
AC 2012-5144: ENHANCING THE EXPERIENCE IN A FIRST-YEAR EN-
GINEERING COURSE THROUGH THE INCORPORATION OF GRAPH-
ICAL PROGRAMMING AND DATA ACQUISITION TECHNOLOGY

Dr. Gregory Warren Bucks, Ohio Northern University

Gregory Bucks graduated with his Ph.D. in 2010 from the School of Engineering Education at Purdue
University. He received his B.S.E.E. from the Pennsylvania State University and his M.S.E.C.E. from
Purdue University. While at Purdue, he has been heavily involved with the EPICS program, as well as
working with the First-year Engineering program. He is currently a visiting Assistant Professor in the
electrical and computer engineering and computer science department at Ohio Northern University.

Dr. William C. Oakes, Purdue University, West Lafayette

c©American Society for Engineering Education, 2012

P
age 25.576.1

Enhancing the Experience in a First-Year Engineering Course

Through the Incorporation of Graphical Programming and Data

Acquisition Technology

Abstract

Many first-year engineering curricula include a course on computing or integrate computing

within one of the introductory courses. There is significant evidence that students in these

introductory computing courses have difficulty both learning and applying the concepts

traditionally covered. Engineers tend to prefer active styles of learning while in most courses on

computing, activities often focus on the generation of code. While these activities may be active,

the hands-on element still lies entirely within the computer and may still be difficult to grasp for

those students who prefer more concrete examples. By making full use of the computer as a tool

that can interact with real world phenomena through the use of data acquisition and control

hardware, more active and hands-on computing activities can be created to engage students

traditionally put off by the abstract activities often associated with computing classes. One

promising avenue is the use of graphical programming environments along with newly

developed hardware that allows students to take very small data acquisition systems home and

conduct experiments and design projects. This paper presents the results of a pilot project in

which a first-year engineering course at a large university was modified to use data acquisition

hardware systems and a graphical programming environment. This paper will discuss the

curricular structure, the implementation of the graphical programming language and hardware

component, examples from the class, and initial assessments from the experience in the form of

class surveys. Challenges and opportunities are discussed. Overall, students reacted positively

to the inclusion of the graphical language and extremely positively to the inclusion of the

hardware aspect, which allowed for more hands-on activities. The instructional team observed

students actively engaged in the projects and often working beyond what was required for the

grade.

Introduction

Computers are a quintessential component of modern engineering practice. They are used to

model potential solutions, collect and analyze data, and create new parts through computer aided

design packages and computer controlled machinery. In addition, they are used as integral

components of the products of design themselves. Examples include sneakers that track the

distance traveled to smart building materials that can report on the stresses and strains they are

experiencing. Many reports, such as the National Academy of Engineering’s Engineering of

2020 report [1], have identified computing skills as one of the attributes that future engineers will

be required to possess. Because of this increasing reliance on computing technologies in both

the design and implementation of engineering solutions, many first-year engineering curricula

include a course devoted entirely toward computing concepts or incorporate those concepts into

other introductory courses.

P
age 25.576.2

Unfortunately, there is significant evidence that students in introductory programming courses

have difficulty both learning the fundamental concepts as well as applying those concepts in the

writing of code [2, 3]. For instance, the results of a multinational survey as well as an multi

institutional study using short programming assignments showed that the majority of first-year

students in programming courses do not meet the expectations of instructors at the end of their

first course in computing [2]. Engineering students are no different in this regard. One potential

reason for this discrepancy between the learning outcomes desired by instructors and student

performance is that the instructional methods used as well as the course content do not match

well with the learning styles of most engineering students.

The idea of learning styles has been around since the early 1980’s [4] and there are many

learning style models and assessments. The most commonly used within engineering is the

Felder-Silverman learning styles model [5], with its associated assessment, the Index of Learning

Styles (ILS). This model categorizes a student’s learning style preference based on four

dimensions: sensing versus intuitive, visual versus verbal, active versus reflective, and sequential

versus global. For learning programming content, the two most important scales are the visual

versus verbal scale and the sensing versus intuitive scale.

Numerous studies have looked at the learning styles preferences of engineering students [6-8]

and have shown that the preferences are consistent across populations [9]. These studies have

found that engineering students tend to prefer more visual and sensing ways of learning.

