AC 2012-3853: DEVELOPMENT AND IMPLEMENTATION OF A HIGH
PERFORMANCE COMPUTER (HPC) CLUSTER FOR ENGINEERING
EDUCATION SIMULATIONS

Dr. Kurt C. Gramoll, University of Oklahoma

Kurt Gramoll is Hughes Professor of Engineering.

(©American Society for Engineering Education, 2012

T'sy'Ge abed

Development and Implementation of a
High Performance Computer (HPC) Cluster for
Engineering Education Simulations

Abstract

With the advancements in high performance comg#tBC) computing, it is only natural that
engineering education also utilizes the massiveptaational capabilities of large server clusters
to enhance student learning. This paper preseceatravork in developing and implementing
complex engineering simulations for engineeringoation. Key aspects of this work include
developing methods to access the simulations tfrewep pages, creating user friendly input
modules (web-based), automated job control systemwéb submission, efficient core

utilization for a large number of simultaneous ssand display of results on the user's web
page. Each of these issues are critical to engimggeducation due to the unique environment
required for using computers in classroom and édtings.

A detailed working example for torsional stressioh-circular bars is given in the paper to
illustrate the implementation of a server clus@urrently, up to 40,000 degree of freedom
problems can be solved with the system. Execuiioe varies depending on the number of
cores devoted to a given problem. But even if @mig core is used, the solution time is 10-50
faster on the cluster than on the client devicgt@, smart phone, tablet, etc.) since the cluster
solver is compiled C code instead of less efficilash ActionScript. All examples used in the
paper are currently available at www.eCourses.au.ed

The paper addresses the special needs of engigeshircation when utilizing HPC systems. All
simulations are web-based, and students do notspesmial knowledge of clusters, job control,
or parallel programming. Simulations are acceskealigh a web page where parameters, such
as boundary conditions, geometry constraints, loatturacy and grid resolution (FEA) are
specified. The web interface is one of the moréatilt aspects of the system. The interface
needs to be intuitive and accessible on a largebeuf devices, such as laptops, smart phones,
and tablets.

To simplify the development of the user interfabés system used web-enabled Flash Player for
both the simulation set up and viewing of the rsslhis allows most devices connected to the
internet to access the system through a commorpagé. Utilizing Flash also makes it easier to
develop advanced user interface graphics suchaasimee grid generation, sliders, input boxes
and graphical result output.

The paper provides details on how the dedicatenio8®2 (384-core) engineering education
cluster was set up using Windows 2008 HPC ServeiTRi8 includes the job control system,
allocation of core resources, cluster solversization of math libraries, and network
communications between the cluster and user dtinegolution steps. One of the primary goals
of this paper is encourage others to pursue dewvejammplex simulations for engineering
education so that students can reap the benefiteeotcent advances in cluster computing.

2’ sy gz abed

I ntroduction

Even though desktop and laptop computers haverngedito increase in computational speed
efficiency, smaller devices (tablets and smart jgisphave been introduced with significantly
reduced computational capabilities. This is onlyurel since these mobile devices where not
designed to perform intense numerical calculatiblmsvever, they have become as common as
slide rules in the 1960’s or hand calculators lier fiast four decades. There is how hardly an
engineer without a smart phone. The question besowigy is engineering education not using
smart phones and tables (mobile devices) for coxmaigineering analysis? Two main concerns
come to mind immediately, their screen sizes aralsnhen compared to traditional desktop or
laptop computers, and they are relatively slow @iilitfaster than desktop computers in the
1980’s). While the screen size can be a problemectimobile devices have incredible screen
resolutions (over 300 dpi in some cases). A reganteased smart phone by Samsung, the
Galaxy Nexus [1], has a resolution of 720x1280 Whscthe same for most mid-range laptop
computers. Granted, the pixels are tightly packed they are capable of rendering detailed
stress plots or flow fields.

The next issue is the relatively slow CPU speetholbile devices. They are constantly
improving, but they are not designed with enginéerraind and will always be slow for intense
numerical calculations like finite element analy3ikis paper addresses a solution to this
problem by off-loading calculations to a serverstéw through a web-based analysis tool. While
clusters are not new, they generally are usedtchbaode where input programs are submitted
through specialized tools, such as PuTTY [2]. Btk tools are not conducive for use by
engineering students in non-computer science csuf$rs, a new method to interface with the
cluster needed to be developed that is designeehigineering students with no experience in
cluster computing or finite element method. Bus thies only one part of the solution. A cluster
control system also had to be developed to allavatkes and cores on the cluster to a particular
analysis and user. Next, the engineering problesntdvée solved using various numerical
methods. Finally, the results needed to be retutmdite user and displayed. This all needs to
take place in just a few seconds, assuming reanatwork bandwidth.

