
AC 2012-4159: INTRODUCING LABORATORIES WITH SOFT PROCES-
SOR CORES USING FPGAS INTO THE COMPUTER ENGINEERING
CURRICULUM

Prof. David Henry Hoe, University of Texas, Tyler

David Hoe received his Ph.D. in electrical engineering from the University of Toronto. He held a position
as a Staff Engineer at the General Electric Corporate Research and Development Center for five years
prior to assuming his current position as an Assistant Professor in the Electrical Engineering Department
at the University of Texas, Tyler, in 2008.

c©American Society for Engineering Education, 2012

P
age 25.844.1

Introducing Multiple Soft Processor Cores Using FPGAs
into the Computer Engineering Curriculum

Abstract

Soft processor cores are becoming an important component in state-of-the-art Systems-on-a-
Programmable-Chip (SoPC) implementations. An SoPC design is a complete electronic system
that is built on a reconfigurable integrated circuit, usually in the form of a Field Programmable
Gate Array (FPGA). This paper will discuss the introduction of soft processor design into the
courses within the Computer Engineering curriculum at the University of Texas at Tyler.
Laboratories that utilize soft processor core design in our FPGA Design course and designs
consisting of an array of soft processor cores to emulate multiprocessor designs in our Computer
Architecture course will be described. Assessment in the form of project results, surveys, and
instructor observation will be given.

Introduction

Continued advances in semiconductor technology over the past several decades have resulted in
an exponential growth in the number transistors that can be fabricated on a single integrated
circuit (IC). As a direct result of this, state-of-the-art Field Programmable Gate Arrays (FPGAs)
can implement complex digital designs consisting of millions of logic gates at a speed
comparable to custom integrated circuit designs but at a fraction of the development cost.
Microprocessor implementations, known as soft processor cores because they are completely
specified by a high level descriptor language, are now routinely included in FPGA-based
designs. The capacity of the modern FPGA has reached the point where the implementation of an
array of soft processor cores on a single chip is now feasible. Because these soft processor cores
can be optimized by the designer for specific applications, lower power and improved speed
compared with custom off-the shelf microprocessor-based designs are often attainable. Recent
reconfigurable multiprocessor designs have shown the potential for improved performance. For
example, some applications for these Multiprocessor-on-Programmable Chip implementations
include a design for tracking multiple targets in an automotive application1, a streaming
multiprocessor design for bioinformatics processing2, and a chip for routing packets in a
networking application3.

Since it is important to train our students in the latest technology used by practicing engineers in
industry, this paper will discuss the introduction of soft processor design into the courses within
the Computer Engineering curriculum at the University of Texas at Tyler. Laboratories that
utilize soft processor core design in our FPGA Design course and the introduction of
multiprocessor design using these soft processor cores into our Computer Architecture course
will be described. This paper is outlined as follows. First, the relevant background information
will be given, in terms of the educational context of the Computer Engineering curriculum, and
the technical context concerning soft processor cores. This will include a discussion of the
selection of the reconfigurable platform. The following sections will then discuss the
development of the laboratories for the soft processor cores in the FPGA Design and Computer
Architecture courses. The paper will conclude with a discussion of the results and look ahead to
expansion of the laboratories in the near future.

P
age 25.844.2

Background on the Computer Engineering Curriculum

All electrical engineering students at our institution have the option of three technical elective
courses, typically taken in their senior year. For those wishing to specialize in the Computer
Engineering track, the Computer Architecture course is a required class, and the FPGA Design
course can be taken as one of the electives. The Computer Architecture class focuses on the
Instruction Set Architecture as the hardware/software interface with particular emphasis on the
hardware implementation issues faced in the modern processor. The most recent course offering
included a discussion of multicore processor design and the relevant software issues for
interprocessor communication and parallelization of code.

The FPGA Design class introduces the students to reconfigurable logic and how to synthesize an
FPGA design using VHDL. Circuit design issues in implementing FPGAs and applications for
FPGA designs are also covered. The most recent course offering included soft processor cores,
requiring the students to implement a basic design and to learn to program it in its assembly
language code. A course project involving the design of a stop watch timer was required for the
graduate students. This involved the use of the soft processor core to implement the basic
functionality of a stop watch. The students were required to write VHDL code to interface the
processor with the LED display and the push buttons on the FPGA development board and to
write assembly code for the PicoBlaze processor.

Soft Processor Cores

This section provides a survey of soft processor cores currently available, discusses the rationale
for the choice of the PicoBlaze soft processor core used in our laboratories, and provides some
detail on the PicoBlaze processor core.