However, most programming languages taught in introductory courses are text-based, which

produces a mismatch between the materials being taught and how a majority of the students

prefer to learn. It has been shown that interpretation of the written word, while presented in a

visual manner, is processed in the same way as spoken words [10]. This means that students

who prefer to learn in a visual manner may have difficulty assimilating programming content

generally conveyed in a verbal context. The second scale mentioned, sensing versus intuitive, is

also a contributor to this problem, as interpreting the meaning of words favors students who

prefer using their intuition. This again presents a problem for most engineering students, as their

preference tends more toward the sensing end of the scale.

Compounding this issue is that many students lack appropriate models on which to build

conceptions of the important programming concepts they are required to learn [11]. Because

many text-based languages use syntax that incorporates many English language terms, students

often resort, incorrectly, to using the models they have developed for the natural language use of

these terms. This poses a significant problem for some terms because the model for how the

word is used in natural language differs from how it is used in a programming context.

For example, in natural language, the term “while” has a slightly different meaning than it does

in programming usage. In natural language, “while” implies that as soon as the condition tied to

a statement is no longer satisfied, the activity will cease. From a programming point of view, the

conditional statement associated with the “while” is only checked once during each iteration.

This can cause students issues if they believe that as soon as something would cause their

condition to change, the loop will exit.

 P
age 25.576.3

In addition to computing fundamentals, many first-year programs introduce students to design

through hands-on projects. Hands-on activities early in the engineering curriculum have been

shown to improve motivation and interest among students and has resulted in the institution of

cornerstone projects in many first-year engineering programs [12, 13]. A significant challenge,

however, is that students lack the disciplinary knowledge to work on projects of any significant

technical content. Thus, they often resort to simple projects that, while interesting, are not truly

representative of engineering projects.

In most courses with a computing element, activities traditionally focus on the generation of

code to solve a specific problem with no connection to hardware of any kind. While these

activities may be active, the hands-on element still lies entirely within the computer and may still

be difficult to grasp for those students who prefer more concrete examples. By making full use

of the computer as a tool that can interact with real world phenomena through the use of data

acquisition and control hardware, more active and hands-on computing activities can be created

to engage students traditionally put off by the abstract activities traditional to computing classes.

This is also not limited to the traditionally thought of examples for electrical and computer

engineering, but can have appeal across all of the engineering disciplines. Advances in

computing capabilities make the computer a tool in all fields and the devices that interact with

the computer can be tailored to emphasize different disciplines.

One possible avenue to explore for addressing these issues is the use of graphical programming

languages and data acquisition hardware. Graphical languages, such as the National Instruments

LabVIEW software used in this study or other languages such as Alice or MATLAB Simulink

can provide a way to introduce programming concepts in a way that caters to individuals who

tend toward more visual styles of learning. In addition, it may also provide a medium for

students to begin to develop their own models of programming concepts, as the visual nature can

provide a structure for organizing their models and, for the most part, is free from the natural

language terminology used in most text-based languages. This relative independence from

natural language terminology may help lead students away from resorting to natural language

models and force them to develop more complete models of the programming concepts

themselves. When used in conjunction with data acquisition hardware that is easily accessible

by the student created programs, such as the National Instruments MyDAQ system, the computer

becomes a tool students can use to collect and analyze data and allow their programming projects

to interact with the world outside the computer.

Another benefit of utilizing graphical languages and data acquisition hardware as the medium

through which engineers learn computer programming is the ability to incorporate elements of

engineering design. In addition to computing, design is an important concept for engineers and

engineering students. Challenges exist for educators trying to introduce students to design early

in their academic careers. One challenge is that students do not have much knowledge upon

which to build a design from. They have not had their engineering coursework yet and do not

have the tools to do sophisticated designs. A fall back is to have students do simple designs that

do not require much, if any, iteration and hardly any analysis. Students can have fun working on

these design projects, but they, in general, are not real designs and the students know they are not

real. Trying to introduce a human-centered design approach is doubly challenging for early

students because they are limited to what they can actually do. There therefore exists an

P
age 25.576.4

opportunity if students can be quickly equipped with skills to create a “real” design for real

users. Graphical programming is such a tool that also addresses the issues in computing.

Results from prior studies [14] as well as the perceived continued potential to enhance first-year

student learning motivated this use of the new hardware systems and graphical programming as

well as the study of its impact at a large university’s introductory engineering class. The

traditional class was modified to use LabVIEW as the dominant computer tool along with the

integration of the MyDAQ data acquisition and control hardware. This paper will discuss the

curricular structure, the implementation of the graphical programming language and hardware

component, examples from the class, and initial assessments from the experience in the form of

class surveys.

