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Does Neatness Count?  What the Organization of  
Student Work Says About Understanding 

 
Abstract 
 
Students have long been taught that neatness counts. But does it? In this project, we seek to 
understand how the organization of a student’s solution to a problem relates to the correctness of 
the work. Understanding this relationship will enable us to create software to provide early 
warnings to students who may be struggling in a course.  In this study, students in an 
undergraduate statics course completed all of their work, including homework, quizzes, and 
exams, using LivescribeTM Smartpens. These devices record the solutions as time-stamped pen 
strokes, enabling us to see not only the final ink on the page, but also the order in which it was 
written.  Using this unique database of student work, we examine how the history of the solution 
construction process correlates with the correctness of the work. We characterize solution 
histories with a number of quantitative features describing the temporal and spatial organization 
of the work. For example, there are features that describe the order in which various problem 
solving activities, such as the construction of free body diagrams and equilibrium equations, are 
performed, and the amount of time spent on each activity. The spatial organization of the work is 
characterized by the extent to which a student revisits earlier parts of a solution to revise their 
work. Regression models have demonstrated that, on average, about 40% of the variance in 
student performance could be explained by our features. This is a surprising result in that the 
features consider only the process of recording the solution history and do not actually consider 
the semantics of the writing.  
 
1 Introduction 
 
Students have long been taught that neatness counts. But does it? In this project, we seek to 
understand how the organization of a student’s solution to a problem relates to the quality of the 
solution. More precisely, we seek to understand how the history of the solution construction 
process correlates with the correctness of the work. Understanding this relationship will enable 
us to create software to provide early warnings to students who may be struggling in a course.   
 
We have conducted a study in which students in an undergraduate statics course completed all of 
their work, including homework, quizzes, and exams, using LivescribeTM Smartpens. These 
devices record the solutions as time-stamped pen strokes, enabling us to see not only the final ink 
on the page, but also the order in which it was written.  While previous studies have used video 
cameras to record problem-solving activities, the analysis of such data is a difficult and time-
consuming task that requires human judgment1. Capturing the work as time-stamped pen strokes 
enables a much more precise and efficient analysis of the work.  
 
We seek to understand the relationship between how students construct their solutions and their 
performance on those problems.  We refer to the sequence of problem-solving steps as a solution 
history. We characterize solution histories with a number of quantitative features describing the 
temporal and spatial organization of the work. For example, there are features that describe the 
order in which various problem solving activities, such as the construction of free body diagrams 
and equilibrium equations, are performed, and the amount of time spent on each activity. 
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Because Smartpens use ink, students cannot erase their errors and must cross them out. We 
characterize cross-outs by the delay between when the ink was written and when it was crossed 
out. The spatial organization of the work is characterized by the extent to which a student revisits 
earlier parts of a solution to revise the work. None of the features consider the actual correctness 
of the work. We then construct regression models to determine the extent to which these features 
correlate with correctness of the solution. In the examples we considered, on average about 40% 
of the variance in performance could be explained by these features. This is a surprising result in 
that the features consider only the process of recording the solution history and do not actually 
consider the semantics of the writing.  
 
Section 2 places this work in the context of related work. Section 3 then describes the data we 
collected with the LivescribeTM Smartpens. This is followed in Section 4 with a discussion of the 
features we used to characterize the temporal and spatial properties of a solution history. Section 
5 presents the results of our regression analysis, which are then discussed in Section 6. Finally, 
Section 7 presents conclusions. 
 
2 Related Work 
 
Our work is a form of educational data mining, a research discipline that uses machine learning 
techniques, data mining techniques, and other similar techniques to examine education research 
issues.  Romero and Ventura2 provide a recent overview of work in this area. Much of this work 
relies on data collected in online environments such as web applications and intelligent tutoring 
systems. Our work is unique in that we use digital records of students’ handwritten solutions, 
enabling us to study work habits in a more natural environment. The work of Oviatt et al.3 
suggests that natural work environments are critical to student performance. In their 
examinations of computer interfaces for completing geometry problems, they found that “as the 
interfaces departed more from familiar work practice..., students would experience greater 
cognitive load such that performance would deteriorate in speed, attentional focus, meta-
cognitive control, correctness of problem solutions, and memory.” 
 
There have been several studies examining student work habits and performance in statics. For 
example, Steif and Dollár4 examined usage patterns of a web-based statics tutoring system to 
determine the effects on learning.  They found that learning gains increased with the number of 
tutorial elements completed. This study again relied on an online learning environment, while we 
consider ordinary handwritten work. In another study, Steif et al.5 examined whether students 
can be induced to talk and think about the bodies in a statics problem, and if doing so can 
increase the student’s performance. They used tablet PCs to record the students’ spoken 
explanations and capture their handwritten solutions as time-stamped pen strokes. The study 
focused on the spoken explanations, with the record of written work left mostly unanalyzed.   
 