The project can be separated into three main pEmntsfirst being the web-based tool that allows
students the ability to change basic parametersdiormon engineering problems. The tool also
plots the results returned from the. The tool nteshmunicate with the server through a
standard network protocol, such as HTTP or RTMPof#alformat) [3] and send basic
information about the design to the server. Thesgécomponent in the system is the cluster job
control program. This program is called from théow@ol and allocates the cluster resources,
sets run conditions, and sends the problem parasretene of the cluster compute nodes
(attached servers). The actual problem calculatoasn the third component of the system, the
solver. The solver takes the input parameters ftwrjob control, sets up the gird, constructs the
general matrix, applies the boundary conditiond, smves the resulting set of equations. The
results are sent back to the job control prograith ignning), which then sends the results back
to the client web tool. These basic componentsaasgare illustrated in Fig. 1.

€'eyy'Ge abed

Client Interface Tool Job Control Program Solver Program
(browser) Problem (cluster head node) Problem (cluster compute node)

Input Input

e C# (Windows) C#, G4+,

Flash Python (Linux) _ Fortran,

HTML5 job status Library (MKL)
communications

Job Control Solver
Output Output

Figure 1. Problem Set and Solution Process

The three step process is conceptually straightefad, but the actual communications between
the three components was challenging. The followgiegfions will describe in detail each of
these components and how they work together toigea method for solving complex
engineering problems on any network connected devic

To illustrate the complete system, a basic demmei@will be given. The example is the
torsion of non-circular bars or shafts. This isseneon problem in engineering mechanics but is
rarely taught since there are few closed form swhst The tool is also integrated into the eBook
at www.eCourses.ou.edu [4] for student use. Therthand application of non-circular bars is
provided at the web site, and the tool allows sttsléo solve advanced configurations.

User (Client) Interface Tool

The user interface tool (client) is the key linkween the user and the cluster and is the only
component that the student will interact with. Thient can be developed using a variety of
program application tools, including Flash, FleX;ML5, and Silverlight. These are the four
most common web-based application development.ttiatsalso possible to develop a full “app”
that can be run outside the browser. “Apps” areroomfor smart phones and tablets, but this
route is more complex and will only work on the @ewvthat it was developed for. On the other
hand, web-based applications (not native) can étigaily run in any web page. This allows the
developer to program it once for all platforms.

This project focused on web-based applicationshferability to reach a large audience while
only programming one interface. Each of the founown development tools for web-based
applications (Flash, Flex, HTML5, and Silverlighgs advantages and disadvantages. Microsoft
Silverlight [16] has the lowest installed base, anduickly losing ground to the other tools.
Flash and Flex are similar tools, both from Adobk In fact, they both produce a common file
format type, swf, that can be played in any brovwseng the Flash Player plugin (>98%
installed). The main drawback for Flash/Flex is thpple mobile devices do not support the
Flash Player, which means iPhones and iPads caenated. The final tool, HTMLS5, is quickly
growing in popularity, and is support by most brevgs There are two difficulties with HTMLS5.
First, it is still a young format, and it not agphdsticated as Flash/Flex or even Silverlight.
Particularly, the graphics are difficult to programd lack many basic drawing capabilities.

v shy'Ge abed

Second, HTML5 communication libraries and classesénding data back and forth between
servers and clients are limited. HTML5 can workhwserver sockets, but each browser has
implemented sockets slightly differently, and timakes it near impossible to have all users
experience the same high level of performance witdeveloping for multiple socket types.

After surveying all tools, it was decided that F{ex Flash) would be the best tool even though it
excludes use with Apple mobile products. In patéicuFlex has advanced graphics for user
interaction, and a variety of communication funesido interface with the cluster. It should be
noted, even though Flex and Flash are similar (hethActionScript programming language),
their component libraries and third party compogaenme different. Flex is designed to be a full
application running in a web page. On the othedh&iash is targeted more for web-based
animations and simple user interaction. Howevéneeione can perform as the client for the
front end to the cluster.

Flex itself can do some calculations, but it isssbnd not designed for numerical methods.

Similar to Java programming language, Flex uses-bgte that must be re-compiled at run time.