Curricular Structure

The first-year engineering program at Purdue University includes a required two-semester

sequence for all engineering majors. The classes are broken up into sections of 120 students.

The emphasis of the first course is on learning about the engineering majors and providing an

introduction to design. The second course has an emphasis on computing concepts and how to

utilize the computer as a tool for solving engineering problems. The first-semester course goals

and course objectives are listed below.

Table 1: Course Goals

 Link own career goals with nature of engineering and the characteristics of various engineering

disciplines
 Use modeling tools to make design decisions
 Use a design process to solve complex engineering design challenges.

Table 2: Course Objectives

 Examine and analyze career information from

various resources to make informed decisions

about which engineering discipline to pursue
 Explain the critical role of cross-cultural and

multidisciplinary teamwork in nurturing

diverse perspectives and the creation of

innovative engineering solutions that meets the

needs of diverse users
 Develop metacognitive skills in evaluating

own teamwork and leadership abilities,

recognizing how own behavior impact the

whole team, and make team process

adjustments when necessary
 Explain critical and diverse use of modeling in

engineering to understand problems, represent

solutions, compare alternatives, make

predications, etc

 Use multiple models, estimation, and logic

to triangulate and evaluate information

coming from various data sources
 Collect, analyze, and represent data to

make informative explanations and

persuasive arguments
 Implement iterative processes, rich

information gathering, and multiple modes

of modeling when solving complex design

problems
 Use systematic methods to develop design

solutions and compare design alternatives
 Consider the interconnectedness among

social, economic, environmental factors (in

the context of sustainability or systems)

when solving engineering problems

P
age 25.576.5

The course is taught in a studio format with two, two hour blocks per week. An instructor, a

graduate teaching assistant and four undergraduate assistants are assigned for each section. The

courses are taught using active learning and use a team model. Students are assigned to

structured teams of four students and perform in-class activities and projects within these teams.

The classrooms used by the courses have been specifically designed to promote teaming within

the courses.

For the fall 2011 semester, two sections of the course were modified to incorporate the use of

National Instruments LabVIEW, a graphical programming environment, along with the MyDAQ

data acquisition system to explore its use for both teaching introductory computing and design

concepts. LabVIEW was chosen due to the familiarity of the instructors and staff, the ease with

which it can integrate with hardware systems, as well as its availability on campus.

LabVIEW is a graphical programming language in which an individual creates a program by

connecting different graphical blocks together, similar to a circuit diagram or block diagram.

The programmer creates both the user interface for the program as well as the code

simultaneously. The user interface is created using the Front Panel window, on which different

objects, such as numeric inputs and outputs, graphs, and text displays are placed to allow a user

to provide inputs to and receive outputs from the program. Objects placed on the Front Panel are

automatically linked to the Block Diagram, which is where the code is created. The code, as

stated above, is represented as a block diagram, where different functions are depicted using

functional blocks and connected together using lines to specify where the data should flow

within the program. An example Front Panel and Block Diagram are shown below.

Figure 1: Example of a LabVIEW Front Panel

P
age 25.576.6

Figure 2: Example of a LabVIEW Block Diagram

The MyDAQ is a small, portable analog and digital data acquisition system that interfaces with

the LabVIEW software. It allows for both data acquisition and signal generation. The MyDAQ

systems allowed for sensors and other devices to be connected to the computer for hands-on

activities as well as the implementation of an end-of-semester project.

The computing concepts covered in LabVIEW were introduced in class and reinforced through

activities during that class period. Homework assignments were used to reinforce the computing

concepts and provide students with opportunities to learn the LabVIEW programming

environment. The students were also given activities that integrated the MyDAQ system.

Simple activities were used for the students to learn to create data acquisition programs and

control systems such as a thermostat. Overall, it took about 6 weeks to introduce students to all

of the fundamental concepts covered in the course and get them comfortable with the software

and hardware.

Projects

A key part of the course was a design project. In the traditional sections, students are guided

through the conceptual design and present posters and a report about their concept but do not

construct a physical device or prototype. The two experimental sections were told at the

beginning of the semester that they were following a modified curriculum and that they were part

of a pilot program that would allow them to move beyond the conceptual stage and actually build

something. The project assignment built on this idea and asked students to be innovative and

show what was possible with the newly released MyDAQ. To use the MyDAQ, the students

needed to learn how to use the LabVIEW programming environment. The assignment for the

project was to create a program and hardware system that demonstrated their mastery of the

programming environment and was challenging. The criteria were for the projects to be 1) fun,

2) challenging, 3) engaged all of their team members, and 4) integrated LabVIEW and the

MyDAQ.