Researchers have used video recordings to examine student problem solving. For example, 
Blanc6 examined video recordings of student work in mathematics and analyzed the path that 
students used to solve an example problem.  Although Blanc recorded more than 75 problem 
solutions, only two were analyzed in his paper.  This speaks to the labor intensive nature of 
analyzing video records. Our pen stroke data is more amenable to automated computation. 
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Other researchers have used journaling to examine student work habits. For example, Orr et al.7 
examined students’ journal responses about their study habits, including factors such as when 
and how they completed their homework, and if they took advantage of assistance programs. 
While the results proved interesting, journals capture students’ perceptions of their work habits, 
rather than an objective characterization of them.  Our work provides a nice complement to this 
work as we capture a detailed time-stamped record of a student’s work over the duration of the 
course. 
 
The ultimate goal of our work is to rapidly and inexpensively identify students who may be 
struggling in a course so that extra assistance can be provided. Other researchers have explored 
various mechanisms for providing rapid feedback. For example, Rasila et al.8 explored the 
benefits of an online assessment tool for engineering mathematics.  They found that automatic 
assessment was highly useful and improved the feedback provided to students.  Chen et al.9 used 
electronic conceptual quizzes during lectures within a Statics course to help guide the lecture 
content.  They found that the rapid feedback produced a significant increase in student 
performance. 
 
3 Data Set 
 
We conducted a large-scale study in which over 120 students from an undergraduate mechanical 
engineering course in statics were given LivescribeTM Smartpens. These devices serve the same 
function as a traditional ink pen, but additionally they digitize the pen strokes and store them as 
sequences of time-stamped coordinates. Students from this course were asked to complete all 
coursework using the pens. This included seven homework assignments with 44 problems in 
total; six quizzes with one problem each; and three exams with a total of 13 problems. The 
resulting digital database contains over four million pen strokes.  
 
We restrict our present analysis to problems from the final exam, as data from quizzes and exams 
is more reliable than that from homework. It is possible that some students solved their 
homework on scratch paper, and then copied their work with the digital pen for final submission. 
This could not happen for quizzes and exams. 
 
4 Characterizing Solution Histories 

 
To examine the correlation between the properties of the solution histories and the correctness of 
the work, we first represent those properties quantitatively. We characterize a solution history in 
terms of both the temporal and spatial distribution of the work. The sections that follow describe 
the features we use for this purpose. 

4.1 Solution History: Temporal Features 
 
In characterizing the temporal distribution of the work in a solution history, we distinguish 
between six solution activities: drawing free body diagrams, constructing and solving 
equilibrium equations, making organizational marks, performing geometric computations, 
crossing out work, and working on other problems.  Organizational marks are arrows, notes, 
lines, or other symbols students use to organize their solution but which are not part of the 
solution. Geometric computations include diagrams and equations used to determine geometric 
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quantities, such as angles.  The last of the six solution activities is when a student interrupts their 
effort on the problem at hand to work on another problem. In the current work, we manually 
label each pen stroke in a solution according to the solution activity it represents. 
 
To represent the sequence of solution activities, we divide the problem solution into ݊, equal-
time intervals. Each interval is labeled according to the solution activity that occurs most 
frequently during that interval, which is computed using the pen stroke labels. For example, if 
70% of the drawing time in an interval was spent drawing free body diagram pen strokes, and the 
remaining time was spent drawing equation pen strokes, the interval as a whole would be 
characterized by the free body diagram activity. If no writing occurs during an interval, it is 
labeled as a break. In practice, we have found that using a value of 400 for ݊ provides adequate 
detail to enable meaningful analysis of the solution. One advantage of this representation is that 
it abstracts away the total elapsed time, making it possible to directly compare the work of all 
students regardless of their total solution time.  
 
If the student interrupts their work on a problem to work on other problems, we modify this 
representation slightly. If there are ݉ such interruptions, we divide the work on the problem in 
question into ݊ െ݉ equal intervals and compute their labels as before. Each of the ݉ 
interruptions is then represented by an additional interval labeled as “other problem.” Figure 1 
shows a portion of a typical activity sequence. 
 

 
Figure 1: A portion of a typical discretized activity sequence. 
 