This is important so that it can run on any platidrut the penalty is speed. It is an order of
magnitude slower than a normal C#, C++ or FORTRAMpgiled executable program. For a
small engineering problem, where the number of Kameous system of equations (degree of
freedom, DOF) is less than one thousand, most ctergpoan handle it within a few seconds or
less. However, for large DOF cases, many compésmsecially smart phones and tablets) will
take minutes (or hours) and will time-out. Detaitades are given in the results section.

The Flex interface program serves two functionsstFit gives the user control over the
engineering problem such as dimensions, similantopre-processor. Second, it serves as a
post-processor when the calculations are compl&iede the front end functions (pre- and post-
processing) are separated from the core solveinemytit is possible to change the front end tool
later with another program developed with anothaguage (i.e. HTML5). An example of the
front end for the torsion example, before and dfiersolver, is illustrated in Fig. 2.

G'ehy'Ge abed

Cluster Torsion Solver - Demo Univ. Oklahoma, Kurt Gramoll Cluster Torsion Solver - Demo Univ. Oklahoma, Kurt Gramoll

A Input: Grid Side = 30 A Input:

Grid Side = 30
Xy 170 . x ¥ 170 .

& 130: A 130

& so§ & sog

¢ [k 505 ¢ 505

Shear Modulus, G=100 4g

Shear Modulus, G=100 4
Rotation Angle, 8 =0.01 poF=gpo

Rotation Angle, 8 =0.01 poF=goo

Output:

Output:
Torsion: Torsion:
Max Stress: Max Stress: 10.2 [k
Stress (click plot): Stress (click plot):
network time (s): network time (s): 2.431
Calc time (s): Calc time (s): 0155
Solve Location Solve Location
(®) server () Local (® server () Local m
Language Language 000 254 508 763 1047
k:) G+ QOcCk Cluster Core Utilization k:) C+ QCk Cluster Core Utilization
() Fortran AS3 Network Connection: Success (O Fortran AS3 Network Connection: Success
Matrix Type 11 DDDDDOOODO0D Matrix Type 11 DODDDOOODOO0D
P b ~ 12 oopooooooooo | © BUsY ~ L ~ 12 Dooooooooooo | © BUsY
YTy O Band) Ful 14 DODDDDDDDD00 | © Open T O Band O Ful 14 DODDDDODDD00 | © Open
ull Cross Section M) ®) 13 DODODDODOD00 ull Cross ion ® ®) 13 DOOODDODOO0O
Omke @ mdF 15 DDDDDDDDDDDD ©@mde @ mdF 15 DDDDDDDDDO00
Solve SenverC o Solve SIS
O1 02 @4 O1 02 @4
Os O12 Os O12

Figure 2. Torsion Simulator Example a) User SgtBnmoblem Parameters b) Solution Results

The key programming detail with the client progrisnits communication with the server cluster.
Flex can make simple HTTP function calls to the swgbto run server scripts (PHP, Perl,
ASP.NET, etc.), but this has two major limitatiotes;t is transmitted as strings and it is
synchronous. A better option is to use a mediaesem the cluster such as Red5, WebOrb,
LiveCycle, Wowza, etc. These tools allow Flex toncounicate with the server through
dedicated channels using sockets. This means coioatioms are asynchronous (and in binary)
which allows the server to communicate with therdliat any time, and the client can make

multiple function calls. This project uses WebO8bgince it works with ASP.NET and is free
for university community licenses.

Basically, the client invocates a function on teever and transmits the problem parameters. The
function on the server is part of a compiled DLLIPE Windows 2008 operating system) that

acts as the job control program (see next sectidrthe same time, the remote DLL on the

server communicates back to the client to updaternany cores are available on the cluster.
The small red squares in Fig. 2 above indicateghstcular core is currently solving a problem.
Each core on the cluster system used for this grbges 12 cores (2 cpu’s with 6 cores each).

Server Cluster and Job Control

A server cluster is a group of servers that afelintogether to perform large scale calculations
using parallel processing techniques. The capisildf clusters have increased tremendously
over the last several decades and are now in tbe r@ange of individual researchers or small
labs. For example, the cost for a moderate sizelehbased cluster of 16 nodes (a node is an
individual server) that has two cpu’s and eachlt@si6 cores is in the range of $60,000-$75,000
depending on the memory, cpu speeds and hard piglesSuch a system would likely have a

9'chy'Ge abed

theoretical TFLOPs (tera-floating-point operaties second) of about 2. In 1997, the top
cluster in the world, Sandia National Lab, [7] wated at approximately 2 TFLOPs (and filled a
room and cost millions). The current cluster usedliis project at the University of Oklahoma
has 32 nodes with a total of 384 cores and hasadtical 4.1 TFLOPs capability.