Xilinx and Altera represent the two companies that currently hold the greatest market share
among FPGA implementations. Our laboratories are mostly equipped with FPGA development
boards from Xilinx. The Basys 2 and Spartan-3E FPGA development boards are lower end
boards that we primarily use for teaching purposes. Our labs are also equipped with several
higher end (Virtex 5 and Virtex 6) boards that are used for research purposes. However, since all
the Xilinx boards utilize the same synthesis software package (ISE software donated by Xilinx to
universities) and the same high-level descriptor language (VHDL or Verilog) to specify designs,
it is relatively easy for a student to migrate from the teaching to research oriented development
boards.

Table 1 summaries some of the more popular choices that currently exist for processors
implemented on FPGAs4. Focusing on the Xilinx FPGAs, the two main choices are between the
MicroBlaze and PicoBlaze processors. The MicroBlaze processor is the more sophisticated of
the two, featuring a 32-bit datapath, a Reduced-Instruction Set Computer (RISC) architecture,
and separate memories for data and instructions. The processor can be easily implemented using
Xilinx’s Core Generator program. The MicroBlaze development package is also equipped with
resources that allow for shared-bus and efficient point-to-point connections with other
processors5. The PicoBlaze processor uses an 8-bit datapath, a small 64-byte data memory, 16

P
age 25.844.3

registers, a 1 K instruction PROM, and a single interrupt line. It is targeted for applications that
require a simple 8-bit microcontroller. The basic architecture is shown in Fig. 1.

Table 1. FPGA-based Processors

Processor Company Bits Comments

MicroBlaze Xilinx 32 RISC – Core Generator

PowerPC Xilinx 32 Hard processor core

PicoBlaze Xilinx 8 Open-source VHDL

Nios II Altera 32 Three types

Leon 3 Gaisler 32 RISC – Open source

OpenRisc 1200 OpenCores 32 RISC – Open source

Figure 1. Architecture of the PicoBlaze Processor6

There are two advantages of using the MicroBlaze soft processor core. First, the use of the Core
Generator makes it easier to implement and connect to other processors on an FPGA. Second, it
uses a similar 32-bit RISC architecture that is described in the textbook used in our Computer
Architecture class, the MIPS processor7. However, the decision was made to use the PicoBlaze
processor in our labs for three reasons. First, with the PicoBlaze processor, one must build the
interface logic for the ports to connect with other peripherals and processors and multiple
interrupts must be specified separately using VHDL code by the user. It was deemed more
beneficial for the student to be able to code the required interfaces rather than use a packaged
solution. Second, the PicoBlaze processor is completely specified in open-source VHDL code,
allowing it to be studied and changed by the student, while the MicroBlaze processor is
implemented as an Intellectual Property (IP) core that is not accessible to the user. Third, the
simplicity of the PicoBlaze architecture makes it easier to learn to program. As there is a limited
amount of time in the course devoted to the soft processor core in both the FPGA Design and
Computer Architecture courses, this was an important factor in our decision.

P
age 25.844.4

FPGA Design Laboratories

The FPGA Design class has a total of eight laboratory sessions integrated into the class, as
summarized in Table 2. The first five labs give the students experience in writing VHDL code to
implement simple logic designs, like adders and clock dividers, and to use the simulation and
virtual logic analyzer tools for design verification and debug purposes. Some of the code needed
to interface with the board is given to the students, such as the logic needed to drive the seven-
segment display, but the students are required to analyze it and understand it for later use.

Table 2. Summary of FPGA Class Laboratories

Lab Learning Objective

1. Half adder Write VHDL code for a half adder and test its functionality

2. Full adder Use the concept of hierarchy to implement a 1-bit full adder and test
its functionality

3. Counter Use a VHDL process to implement a counter and write a test bench
to verify its functionality with a simulator

4. Clock Divider Design a clock divider and use it feed a counter, display the results
on the 4 digit display on the FPGA development board

5. Four bit adder Learn to use the virtual logic analyzer tool (ChipScope) to test a
four-bit adder design

6. Introduction to
PicoBlaze

Learn to use the tools to write assembly code and to generate the
ROM instruction file for the PicoBlaze processor

7. PicoBlaze
Adder

Write an assembly language program to add two numbers, get the
input from switches and output the sum to the display

8. PicoBlaze
Counter

Understand how the basic interrupt mechanism works and use it to
implement a counter with the PicoBlaze processor

The final three laboratories are devoted to learning how to implement and program the PicoBlaze
processor. The students learn to use the additional tools required to assemble and debug the
PicoBlaze assembler and to generate the instruction ROM file. The complete VHDL code for the
PicoBlaze processor is supplied for these labs. The students need to write some of the support
logic to interface the PicoBlaze processor with the I/O on the development board and to handle
the interrupts in the final lab. At this point, the graduate students are required to implement the
stop watch timer project with the PicoBlaze and to demonstrate its functionality. They are
required to write VHDL code for the support logic and to use interrupts.