The distribution of activities in the discretized solution history gives important insights into the 
student’s thought process. We have designed a set of six features to capture these insights. The 
first four features describe the amount of time spent on various activities. FBD Effort is the total 
number of activity intervals spent on free body diagrams, while EQN Effort is the number spent 
on equations. The Break feature is the number of intervals in which no work was done, while the 
Other-Problem feature is the number of times the student interrupted their work on the problem 
to work on other problems (this is the value “݉” described above).  
 
We have also created features that describe the sequencing of the activities. An expert might 
solve a problem by first constructing all of the free body diagrams, and then constructing all of 
the equations. This would result in a very simple activity distribution. A novice student who is 
struggling on a problem might repeatedly move from one activity to another in a much more 

Free Body Diagram Equation Organization Geometry

Cross-out Other Problem No Activity
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complex pattern. We use information theory notions of entropy and complexity to capture these 
distinctions. We compute the Entropy of the sequence using the usual approach:  
 

ݕ݌݋ݎݐ݊ܧ ൌ෍െሺ݊௜/݊ሻ ݈݊ሺ݊௜/݊ሻ
௜

 

 
where ݊௜ is the number of occurrences of a particular type of activity,  ݊ is the total number of 
activities (400), and the sum is taken over the six types of activities. (In this computation, we 
assume ݈݊ሺ0ሻ ൌ 0.) If the sequence contains, for example, only two types of activities, the 
entropy is relatively small. If, on the other hand, an equal amount of time is spent on each of the 
six types of activities, the entropy is maximal. 
 
The Kolmogorov complexity10 of a sequence is a measure of the minimum length required to 
describe it. To estimate this value, we first represent the sequence as a character string, assigning 
a unique letter to each of the six types of activities. We then use a standard data compression 
algorithm (the ZLIB11 implementation of DEFLATE12) to compress the string. We define the 
Complexity of the sequence as the length of the compressed string. A random distribution of 
activities will result in a large value for this feature, while a distribution comprised of a few large 
blocks of activities will result in a small value.  

4.2 Solution History: Spatial Features 
 
The spatial organization of the solution on the page gives additional insights about the student’s 
problem solving process. For example, a student who starts at the top of a page and progresses 
down it may understand the problem better than a student who revisits earlier work and revises 
it.  We describe the spatial organization with four features that consider the progression of the 
work on the page and cross-outs.  
 
We describe progression down the page in terms of deviation from a reference progression in 
which each stroke is drawn later than the ones above it. We use a sliding one-inch-tall window to 
construct this reference timeline (Figure 2). The window is initially placed at the top of the work. 
The reference time assigned to the location of the top of the window is computed as the time of 
the earliest stroke in the window. (The center point of a stroke’s bounding box is used to 
determine if the stroke is in the window.) In the example in Figure 2, the time stamp of the pen 
stroke for the letter “P” in “problem” determines the time assigned to the top of the window. The 
window is then slid down the page a small distance. The reference time assigned to the new 
location of the top of the window is again that of the earliest stroke in the window, unless that is 
earlier than the time assigned to the previous window. In that case, the reference time is taken to 
be that of the previous window. The process is repeated for a total of 50 equally spaced positions 
of the window, resulting in 50 monotonically increasing reference time values, equally spaced 
between the top and bottom strokes of the solution.  
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Figure 2: A sliding window (red box) is used to compute a reference timeline. The time stamp of 
the earliest stroke in the box is assigned to the location of the top of the box. Strokes inside the 
box are shown in green.  
 
Once the reference timeline has been constructed, we compute the Out-of-Order feature, defined 
as the fraction of the pen strokes that were drawn out of order. To do this, we compute the 
reference time at each stroke’s location on the page by linear interpolation of the reference 
timeline. If the time of a pen stroke differs from this reference by at least 30% of the total 
solution time, the stroke is considered to be out of order.  
 

 
Figure 3: Out-of-Order work: In this hypothetical example, the student revised the free body 
diagram by adding an additional force after beginning the equilibrium equations. Out-of-order 
strokes are shown in green. 
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Cross-outs are a direct indication of revised work. We distinguish between two kinds of cross-
outs, which we call “typo cross-outs” and “problem-solving cross-outs”. The former are cases in 
which the student writes something and crosses it out within fifteen seconds, as if correcting a 
typographical error. The latter are cases in which there is a substantial delay (greater than fifteen 
seconds) between when the ink was written and when it was crossed out. These cases are more 
likely to be corrections of problem-solving errors. We characterize cross-outs with three features. 
The Typo-Cross-Outs and PS-Cross-Outs features are the numbers of typo and problem-solving 
cross-outs, respectively. The Big-Cross-Outs feature is the number of cross-outs that cover 
(delete) 10 or more pen strokes and thus represents a revision of a substantial amount work.  
 
