 
Poisson equation of the form, 

 ��� � �2�� (1) 

where φ is the stress function, G is the shear modulus, and θ is the angle of rotation. The two 
shear stress terms can be found from  

 
	
� �

��

�

											�� � �

��

��
 (2) 

The boundary conditions require φ to be zero at all free edges.  

The Torsion Solver allows students to solve any non-uniform cross section by moving three 
control points or typing in numerical values for the control points. The final cross section 
boundaries are straight lines between these control points. To minimize the number of elements 
needed, it is assumed that the cross is symmetrical in both directions. The shear modulus and 
rotation angle are set. No units are used, and it is assumed students will scale the results to match 
the shear modulus, input torque, and rotation angle, as needed.  
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The user can also control the number of grid points on a given edge. This is directly related to the 
total degree of freedom for the problem. When a high grid density is used, the Flex graphics can 
become sluggish.  

The current version of the solver also allows the user to specify where it is solved (locally or on 
the cluster server), what language is used, the type of matrix solver, and how many cores are 
used (only available when using C++ and MKL routines). In the future, these choices will be 
removed, and only the most efficient solver routine will be available to the user.  

There is also a graphic that shows how many cores are currently available on the server. This is 
not critical for the solution process, but it is interesting to know the current status of the server 
cluster.  

To validate the Torsion Solver, a square cross bar was analyzed. The dimensions are 12 by 12 
with a shear modulus of 100 and a rotation angle of 0.01 radians. Units are assumed to be 
consistent, such as inch for length and psi for shear modulus. Using the closed form solution [12], 
the maximum shear stress is given as   

 	��
 � 1.350��� (3) 

where a is half the height or width for a square cross section. Substituting the example 
parameters give the maximum shear stress as 8.10 (psi if inch and psi are used for dimensions 
and modulus, respectively). The solver gives the maximum stress as 8.004 for a 3,600 degree of 
freedom (DOF) system. However as the DOF increases, the stress slowly converges to 8.1. A 
sample result is given in Fig. 7. Another check is the total torque needed to cause a 0.01 angle of 
rotation. The closed form solution gives this as 2,915 (lb-in in this example), which is almost 
exactly what the Torsion Solver gives.   

The actual total solution times for the Torsion solver, using the full matrix method, shows 
dramatic increase after only 500 DOF. For even moderate size problems (5,000-10,000 DOF), 
solving locally inside any client (Flex, HTML5, Flash, Java) is not feasible. Furthermore, the 
results shown in Fig. 8 were done on a moderately fast laptop. They are even slower on smart 
phones or tablets.  

Note, if the banded solution method is used, the results are not as dramatic. In fact, this particular 
example (rectangular grid) has an extremely low bandwidth which is generally unrealistic. Thus, 
banded solution times would actually be acceptable for the client up to 10,000 DOF.  

It is interesting to note, that for low DOF (Fig. 8a.), local solution times are actually faster. This 
is due to the time overhead of contacting the server, pushing data to the server, and then 
returning a result file back to the client. Generally, this takes 1-3 seconds, depending on the file 
sizes (a function of DOF).  
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Figure 8. Torsion Solver Total Times (Network and Solution Times) 
a) Low DOF, b) High DOF 

An additional example of using a cluster server to solve complex problems was recently 
completed for three dimensional stress analyses [14]. In that case, the bandwidth is 10-25% the 
size of the full matrix, and then banded solutions are also unmanageable on the local client and 
the server cluster needs to be used.  

Conclusion 

This paper has demonstrated the benefits of using cluster server technology to solve complex 
engineering problems for engineering education. The capabilities and power of multi-core 
processing can and should be applied to assist students’ visual learning and design advanced 
systems in undergraduate courses. The paper also layouts how others can implement a cluster 
and link it to a web page for ease of access and availability. This and other simulations can be 
accessed through the eBooks at www.eCourses.ou.edu.  
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