 P
age 25.576.7

Students were pointed to the National Instrument websites and YouTube for examples and were

asked to develop a proposal for their project. Each team had a budget of $50 with the ability to

request more. Resources such as www.sparkfun.com were provided for students to select

materials they needed. The proposals were reviewed by the instructional teams and modified as

needed. The instructional team ordered the hardware for the students.

The broad guidelines for the project allowed a high degree of variation amongst the teams and

the projects reflected this diversity. Some teams incorporated the interests of one or more team

members into the projects, such as music. Others looked at applications of common games.

Examples are included in Table 3.

Table 3: Descriptions of Sample Projects

 Guitar tuning programs that used microphones to measure the sound and provides feedback if

the note is flat or sharp through colored LED’s

 Homemade Dance-Dance-Revolution that used a LabVIEW front panel with moving

elements and a dancepad that used pressure sensors

 Holiday light display that powered LED’s which were synced to music

 Study monitoring system that used an image capture system to determine if the subject is at

the study area and an accelerometer on the writing instrument to determine if they are writing

 Residence hall room security system that employed a card swipe system to identify a person

with their university ID and provide access to items in the room such as the refrigerator,

computer, phone, etc. An alarm system sounded if items were accessed

 Talking trash cans that provide audio feedback when things are thrown away including

voices recordings and sound effects

 An electronic game of twister that used pressure sensors under the pads of the game and

computer logic to monitor participants

Participants

The students in the two experimental sections came from two different sources. One of the

sections consisted of students who were in two of the engineering learning communities at

Purdue University. Learning communities provides a student the opportunity to live together

with other students who have similar interests and take several introductory classes together.

This can aid in the transition to college by providing a smaller community within the university.

One of the learning communities involved participation in a service-learning design course, so

these students knew they would be working on projects throughout the semester, but did not

know prior to the beginning of the semester that their section of the introductory course would be

different than other sections.

The second experimental section of the course was a more traditional section in terms of the

student population. Students were randomly assigned to the section out of the total first-year

engineering population. They also did not know this section would be any different than the

others going into the semester.

This section, like the first, was told at the beginning of the semester that they were part of a pilot.

Students were told explicitly that they would likely work harder than students in the traditional

P
age 25.576.8

sections but that their grades would not suffer. The instructional team explained that we believed

what they learned would prepare them for the following semesters.

Students were asked to complete a supplemental survey on their reactions to the course and the

changes. In total, 103 students completed the end-of-semester survey (231 students completed

the course in total for a 45% response rate). Of these students who completed the survey, 63

were male and 38 were female. The vast majority were of a Caucasian ethnic background

(60%), with smaller numbers of students with Asian/Indian (17.5%), Asian Pacific (5.8%), and

Latino (8.7%) backgrounds. In addition, 41 of the students had some type of prior programming

experience (40%) while 62 had no prior experience (60%). Table 4 below shows a breakdown of

both the types of prior experiences the students had as well as what languages the students had

experience with. As can be seen, a vast majority of the experiences came from coursework in

middle or high school. However, the range of languages the students were familiar with was

widely distributed.

Table 4: Programming Background of Students

 Percent of Respondents

O
ri

g
in

 o
f

P
ri

o
r

E
x
p
er

ie
n
ce

s

Middle/High School Course 68.3

Other Course 17.1

Extracurricular Activity 29.3

Work Related Activity 9.8

Self-Taught 31.7

Other 7.3

L
an

g
u
ag

es

C 19.5

C++ 34.1

Java 34.1

LabVIEW 14.6

MATLAB 19.5

BASIC 41.5

HTML 31.7

Other 34.1

Preliminary Results

The primary data source for assessing the modifications made to the course was through an end-

of-semester survey conducted during the final week of the fall 2011 semester. The survey asked

students to express their attitudes about different aspects of the course using a 5 point Likert

scale, where 1 corresponded to strongly disagree, 2 to disagree, 3 to neutral, 4 to agree, and 5 to

strongly agree.