A basic cluster configuration requires one nodegiheded as the head node, which controls the
computer nodes. Depending on the operating sydtielmx or Windows, there can be other
designated nodes for specialized functions. Thagept used Windows HPC 2008 R2 system for
all nodes, and is configured for basic operatidre Thoice of Windows was due, in part, to the
author’s past experience with Windows, an availaliklicense for Microsoft software, and the
availability of third party communication softwabetween Windows and Flex. Linux is more
common for pure cluster configurations where thegobmission is not done through web pages.

The Windows operating system installation for astduis similar to any Windows server
operating system, but there are several specitlrfEsa(or roles) that need to be activated [8].
For example, the head node must also work as a([@DN®ain Name System) server, DHCP
(Dynamic Host Configuration Protocol) Server, AetiDirectory Server, File Services server
and an IIS (Internet Information Services) Web $erThese are all used to organize and
communicate between the head node and compute (anttbbetween compute nodes
themselves). One of the more challenging aspedtioproject was learning all these different
servers and how they are used to facilitate fuliization of the cluster. After the head node
operating system is set up, a special add-on, HH#gh (Performance Computing) Pack 2008,
needs to be installed. This is separate from tleeatimg system and has a separate license from
Microsoft. It installs the control programs thatrtihe basic server into a cluster server. It also
has utilities that help the cluster administrat@amize and maintain the cluster.

After the head node is set up, the basic Window€ BB08 R2 operating system is installed on
each individual compute node. No special servifegures or roles need to be turned on. But
the add-on HPC Pack 2008 needs to be installecicin @mpute node. The HPC Pack ties the
compute nodes back to the head node so that tldenoei knows they are now part of the
cluster, and the head node can assign tasks to them

The head node has a built in job control progralast€r Manager, that allows individual jobs to
be scheduled and submitted. The term “job” referthé execution of another program such as a
executable (.exe) file constructed separately. @digeusers submit the jobs; they run, write
results to a file, and then the user accessesl¢hi® fview the results. This is similar to the

1970’s batch submission concept. (Sadly the awdtibremembers those days along with the
frustration of not getting immediate response aanitg to wait overnight in many cases.)

One of the main goals of this research was to atlmdbatch” method of interacting with the
cluster by using a web-based interface. This wallfv anyone, anywhere, to utilize the system
without installing any additional software. To dust job submission had to be done through a
server job control program and not the built-in <& Manager program (Fig. 3). The developed
job control program accepts problem parameters ftantlient program (Flex); it sets up the job
dynamically, assigns tasks to the job (generdigré is only one task per job for these simple
simulations), specifics the resources (1-12 cowreg),set time limits. Once this is set up, then the

/'Sy Ge abed

job is submitted to a compute node for executibshbuld be noted, the term “task” will be
running the actual solver program (third comporadrihe system). The solver program is
developed separately so that multiple instancelseo§olver can be run at any given time. This
also allows the solver to use any programming laggwsuch as Fortran, C++ or even C#,
whereas the control job program must be done isdcthat it can access all HPC classes built
into the cluster HPC extensions.

5’ Cluster HEADO1 - HPC 2008 R2 Cluster Manager = -0 x|
File View Actions Options Go Help

4 |NavigationPane /| Actions Filter: | By Group «|[By Health -| 7 | search: £
Node uanagement Online ©

ine (6) ;
Draining (0) Net.. ~ | Node State | Nod...| CPU ... [Cores | Syster| Jobsforthes
Provisioning (0) 'HEADO1 Online OK 000 24 2941.
Rejected (0) J NODEO2 Online OK 000 12 2840

B By Group NODEQO3 Online OK 0.00 12 284.0
HeadNodes
ComputeNodes P
WCFBrokerNodes B
WorkstationNodes «| | | $) Take Offline

= ByNodeTempIate ») Start

-~ . v

A I I Reboot

.........

-ﬁ! Configuration) Shut - own

i Node Management
j Job Management Reimage
. Diagnostics

“l‘ Charts and Reports M Delete

Data updated: 1/10/2012 9:28:02 AM

Figure 3. Windows HPC 2008 R2 Cluster Manager

To summarize, the user sets up the simulation peteamusing the client on a web page (Flex).
Flex sends the parameters (dimensions, grid demséterial constants, etc.) to the cluster head
node by making a remote function call (also caftednoting”) to the server to start the job

control program. That program then sets up théqgolsubmission to the actual solver executable.