5 Results 

 
We used the features described above to construct a variety of models to predict problem-solving 
performance. Specifically, we constructed three types of linear regression models: models 
considering the six temporal features, models considering the four spatial features, and models 
considering all 10 features. We used IBM® SPSS® Statistics version 20 to construct separate 
models for each of the 6 statics questions on the final exam. The grade assigned on each problem 
was used as the measure of problem-solving performance. Table 1 lists the coefficients of 
determination (R2) for the models.  The temporal features consistently produced stronger 
correlations than did the spatial features. Using the temporal features, R2 ranged from 0.225 to 
0.521, while for the spatial features it ranged from 0.081 to 0.285. On average, the temporal 
features explained 35.3% of the variance in performance, while the spatial features explained 
only 15.0%.  Interestingly, the problems for which the temporal features were more strongly 
correlated with performance were also problems for which the spatial features produced the 
strongest correlation.  
 
The temporal and spatial features together have greater predictive ability than either set alone. 
Thus, the two types of features do provide different information about student performance. 
Using the combined features, R2 ranged from 0.280 to 0.578 (Table 1, Column 4). On average, 
the combined features explained 39.9% of the variance in performance.   
 

Problem Six 
Temporal 
Features 

Four 
Spatial 

Features 

Ten Temporal 
and Spatial 

Features 

Stepwise Feature Selection 
using Temporal and 

Spatial Features 
P1 0.468 0.146 0.479 0.408
P2 0.232 0.113 0.318 0.259
P3 0.225 0.081 0.280 0.245
P4 0.295 0.148 0.327 0.300
P5 0.374 0.129 0.412 0.330
P6 0.521 0.285 0.578 0.571
Average 0.353 0.150 0.399 0.352

Table 1: Coefficients of determination (R2) for linear regression models using various feature 
sets to predict performance on final exam problems.  
 P
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To determine which of the 10 features were the most important for predicting student 
performance, we performed a stepwise linear regression. The threshold for inclusion of a feature 
was a p-value less than 0.05 (based on a t-test), while the threshold for removal was a p-value 
greater than 0.10. The coefficients of determination for the six problems (Table 1, Column 5) 
ranged from 0.245 to 0.571. On average the stepwise models explained 35.2% of the variance in 
performance, slightly less than the 39.9% average for ordinary regression models that included 
all ten features.   
 

Feature P1 P2 P3 P4 P5 P6 
Constant 0.087    

(0.403) 
0.790    

(0.000) 
-0.026    
(0.927) 

0.589    
(0.000) 

0.408    
(0.000) 

0.275    
(0.000) 

FBD Effort -- -- -- -- -- -- 
EQU Effort 0.609 

(0.000) 
-- 0.638 

(0.000) 
0.438 

(0.000) 
0.478 

(0.000) 
0.675 

(0.000) 
Break -- -- 0.372 

(0.013) 
-- -- -- 

Entropy 0.281 
(0.000) 

-- -- -- -- -- 

Complexity -- -- -- -- -- -- 
Other-Problem -- -0.387 

(0.000) 
-- -- -- -- 

Out-of-Order -- -0.318 
(0.000) 

-0.255 
(0.006) 

-0.208 
(0.023) 

-0.219 
(0.011) 

-0.191 
(0.020) 

Typo-Cross-Outs -- -- -- -- -- -0.182 
(0.015) 

PS-Cross-Outs -- -- -- -- -- -- 
Big-Cross-Outs -- 0.178 

(0.045) 
-- -- -- -- 

Table 2: Regression models for the six exam problems: standardized coefficient, β, and p-value 
(in parentheses) from t-tests for features included in the stepwise linear models. Note: constant 
coefficients are not standardized. 
 