The first section asked the students about their attitudes toward programming in general. The

results for these questions are shown in table 5 below. As is to be expected, in questions A1 –

A3 concerning how well students like programming as well as their ability, the responses are

fairly evenly distributed, though surprisingly shifted in a positive direction. Of particular interest

is that most students expressed that they actually enjoyed programming. Even more surprising is

P
age 25.576.9

that there was an even more positive response by the students when asked if they would like to

learn more about programming.

In addition, the students also recognize the importance of programming for their future as

engineers, both in terms of completing their degree as well as working as a practicing engineer.

These results are a promising sign that students recognize that programming will be an important

skill for them and are actually interested in gaining that skill.

Table 5: Student Attitudes Toward Programming (number of responses)

Question 1 2 3 4 5 Avg

A1) I enjoy programming 4 17 23 39 20 3.5

A2) I feel that I am able to program effectively 4 13 20 54 12 3.6

A3) I find programming to be difficult 8 17 23 49 6 3.3

A4) I want to learn more about programming 0 9 12 50 32 4.0

A5) Programming is a good skill for an engineer to have 1 2 3 37 59 4.5

A6)
Programming skills will be important for me to obtain

my degree
1 5 19 39 39 4.1

A7)
Programming skills will be important for me when

working as an engineer
1 5 15 40 42 4.1

A8)
I will use my programming skills in my future

coursework
2 0 14 43 43 4.2

A9) I will use my programming skills in my future career 2 6 18 38 38 4.0

In addition to the quantitative responses, the students were asked to explain in an open-ended

format why they responded the way they did for questions A1 – A4. The responses of the

students who responded favorably to question A1 indicated that they enjoyed solving problems,

and especially enjoyed to logical aspect. These students also indicated that they liked being able

to control the computer. Students who responded that they did not enjoy programming primarily

stated that it was confusing, complicated, frustrating, and that they didn’t see it playing a role in

their future.

Of interest in the open-ended responses to the third question (A3) was that many students stated

that they found programming to be difficult simply because they didn’t have enough experience

with it yet. This corroborates prior research mentioned before that shows that students often do

not develop the necessary skills to be effective programmers even after a semester long course.

One quote summarizes much of what the students stated in response to the last of the open-ended

responses, which is related to question A4. This student expressed that it was important to learn

more about programming:

“In my opinion, programming is one of the most important abilities an engineer should

have because there are a lot of complicated problems consisting of complex math. With

the useful programs, we can break them into relatively simple and plain pieces and it can

help engineers to solve them.”

P
age 25.576.10

The other sections of the survey dealt primarily with the students’ experiences in the course.

These are summarized in table 6 below. As can be seen from questions C1 – C4, despite some

misgivings initially about the extra work required because of the addition of the programming

element, the students responded very favorably to the course and to the added components.

Students also responded favorably to the semester project and to the use of LabVIEW and the

MyDAQ system, though not as strongly as the course in general.

Of particular interest in the question pertaining to LabVIEW are those dealing with the graphical

nature of the programming environment as this was one of the main reasons for selecting

LabVIEW for this implementation. As can be seen, these two questions (L3 and L10) were two

of the highest scoring of the questions related to LabVIEW. This shows that the students did

respond strongly to the graphical element and found it beneficial. The other high scoring

question from the LabVIEW section also helps support our original idea that learning LabVIEW

first will help students as they learn additional languages. Question L6 specifically asked the

students about this, and the students responded favorably. This is not to say that LabVIEW will

actually help the students learn another language or that the students would respond the same if

they had learned MATLAB or C first, but it does show the students felt that learning LabVIEW

was beneficial and will not hinder them when learning additional languages.

Based on the responses of the students to the questions concerning the semester project, the

students felt that the project helped them increase their programming abilities (questions P1, P6,

P8, P12). Encouragingly, the students also felt that working on the semester project increased

their problem solving (P7) and engineering abilities (P11).

In an open-ended question at the end of the survey that asked students for any other comments

they might wish to leave, many expressed that even though the project was difficult, it was very

rewarding in the end to have something they created that worked. As one student put it:

“During times when I had to use LabVIEW and MyDAQ, it was frustrating if I did not

know what I was doing but after getting it to work I felt very accomplished, proud, and

glad I worked hard to complete it.”

Another student expressed similar sentiments:

“Even though this section was more challenging, I enjoyed it because I felt like I was

doing something that actually related to engineering.”