Now, the final piece of the puzzle is the actudao(turns out to the simplest part of the whole
project), and that is discussed in the next section

Solver Program Component

The core program that does the actual calculaistiee third component of the system. It is
called by the job control program on the head renttkexecuted on one of the compute nodes.
The solver program can be developed in any langaades independent of the job control

8'chy'Ge abed

program. It is just a basic executable programdkaepts input, solves the problem, and then
writes out the results. However, there are a nurabspecial considerations when running the
solver through a job control program.

The solver receives the problem parameters fronptheontrol (which received them from the
client) and must pass them onto the solver. Thisbeadone by using arguments input string
when calling the solver. For example, when runtiveggtorsion example, a typical job task
statement would be, “Torsion_cpp.exe 6 6 6 6 5kl This is set by the job control program,
and it references the solver input parameters dietusolver language (C++ version), the
dimensions of the problem (6,6,6,6), grid densi)(solver routine (mklb), and number of
cores (4).

Since the solver is actually run on a compute nadeechanism is needed to return the results to
the head node so that the job control program e@mmr the results to the client. This a bit
convoluted, but the solver cannot communicate tiréo the client; it is only solving the

problem. Thus, the job control program must wattlahe solver is finished, then fetch the

results from the solver, and send it back to thb-b@sed client which then presents the results to
the user. To facilitate transferring the resultsMeen the solver and the job control, a shared
volume was set up that can be accessed by all nbdesolver program resides on the share
volume which makes it easy for the job control pamg to run from any node. (They all have
access to the same executable.) The job contrgltamoalso sets up the file name where the
solver results are written (on the shared volumeé)@hanges the solver console output to that
file. When the solver program finishes, the jobtooins notified and reads in the solver output
file. The job control packages the data into a daiag and sent back to the client. In Flex, there
is a listener event set up for the return of ddtectvis activated when the data is received.

Thus, the job control program on the head nodewgetsjob with a single task of solving the
problem. The job is submitted to a compute nodenTthe solver performs the analysis and
writes the results to a file on a shared volumn@écluster. The job control reads the file (It
knows the file name since it redirected the sotugput to the file specified in the job control
program.) and sends the data back to Flex.

While the solver is working on the problem, the gmimtrol program communicates back to the
client using a dedicated communication channeluindRTMP (Real Time Message Protocol).
This is made possible through the use of WebOrlzhvisi a third party server-based program
that allows socket communications between the senve Flex clients, or even between
different Flex clients. It has been used previotglgonstruct real time lecture tools [9].

Solver Types

The solver is the core program that does the aptagiram calculations. Since it is compiled and
on the server with a fast cpu, it is generally dr@ers of magnitude faster than using the local
computer. Remember, the local computer, everhidista fast cpu, is running the Flash Player in
a browser using ActionScript which not compiled.l§gust compiling the solver, the user will
experience an order of magnitude in execution tieaeiction. However, the negative side of

6°'Sy'Ge abed

executing the solver on a server or cluster is ddidee for the network transmission and large
string manipulation between the job control, solwed back to the client.

Various different solvers were developed to teedint speeds and conditions. Four different
computer languages (ActionScript, C#, C++ and FORNRwere used, all using the same two
algorithms to solve the finite element based torgimblem. ActionScript (native language of
Flex) was included to compare calculations timet wiuster-based solver times. The other
three, C#, C++, and FORTRAN were all developed@ndpiled for cluster execution. The two
algorithms used are the Cholesky decompositiom foitly populated matrix (full) and for a
banded matrix (band) [10]. While all 2D torsion plems can be solved efficiently with the band
method, the full method was included to comparesinvhen many calculations are needed.
Both C++ and FORTRAN used Intel compilers, and G#dithe native ASP.NET compiler.
Visual Studio 2010 [15] development tool was usadail languages.