Table 2 contains the standardized coefficients (β) with p-values for each of the six problems.  
The standardized coefficients are a measure of the strength of the influence of a feature on the 
performance.  Examination of Table 2 reveals that only two of the ten features, EQU Effort and 
Out-of-Order, were consistently identified as significant in the stepwise models.  The former was 
positively correlated with performance, indicating that students who spent more time on 
equations tended to perform better. The latter was negatively correlated, indicating that students 
whose work did not follow a monotonic progression down the page tended to do worse. It is 
possible that such students may have revisited earlier work to complete or correct it, or that their 
work may have simply been disorganized. The other eight features were not consistently selected 
in the stepwise models. The Break, Entropy, Other-Problem, Typo-Cross-Outs, and Big-Cross-
Outs features were included in models only one time each. The FBD Effort, Complexity, and PS-
Cross-Outs features were not selected in any of the models.  
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It is possible that some of the eight infrequently selected features are correlated with the two 
frequently selected features. For example, EQU Effort and FBD Effort are highly correlated. 
These are typically the two largest components of problem-solving activities and thus the values 
are approximately complements. To examine this issue, we constructed two additional sets of 
regression models, one using the two frequently selected features, and the other using the 
remaining eight features.  The coefficients of determination for these models are listed in Table 
3. For comparison, the table also includes the coefficients of determination for the models 
including all 10 features. The models constructed using EQU Effort and Out-of-Order performed 
similar to those using the other eight features. On average the models with the two features 
explained 30.4% of the variance in performance, while the models with the other eight explained 
31.5%.  
 

Problem EQU Effort 
Out-of-Order 

Other 8 
Features 

All 10 
features 

P1 0.344 0.373 0.479 
P2 0.148 0.260 0.318 
P3 0.195 0.110 0.280 
P4 0.264 0.295 0.327 
P5 0.330 0.318 0.412 
P6 0.541 0.534 0.578 
Average 0.304 0.315 0.399 

Table 3: Coefficients of determination (R2) for linear regression models using the two most 
consistently significant features and the remaining eight features. For comparison, the 
coefficients of determination for models including all 10 features are also included. 
 
6 Discussion 
 
Our results reveal that on average about 40% of the variance in students’ performance on the 
final exam questions in our experiment can be explained solely by the temporal and spatial 
organization of the work. This is a surprising result in that none of the features we use actually 
consider the correctness of the work.  
 
Most of the predictive power comes from just two features, the amount of time spent on 
equations (EQU Effort) and the fraction of the work that was written out of order (Out-of-Order). 
Performance increased with effort on equations and decreased with out-of-order work. Our 
analysis suggests that the other eight temporal and spatial features still have value, but may be 
correlated with these two features.  
 
In our continued work, we plan to improve our features and develop additional ones to better 
characterize a solution history. For example, we anticipated that the complexity feature would be 
more useful than it was. It is possible that this feature may confuse some forms of highly 
organized work with disorganized work. For example, when a student alternates between 
drawing free body diagrams and writing the associated equilibrium equations, the complexity 
will be large, just as if the student worked in an unstructured fashion.  A more effective 
complexity feature might consider both the temporal and spatial characteristics of the work. For 
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example, alternating between free body diagrams and equations might still be considered to have 
low complexity if the work progresses smoothly down the page.  
 
Our Out-of-Order feature performed well, and in fact was one of the two most powerful features 
for predicting performance. However, it too has an obvious limitation: work written in multiple 
columns is mischaracterized as disorganized.  We plan to develop techniques to detect such work 
so that each successive column can be treated as a continuation of the previous one.  
 
The Typo-Cross-Outs and PS-Cross-Outs features characterize corrections in terms of the time 
delay between when the ink is written and when it is crossed out. Short delays are assumed to 
represent typographical corrections while longer delays are assumed to represent corrections to 
errors that are more conceptual in nature. Accurately distinguishing between these two types of 
corrections may require consideration of the scope of the correction. For example, crossing out a 
single pen stroke after a long delay may still represent a typographical correction.  
 
Our current analysis included only problems from the final exam. We plan to extend this analysis 
to homework, quiz, and midterm problems. Homework may pose new challenges as students 
may have started their homework on scratch paper before writing their final solutions.  
 
In a related project, we have developed tools to automatically recognize the pen strokes in a 
handwritten statics solution and label them as free body diagram strokes, equation strokes, and 
cross-outs. In our experiments, this tool achieves an accuracy of about 93% at this task. This tool 
will enable fully automatic analysis of solution histories. 
 
7 Conclusion 
 
We have examined how the organization of a student’s solution to a problem relates to the 
correctness of the work. In this study, students in an undergraduate statics course completed all 
of their work, including homework, quizzes, and exams, using digital pens that recorded the 
work as time-stamped pen strokes.  We characterized the solution history of each problem with a 
number of quantitative features describing the temporal and spatial organization of the work. 
Regression models revealed that, on average, about 40% of the variance in student performance 
could be explained by these features. Most of the predictive power comes from just two features, 
the amount of time spent on equations (EQU Effort) and the fraction of the work that was written 
out of order (Out-of-Order). On average, models using just these two features explained 30.4% 
of the variance in performance. These encouraging results demonstrate the feasibility of creating 
an automated assessment system that can inexpensively identify students who may be struggling 
in a course and need extra support.   
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