P
age 25.576.11

Table 6: Student Attitudes Toward the Course (number of responses)

 Question 1 2 3 4 5 Avg

C
o
u
rs

e

C1)
I believe that the programming element enhanced my

experience in the course
4 1 10 49 40 4.2

C2)
I believe the MyDAQ elements enhanced my

experience in the course
2 4 16 45 39 4.1

C3)
I believe that the project enhanced my experience in

the course
1 3 6 50 47 4.3

C4)
I believe that learning programming this semester

will make learning MATLAB easier next semester
0 1 17 42 46 4.3

These high scores are somewhat surprising in that programming is not traditionally listed as a

popular topic. The high ratings were encouraging and were quite possibly enhanced by the

project, the evaluations of which are shown in Table 7. The instructional team observed a shift

in attitudes once students were engaged in the projects that provided a context for their

programming knowledge. As seen in the data from the project evaluation, there was a very

positive response to the projects.

Table 7: Student Attitudes Toward the Course (number of responses)

 Question 1 2 3 4 5 Avg

S
em

es
te

r
P

ro
je

ct

P1)
I feel that the semester project helped me understand

programming better
0 2 13 53 35 4.2

P2)
I feel that the project helped me understand more

about instrumentation and electronics
0 2 13 55 33 4.2

P3) I feel that the semester projects were too difficult 12 44 31 15 4 2.6

P4)
I feel that I had enough help from the instructors and

TAs to complete the project
2 16 17 50 20 3.7

P5) I did not enjoy the semester project 28 46 18 11 0 2.1

P6)
I feel that the semester project made me a better

programmer
1 4 27 48 24 3.9

P7)
I feel that the semester project made me a problem

solver
0 3 13 58 29 4.1

P8)
I feel less confident in my programming ability after

working on the project
21 53 17 10 2 2.2

P9)
I feel that the semester project helped me to see how

engineering can have an impact
1 7 14 66 17 3.9

P10) I enjoyed working on the project 2 3 12 60 26 4.0

P11)
I feel that working on the project improved my

confidence in my engineering skills
2 5 15 62 21 3.9

P12)
I feel that working on the project improved my

confidence in my programming ability
2 5 21 53 22 3.9

P13)
I am more likely to consider electrical or computer

engineering after the project
18 28 28 20 10 2.8

P14) I enjoyed working as a team on the project 3 5 19 47 29 3.9

P
age 25.576.12

Table 8 shows the results of the student attitudes toward LabVIEW. With any computing

environment there is a learning curve and LabVIEW is not exception. The results show that the

students overall felt comfortable in the computing environment by the end of the semester.

Surveys were only distributed to the pilot sections. Course and instructor ratings were higher for

the pilot sections than the traditional sections. Student engagement appeared higher in the pilot

sections as observed from the teaching assistants who taught across pilot and traditional sections.

Five of the instructors from the traditional sections echoed this observation and asked to

participate in the projects model for next fall.

Table 8: Student Attitudes Toward LabVIEW (number of responses)

 Question 1 2 3 4 5 Avg

L
ab

V
IE

W
 a

n
d
 M

y
D

A
Q

L1) I feel that LabVIEW is easy to use 3 17 25 44 14 3.5

L2) I feel that learning LabVIEW was a waste of time 21 49 18 14 3 2.3

L3)
I feel that being able to see the programming concepts

in LabVIEW helped me to understand them
1 5 16 66 15 3.9

L4)
I feel that the LabVIEW Block Diagrams are

confusing
12 36 36 19 2 2.6

L5)
I feel that I have no trouble finding the functions that

I want to use
8 24 36 28 8 3.0

L6)
I feel that learning LabVIEW will help me to learn

another programming language next semester
2 5 17 61 19 3.9

L7)

I feel that I can easily understand what is going on in

a program written in LabVIEW by looking at the

Block Diagram

3 8 30 49 13 3.6

L8) I feel that the palettes are confusing 10 35 35 20 4 2.7

L9) I feel comfortable using LabVIEW to create programs 3 9 26 52 14 3.6

L10)
I feel that being able to see the program visually

helped me understand how the program works
2 4 17 62 18 3.9

L11) I feel that the MyDAQ was easy to use 9 20 34 32 10 3.1

L12) I feel comfortable using the MyDAQ 7 24 27 38 10 3.2

Project Results and Instructor Observations

The projects were evaluated using rubrics that the students had access to before the evaluation

classes. The rubrics included potential bonus points for demonstrating excellence and in

particular bringing in knowledge from outside of the class. Peer teachers were used to evaluate

the projects for the bonus points and identified 53/57 teams as bringing in new knowledge. For

full bonus credit, the projects needed to reflect work beyond what is normally expected from

first-year students. 50/57 projects were classified for this level.