Neither the band matrix nor full matrix algorithnmillvwwork on multiple cores, since the
Cholesky method is inherently solved sequentialdiffitult to apply parallel programming
techniques. But the main goal of this project wastilize multiple cores to quickly solve
problems. Thus, two additional methods were addatuthe Intel MKL (Math Kernel Library)
[11]. The Intel MKL has hundreds of efficient algbms for most numerical math routines. For
solving fully populated matrices, the LAPACKE_dpasutine was used. For banded matrices,
the LAPACKE_dpbsv routine was used. The implememadf both routines requires the matrix
to be converted to a single dimensional columnyaifae number of cores that can be used
varies from 1 to 12 (maximum cores per node) sthiseproject currently does not use special
shared memory techniques between nodes to allomdoe than 12 cores. This would add more
overhead to the programming, and it was found mpagilems only need 2-4 cores to solve
quickly. Also, it is expected that dozens of useittbe using the system simultaneously and

thus no one user should use more than 12 cordmsalt users will experience a quick response.

However, future work will involve moving beyond t@res for particularly complex simulations.

After testing solution times for various matrixesz(degrees of freedom for torsion example
problem), it was found that C++ was fastest forfthematrix solution method as shown in Fig.
4. For the full matrix, it was substantial. Theuattcode algorithm was exactly the same in all
three test cases. Some speed difference couldéb®auray allocation. No special language-
specific optimization was done to enhance the spBael banded solution method was not as
dramatic. All tests were done using a server witklIx5650 cpu operating at 2.67 Ghz.

0T S¥i'Se abed

2,000

- —— 2.00
1,800 __lFuIIMatnx Solution Times 1.80 __I Banded Matrix Solution Times
1,600 /
— 1,400 [/ Lo)
S = 1.40
210 L / g /
P / / <1.20
E 1000 £
E E 100
Sl I 4 : X
j 7 X fo 7
< 600 d —-—C A 0.60 —-—Ct
400 —k=C#t 0.40 {SK/ ——CH
200 - —e—FORTRAN 0.20 26& —e—FORTRAN
0 i 0.00 i»—(f'ﬁa } t t

5,000 10,000 15,000 20,000

Degree of Freedom

5,000 10,000 15,000 20,000

Degree of Freedom
Figure 4. Solver Solution Times a) Full Matrix, Bdnded Matrix

The next comparison is between Flex using ActioipB¢AS) and C++. As expected,
ActionScript is an order of magnitude slower thampiled C++ (Fig. 5). This is one of the
reasons a cluster server is needed to solve corapgireering problems. This issue is even

more problematic when the user tries using thadorsxample problem on a slower smart
phone or tablet.

| |ASvs C++
Banded /

= C++
6.0

Solver Time (sec)
[o]
o

== Flex - AS
4.0

20 W

0.0 -+l t f i

- 5,000 10,000 15,000 20,000
Degree of Freedom

Figure 5. Solver Solution Times Between Flex (AcSoript - AS) and C++

The final set of test cases involves solving thsitm problem using the Intel Math Kernel
Library (MKL) that is available from Intel for tSORTRAN and C++ compilers. It is a large
collection of routines for numerically intensivd@aations. Furthermore, many of the routines
can utilize multiple cores if they are present. TR ACKE_dposv routine used to solve the full
matrix did allow the program to set the numberarkes to be used. The test case looked at the
solution times for 1, 2, 4, 8 and 12 cores in sauviegree of freedom problems up to 19,600. As
expected, when more than one core is used, thé@otime does decrease but it is not a linear
relationship. In Fig. 6a, the raw times are givembetter understand this nonlinear relationship,

TT' St Gz obed

the times were plotted as a ratio of single timthtomultiple core time (Fig. 6b). If it was a
perfect system, then using 2 cores were decreadth by 50%. But there is always
inefficiencies and overhead with using multipleexyrespecially for smaller problems. It is
interesting to note, as the problem size incredbesfficiencies increases, especially for low
number of cores. When using 12 cores, even at 09)60ree of freedom, the efficiency only
approached 8 (not the theoretical possible 12m@gimize the use of the cluster, 4 to 8 cores

should be used. More cores will have less effest @f diminishing return).

300

MKL Solution Times f 8 MKL Solution Times - ratiol
250 , | ,—
—=—MKL 1 / . A/,_’ —
R £° ‘:‘/P‘ ——=MKL2
> / S
[@ 5 Vs
E 150 +— MKL4 E J / MKL 4
= 4 2
5 ——MKL8 / /K s 4 /A
3 100 +—] =&—=MKL 12 E 3 AL —o—MKL 8
[} 8 /

[N]

[un

—d—MKL 12

5,000 10,000 15,000 20,000
Degree of Freedom

W —t t
5,000 10,000 15,000
Degree of Freedom

20,000

Figure 6. Solver Solution Times Using MKL Library
a) Actual Times, b) Ratio of One-Core Time to Ni@lbre Time

It should be noted, no attempt was made to utitioee than 12 cores on a single problem. To do

this requires additional programming and the uddl@egsage Passing Interface (MPI) between
physically separate nodes. Since it is expectéhe dozens of users requesting cores at any
given time, it would be unwise to allow each ofrth® use more than 12 cores at a time.