Computer Architecture Laboratory

For this course, only one laboratory session is devoted to building and implementing the
multicore PicoBlaze array. The challenge of introducing this lab into the Computer Architecture
class is that the FPGA Design class is not a pre-requisite, so not all students will have had the

P
age 25.844.5

background in FPGA design and the concept of the soft processor core. The students are given a
basic introduction to VHDL and this is used in the lectures to show how the various hardware
components of the processor are specified.

For this course, the emphasis in the laboratory is to make the students appreciate one of the key
challenges of multiprocessor design: implementing an efficient means of interprocessor
communication. The laboratory reinforces some concepts for multiprocessor design introduced
into the course. For example, the latest edition of the textbook of Patterson and Hennesy7
introduces the concept of synchronization between processors when reading from a shared
memory location (i.e., the implementation of lock and unlock instructions to give the ability to
atomically read and modify a memory location). For reconfigurable processors, there are three
methods proposed for communication between processors4. The first is direct connection, known
as point-to-point. This method is the simplest and most effective for a small number of
connections but is not area efficient when a large number of processors communicate with each
other. Second is the traditional shared-bus approach which is used in uni-processor designs. It is
inefficient for large systems since only one processor can use the bus at a time. A third option
has been introduced recently, the idea of implementing a network-on-chip (NoC) approach8. This
method borrows ideas from the networking of computers and applies it to an array of processors
by implementing a small router on the FPGA to handle interprocessor communication on a single
chip9.

The lab focuses on the first method, the point-to-point connection. For this option, a mail box
approach is used where a First-In-First-Out (FIFO) buffer is implemented between each
processor to minimize the wait times for the cores that process data at different speeds. The lab
involves implementing five PicoBlaze cores on a Spartan 3E FPGA. Four of the PicoBlaze cores
generate a sequence of numbers that are offset by four (e.g., PicoBlaze 1 generates 0, 4, 8, …,
PicoBlaze2 generates 1, 5, 9, …, etc.). The fifth PicoBlaze processor receives the sequence of
numbers from the four other processor cores by polling them in a round-robin fashion through
the FIFO interface. A schematic of the implementation is shown in Fig. 2. Each processor core
consists of a PicoBlaze core with four FIFOs for receiving the input and four latches for holding
the output. The code running on the processor labeled PicoBlaze 4 reads the number sequence
from units 1, 2, 3, and 5 and assembles it into a linear count and displays the output to verify that
the correct values have been received. A delay loop is included in the code to slow the count
down so that it is discernible on the display.

Figure 2. Array of five PicoBlaze processors where PicoBlaze 4 is the destination.

P
age 25.844.6

As the students may have a limited background on FPGAs for this class, a fairly detailed
procedure is outlined in the lab for implementing the processor array. The instruction ROM for
the four cores that generate the number count and send it to the one receiving core is given. As
well, the code for the PicoBlaze and the FIFO buffers is provided. The students are required to
generate the instruction ROM for the single PicoBlaze core that polls the other four processors
for the numbers that they generate. The focus is on writing the assembly code to read from the
FIFO. The pseudo code is given below.

Write to FIFO Read from FIFO

read full_flag ;

while full_flag = = 01

 read full_flag ;

write data ;

read empty_flag ;

while empty_flag = = 01

 read empty_flag ;

read data ;

Figure 3. Pseudo code for the FIFO buffer write and read cases

Assessment

For the FPGA class, the ability of the students to comprehend and utilize the soft processor core
was evaluated by their projects. The students were given an oral interview by the instructor, and
they had to submit a final project report. The students were allowed to work in groups of two.
One group managed to get the project working perfectly, five groups completed the project but
with some aspect not working perfectly, and one group could not complete the project. The
instructor’s assessment for this first attempt at introducing soft processor cores into the course is
that more labs need to be added. For the students that did not manage to get everything working
properly, the ability to understand how to write the interface logic to handle the interrupts was
one common difficulty. More time was needed to understand this. Overall, though, this first
attempt can be deemed a success. The students grasped the basic concepts and understood the
importance of using soft processor cores versus dedicated microcontrollers.