Instructors for the senior design class in Electrical and Computer Engineering reviewed the

projects and came away very impressed. One instructor characterized the projects consistent

with what he would expect from honors students and was surprised that the classes were not

honors after seeing the projects. Another professor hired a student based on their project for his

research group after seeing him implement a technology that he needed in his lab.

P
age 25.576.13

Discussion and Conclusion

The MyDAQ hardware was released this year and offered an opportunity to engage students in

different kinds of hands-on projects. The experience was not without challenges but overall very

positive and encouraging for future opportunities.

There were additional expenses with the course versus the traditional offering. The MyDAQ’s

cost $175 per unit and 60 were purchased by the university with funds for student laboratory

equipment and materials. Students worked in teams of four so each team had their own MyDAQ

for the semester. These units were returned at the end of the semester and are available for

future classes. In the pilot, each team had their own unit. For an expanded implementation in

future semesters, teams would share the units in the lab. The units would be available during

their own classes and during office hours to check out so that the initial investment can serve a

larger number of students.

Each team was given a budget of $50 that was also covered by funds for laboratory expenses.

The students identified sensors, motors, and other materials that were ordered for the class. This

allowed the greatest flexibility for the students but it created a number of logistical challenges

with purchasing such a wide array of items. On the next iteration, we would offer a list of

available materials that they could select from rather than having each team select their own

items. This would simplify the ordering process. The list of items would include sensors (such

as pressure, proximity, motion, light, infrared, force, and flex), small lasers, motors, LED’s,

holiday light strings, magnetic card readers, breadboards and assorted wires, and various basic

construction materials such as tape and cardboard. There is a clear tradeoff between student

creativity and logistical management. Allowing some special exceptions would still allow for

ideas such as the electronic game of Twister or the mittens that integrated flex sensors as a

controller.

Supporting students on the very open ended projects also presented challenges. The broad scope

of the projects required a wide range of expertise to support the students. This created

challenges staffing office hours and being able to help students implement their ideas. The pilot

was done with two of 15 sections of the course and the teaching assistants who staffed the

common office hours were not always familiar with the technologies used in the pilot sections.

The instructional staff for the pilot sections worked additional office hours to help fill this void.

This issue was amplified during the small pilot by the constraint that we did not increase the load

on undergraduate or graduate teaching assistants. If more sections adopted this model there

would be sufficient teaching assistants and instructors to support the projects within the standard

workload. A network of graduate and undergraduate students was used to help students with

specific challenges. The approach of using such a wide array of projects and technologies

requires an instructional team that has a broad set of expertise and experience. We all learned

new things through the projects.

If the students were restricted to a set of sensors and controls, it would simplify the support

required. We also identified other resources that could be leveraged to provide support for the

first-year students. The engineering honoraries were identified too late in the semester for the

P
age 25.576.14

pilot but could be enlisted for follow-on years. These honoraries require new initiates to fulfill

service hours and the timing can be aligned with the class support.

During the semester, the instructional team observed a great deal of frustration with learning the

programming content and environment, especially from students with no prior programming

experiences. This is common in first-year computing courses and very common with students in

their first computing class. The instructional staff noticed a disproportionally high rate of

comments from female students about this frustration. It appeared that this frustration changed

to a sense of accomplishment after the projects were competed and the data from the class

surveys confirms the observations.

The second course in the first-year engineering sequence has a focus on computing using

MATLAB. We have followed up with a number of the students who showed frustration in that

first semester. Their answers are almost identical, saying something close to “This MATLAB

isn’t bad at all”. This contrasts with the more pervasive view in the course which is much more

negative. It appears that these students worked through their frustration and appear more

confident with the computer. This would be an interesting area to explore further.

The idea of the open-ended projects created an interesting dynamic. Students came up with an

idea and they worked to get “their” idea implemented. Allowing them to work on a topic that

was interesting to them provided a sense of ownership. This ownership allowed students to

integrate outside interest, such as music. Several projects used music and four teams used

guitars for the project demonstration.