Torsion Simulation Development and Results

The test case for this paper is calculating thesses for a non-circular bar or shaft. This is a
basic structural mechanics problem that has beeador only a few cases. The most common
is the circular bars or shafts. Other closed fooht®ns include elliptical, rectangular and
triangular cross section [12]. To allow studentsisualize and try different cross sections, the
torsion simulator (or Torsion Solver) was develoffed. 7).

21 sviGe obed

Cluster Torsion Solver - Demo Univ. Oklahoma, Kurt Gramoll

Input: Grid Side = 60
Xy 170 .
A E 130
5 B: E E 90?
= E soé

Shear Modulus, G =100 4q -
Rotation Angle, 8=0.01 poF=3600

Output:
Applied Torgque: 29146
Max Stress: 8.004
Stress (click plot): 7.42

C network time (s): 1.819

Calc time (s): 1168

Solve Location

@® server O Local| | [

Language 000 200 400 600 800

®@c+ Ock Cluster Core Utilization

O Fortran AS3 Network Connection: Success
Matrix Type 11 DDOODODODO000
stilbiiad 12 Dooooooooooo | 2 BUsY
e O Band) Ful 14 DDDDDDDODO00 | B Open
ull Cross Section ~ o 13 DODODODODDO000
O mkdB (&) mkiF 15 DODDDODODDDD

Solve Sirver Cgres ~
01 02 @4
Os O12

Figure 7. Torsion Solver Test Case (12 by 12 SqGanss Section)

The Torsion Solver uses the finite element metlocgbtve the problem. Only a basic triangular
element type is implemented for this example. Tésetbpment and programming for this type
of element can found in most finite element tex#®o[13]. The core equation that is solved is
Poisson equation of the form,

V2p = —2G6 1)

where@is the stress function, G is the shear modulusfasa the angle of rotation. The two
shear stress terms can be found from

d¢ d¢
Txz = E Tyz = _a (2)

The boundary conditions requiggto be zero at all free edges.

The Torsion Solver allows students to solve any-maiform cross section by moving three
control points or typing in numerical values foe ttontrol points. The final cross section
boundaries are straight lines between these cgmtints. To minimize the number of elements
needed, it is assumed that the cross is symmeinidalth directions. The shear modulus and
rotation angle are set. No units are used, arsdassumed students will scale the results to match
the shear modulus, input torque, and rotation amgl@eeded.

TSy’ Gz abed

The user can also control the number of grid painta given edge. This is directly related to the
total degree of freedom for the problem. When & lgigd density is used, the Flex graphics can
become sluggish.

The current version of the solver also allows theruo specify where it is solved (locally or on
the cluster server), what language is used, the ¢fpnatrix solver, and how many cores are
used (only available when using C++ and MKL routinén the future, these choices will be
removed, and only the most efficient solver routink be available to the user.

There is also a graphic that shows how many caoeswarently available on the server. This is
not critical for the solution process, but it isaresting to know the current status of the server
cluster.

To validate the Torsion Solver, a square crossMaaranalyzed. The dimensions are 12 by 12
with a shear modulus of 100 and a rotation angl@@f radians. Units are assumed to be
consistent, such as inch for length and psi foashedulus. Using the closed form solution [12],
the maximum shear stress is given as

Tmax = 1.350G60a 3)

where a is half the height or width for a squaessrsection. Substituting the example
parameters give the maximum shear stress as &I ifpch and psi are used for dimensions
and modulus, respectively). The solver gives thgimam stress as 8.004 for a 3,600 degree of
freedom (DOF) system. However as the DOF incredlesstress slowly converges to 8.1. A
sample result is given in Fig. 7. Another checthistotal torque needed to cause a 0.01 angle of
rotation. The closed form solution gives this &l3, (Ib-in in this example), which is almost
exactly what the Torsion Solver gives.

The actual total solution times for the Torsiorveo] using the full matrix method, shows
dramatic increase after only 500 DOF. For even maddesize problems (5,000-10,000 DOF),
solving locally inside any client (Flex, HTML5, Ela, Java) is not feasible. Furthermore, the
results shown in Fig. 8 were done on a moderassylaptop. They are even slower on smart
phones or tablets.