For the computer architecture class, the students were given a survey at the completion of the
one lab on multiprocessors using the soft processor cores. Table 3 summarizes their responses
with regard to their degree of comprehension. The class was composed of electrical engineering
(EE) and computer science (CS) majors. Overall, the students felt they had a good grasp of the
overall concepts for this laboratory.

A second set of questions surveyed the student attitudes towards learning more about embedded
processor design and implementation of multiprocessor systems on FPGAs. Overall, it appears
the students seemed favorable towards this goal. As expected, the CS students generally were not
as interested in the hardware aspects, but did seem to feel they had a good grasp of the hardware
concepts that were introduced in the lab. The student responses are summarized in Table 4.

P
age 25.844.7

Table 3. Student Understanding of the Multiprocessor Laboratory

(Scale: 1= Low, 2= Medium-Low, 3 = Medium, 4= Medium-High, 5 = High)

Statement EE CS

1. Understand the basic design flow for implementing a
PicoBlaze processor on an FPGA.

4.00 4.00

2. Understand communication between processors using
First In First Out (FIFO) buffers

4.00 4.33

 Sample size 7 6

Table 4. Student Attitudes towards Reconfigurable Multiprocessors

(Scale: 1= Strongly Disagree, 2= Disagree, 3 = Neutral, 4= Agree, 5 = Strongly Agree)

Statement EE CS

1. I would like to learn more about embedded processor
design using FPGAs.

4.14 3.67

2. The lab helped me appreciate the issues involved in
interprocessor communication

4.14 4.17

3. There should be more labs of this nature in this class 4.14 4.00

4. I would like see an elective/graduate class devoted to
embedded processors and multicore processor design

4.42 3.33

 Sample size 7 6

Conclusions

With the continued advances in FPGA technology, more designers will be taking advantage of
the flexibility and performance advantages obtained with designs that use soft processor cores.
Indeed, as the number of logic gates and memory resources increase on state-of-the-art FPGAs,
the ability to integrate multiple processor cores on an FPGA will grow accordingly. This remains
an active area of research and development. This paper has described the introduction of soft
processor cores into the Computer Engineering curriculum at our institution in keeping with an
important trend in electronic and computer systems design. Initial results from the introduction
of soft processor cores into our laboratories is encouraging. In upcoming classes, we intend to
expand the labs in terms of quantity and sophistication. In particular, the other options for
interprocessor communication, shared memory and network-on-a-chip concepts, will be added in
upcoming course offerings. Eventually, a separate course offering on embedded processor design
using FPGAs will need to be added to the curriculum.

P
age 25.844.8

References

1. J. Khan, S. Niar, A. Menhaj, Y. Elhillali, and J. L. Dekeyser, “An MPSoC architecture for the multiple target
tracking application in driver assistant system,” in Proceedings of the 19th IEEE International Conference on
Application-Specific Systems, Architectures and Processors (ASAP ’08), pp. 126–131, July 2008.

2. R. K. Karanam, A. Ravindran, and A. Mukherjee, “A stream chip multiprocessor for bioinformatics,”
SIGARCH Computer Architecture News, vol. 36, no. 2, pp. 2–9, 2008.

3. K. Ravindran, N. Satish, Y. Jin, and K. Keutzer, “An FPGA based soft multiprocessor system for IPV4 packet
forwarding,” in Proceedings of the International Conference on Field Programmable Logic and Applications
(FPL ’05), pp. 487–492, August 2005.

4. T. Dorta et al., “Reconfigurable multiprocessor systems: a review,” International Journal of Reconfigurable
Computing, 2010, 10 pages.

5. P. Huerta, et al., “A Microblaze based multiprocessor SoC,” WSEAS Transactions on Circuits and Systems,
vol. 4, no. 5, pp. 423–430, 2005.

6. Xilinx, PicoBlaze 8-bit Embedded Microcontroller User Guide. Available at:
http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf, 2011

7. D. A. Patterson and J. L. Hennessy, Computer Organization and Design. Morgan Kaufmann, Fourth Edition,
2009.

8. W. J. Dally and B. Towles, “Route packets, not wires: on-chip interconnection networks,” Design Automation
Conference Proceedings, pp. 684- 689, 2001.

9. H. C. Freitas, et al., “Evaluating Network-on-Chip for Homogeneous Embedded Multiprocessors in FPGAs,”
IEEE International Symposium on Circuits and Systems, 2007. ISCAS 2007, pp. 3776-3779, 27-30 May 2007.

P
age 25.844.9