Students also were very motivated to get “their” idea to work. There were more than a half

dozen teams that ran into problems, worked with the instructional team and were told that they

had achieved a level that would give them full credit for the project but had part of the project

that wouldn’t work. Despite this, these teams continued to work to bring their full idea to

fruition. An example was a team that used a card reader that failed. The actual device broke but

the team had several other sensors that met the standards for the projects. The team was told

they could get full credit without the card reader, but instead, they took the reader apart, found a

connection that had come loose, and fixed it. Several teams worked for the sense of completion

rather than the points of the project.

A common complaint was that many of the students had little, if any, prior experience with real

hardware. This project offered students a chance to construct real systems. Many had never put

a circuit together. Several integrated simple mechanical systems. The lack of experience

contributed to frustration but after completing the projects there was a strong sense of

accomplishment. The MyDAQ’s clearly added the opportunity to engage students in hands-on

projects that had technical content. It can be challenging to engage first-year students in design-

build projects that have technical components that are within their ability. Students clearly had

learning curves but they rose to meet these challenges and left with a sense of accomplishment.

The last day of class when the projects were presented was electric, with students having fun.

This was observed and commented on by the external reviewers and left the instructional team

with a sense of satisfaction and interest to continue the concept.

P
age 25.576.15

Supporting the teams provided many opportunities for learning about real systems and

applications within engineering. An example was a team that created a popcorn monitoring

system. They wanted to use a microphone to detect when the popcorn was popping and when

done. Their system worked to a degree but if the background noise of the microwave was too

great, it was difficult for them to detect the conditions they wanted. This lead to a discussion

about signal-to-noise and how data is collected in other applications using devices such as

microphones. This was not part of the traditional course but it provided an opportunity to talk

about applications within engineering.

In addition to the data presented in this paper, the research team intends to follow up with

students as they progress to the spring semester, where all students will learn MATLAB and

many will learn C++. This continuation will help to show what affect learning LabVIEW as the

first programming language may have on subsequent learning experiences with programming

and how well the graphical nature of LabVIEW translates to learning more traditional text-based

languages.

Bibliography

1. National Academy of Engineering, The engineer of 2020 : visions of engineering in the

new century. 2004, Washington, DC: National Academies Press. xv, 101 p.

2. McCracken, M., et al., A multi-national, multi-institutional study of assessment of

programming skills of first-year CS students. ACM SIGCSE Bulletin, 2001. 33(4): p.

125-180.

3. Thomas, L., et al., Learning styles and performance in the introductory programming

sequence. SIGCSE Bulletin, 2002. 34(1): p. p. 33-37.

4. Kolb, D., Experiential learning: experience as the source of learning and development.

1984, Englewood Cliffs, NJ: Prentice-Hall.

5. Felder, R.M. and L.K. Silverman, Learning and teaching styles in engineering education.

Engineering Education, 1988. 78(7): p. 674-681.

6. Felder, R.M. and J. Spurlin, Applications, reliability and validity of the index of learning

styles. International Journal of Engineering Education, 2005. 21(1): p. 103-12.

7. Rosati, P.A. The learning preferences of engineering students from two perspectives. in

ASEE/IEEE Frontiers in Education. 1998. Tempe, Arizona.

8. Litzinger, T.A., et al., A psychometric study of the index of learning styles. Journal of

Engineering Education, 2007. 96(4): p. 309-319.

9. Zualkernan, I.A., J. Allert, and G.Z. Qadah, Learning styles of computer programming

students: a middle eastern and American comparison. IEEE Transactions on Education,

2006. 49(4): p. 443-50.

10. Felder, R.M., Learning and teaching styles in foreign and second language education.

Foreign Language Annals, 1995. 28(1): p. 21-31.

11. Bonar, J. and E. Soloway. Uncovering principles of novice programming. in Proceedings

of the 10th ACM SIGACT-SIGPLAN symposium on Principles of programming

languages. 1983. Austin, Texas: ACM.

12. Dym, C.L., Learning engineering: design, languages, and experiences. Journal of

Engineering Education, 1999. 88(2): p. 145-148.

P
age 25.576.16

13. Dym, C.L., et al., Engineering design thinking, teaching, and learning. Journal of

Engineering Education, 2005. 94(1): p. 103-120.

14. Bucks, G. and W. Oakes. Integration of graphical programming into a first year

engineering course. in ASEE Annual Conference and Exposition. 2010. Louisville, KY.

P
age 25.576.17