Note, if the banded solution method is used, tBalte are not as dramatic. In fact, this particular
example (rectangular grid) has an extremely lowdibadth which is generally unrealistic. Thus,
banded solution times would actually be accepttisléhe client up to 10,000 DOF.

It is interesting to note, that for low DOF (Fig.B local solution times are actually faster. This
is due to the time overhead of contacting the septeshing data to the server, and then
returning a result file back to the client. Genlgrahis takes 1-3 seconds, depending on the file
sizes (a function of DOF).

YT sy Gz abed

—{AS vs C++ ——MKL1 AS vs C++ ——MKL1

Full 7(=KL 2 Full = MKL 2
MKL 4 T MKL 4
/ —o—MKL 8 ——MKL8

/ —4—MKL 12 / —4—MKL 12
—<—Flex- AS l

o
|

w
(]

w
o

w

=
N
w

N
o

—=Flex - AS

Solver TIme (sec)
w
Solver TIme (sec)
-
v

[N]
[
o
[—

[
:

w

o

o

500 1,000 1,500 2,000 2,000 4,000 6,000 8,000

Degree of Freedom Degree of Freedom

Figure 8. Torsion Solver Total Times (Network araduBion Times)
a) Low DOF, b) High DOF

An additional example of using a cluster servesdlve complex problems was recently
completed for three dimensional stress analysds [i4hat case, the bandwidth is 10-25% the
size of the full matrix, and then banded solutiaresalso unmanageable on the local client and
the server cluster needs to be used.

Conclusion

This paper has demonstrated the benefits of usursger server technology to solve complex
engineering problems for engineering education. ddmabilities and power of multi-core
processing can and should be applied to assiststsidszisual learning and design advanced
systems in undergraduate courses. The paper gsat$show others can implement a cluster
and link it to a web page for ease of access aatladility. This and other simulations can be
accessed through the eBooks at www.eCourses.ou.edu.

ST svi'Ge abed

Bibliography

1. "Galaxy Nexus", en.wikipedia.org/wiki/Galaxy_Nexustrieved on 12 Jan 2012.

2. "PuTTY", en.wikipedia.org/wiki/PuTTY, retrieved di? Jan 2012.

3. "RTMP", en.wikipedia.org/wiki/Real_Time_Messagingot®col, retrieved on 12 Jan 2012.

4. Gramoll, K.Multimedia Engineering Mechanics of Materials, retrieved from ecourses.ou.edu on 12 Jan 2012.
5. "Adobe Flash Platform", www.adobe.com/flashplatfgrretrieved on 12 Jan 2012.

6. "WebORB for .NET", www.themidnightcoders.com/protiiareborb-for-net/, retrieved on 12 Jan 2012.

7. "TOPS500 List - June 1997 (1-100)", www.top500.ads9/1997/06/100, retrieved on 12 Jan 2012.

8. "Windows HPC Server 2008 Getting Started Guidethiet.microsoft.com/en-
us/library/cc793950%28WS.10%29.aspx, retrieved ddah 2012.

9. AlIRamahi, Mohammad and Kurt Gramoll, “Online Coltaltive Drawing Board for Real-time Student-
Instructor Interaction and Lecture Creation"”, 2@®EE Annual Conference, Salt Lake City, UT, June30
2004,

10. Weaver, W., and J.M. Gere, (1990). "Matrix Analysid-ramed Structures", Kluwer Academic Publishers,
1990.

11. "Math Kernel Library (MKL)", software.intel.com/eums/articles/intel-mkl/, retrieved on 12 Jan 2012.
12. Timoshenko, S.P. and J.N. Goodier, "Theory of kdagt, 3rd Edition, McGraw-Hill, 1970.
13. Reddy, J.N., "An Introduction to the Finite Eleméf¢thod", McGraw-Hill, 1984.

14. Vick, Zachary and Kurt Gramoll, "Online, Interaaiv3D Finite Element Stress Analysis Using High
Performance Computing (HPC) Cluster”, ASEE AnnuahiCProc., San Antonio, TX, 10-13 Jun 2012

15. "Microsoft Visual Studio", en.wikipedia.org/wiki/Mrosoft_Visual_Studio, retrieved on 23 Feb 2012.

16. "Microsoft Silverlight", en.wikipedia.org/wiki/Silerlight, retrieved on 23 Feb 2012.

9T svi'Ge abed

