
AC 2007-1250: USING THE RUBY LANGUAGE AS A PROGRAMMING
ENVIRONMENT FOR A ROBOTICS LAB-BASED CLASS

C. Richard Helps, Brigham Young University
Richard Helps is the Program Chair of the Information Technology program at BYU and has
been a faculty member in the School of Technology since 1986. His primary scholarly interests
are in embedded and real-time computing and in technology education. He also has interests in
human-computer interfacing. He has been involved in ABET accreditation for about 8 years and
is a Commissioner of CAC-ABET and a CAC accreditation team chair. He is a SIGITE executive
committee member and an ASEE Section Chair. He spent ten years in industry designing
industrial automation systems and in telecommunications. Professional memberships include
IEEE, IEEE-CS, ACM, SIGITE, ASEE.

Andrew Arnott, Brigham Young University
Andrew Arnott was a student at Brigham Young University with a strong interest in applications
of the Ruby language. He is currently working for Microsoft Corp.

© American Society for Engineering Education, 2007

P
age 12.1572.1

Using the Ruby Language as a Programming Environment for a

Robotics Lab-Based Class

Abstract

The object-oriented, scripting language Ruby, is becoming popular in information technology

and computer-oriented educational programs. Yukihiro Matsumoto has indicated that the

language was designed with the principle of “least surprise” to help programmers convert ideas

into working programs quickly and to have fun. Ruby was designed for applications in many of

the modern application areas of software development, including text processing, network

programming, interfacing to CGI and XML and addressing Internet-oriented applications. It is

also intended to make programming fun for students.

Ruby can also be used for embedded system programming. The general advantages of Ruby

programming also apply to this domain. The Ruby interpreter allows rapid development and

testing, including wireless tele-operation of mobile robots for prototyping. Since Ruby was not

primarily designed for this type of application some adaptations are necessary. Extensions to the

language are necessary to allow for real-time interfacing. These and related topics are discussed

in the paper.

This paper discusses a semester-long experience of adapting Ruby to serve the needs of a

robotics-design, lab-oriented course and evaluates the benefits and disadvantages of Ruby both

for embedded development in general and as a teaching tool.

Introduction

Although desktop and laptop computers are ubiquitous they are outnumbered by at least an order

of magnitude by embedded computer systems. These embedded systems appear in devices

ranging from microwave ovens and cars to PDAs, cell-phones and even network routers and

switchers. Embedded systems were once dominated by small 8-bit microcontroller systems, with

kilobytes or less of memory; Megahertz or slower CPU clocks and were programmed in

assembly-language or in C. However as systems have been developed for small low-power, low-

cost, high-capability devices, such as cell-phones and PDAs so 32 bit processing power with

megabytes of memory; complete operating systems; networking and object-oriented languages,

have started to appear even in small embedded systems. This trend has been further accelerated

as notebook computers, and the compact low-power technologies they need, have overtaken

desktops in sales
7
. These low-power, high performance, compact technologies also become

available for embedded systems development.

 BYU has offered courses in embedded systems for some years. These elective courses are

targeted at students who wish to explore computer applications beyond the traditional desktop or

laptop environment. Over recent years this class has, like the marketplace, moved its focus from

small 8-bit system to modern operating systems and programming environments
3
, but is still

focused on physically small, mobile systems with real-time needs and IO capabilities far beyond

the traditional keyboard/mouse/monitor peripherals.

P
age 12.1572.2

Applications are traditionally programmed in a remote desktop development system and

then the executable code is uploaded into the target system, which may be running a different

CPU, architecture and operating system than the development system.

One of the elective courses offered is in Mechatronics. This course requires students to

design and build a small autonomous robot with motors, sensors and actuators. The course

typically attracts Mechanical Engineering (ME) and Information Technology (IT) students who

work in teams. The ME students provide expertise in mechanical design and related engineering

topics and the IT students provide expertise in operating systems, programming and computer

systems integration. Both groups learn new skills in input/output handling, autonomous

intelligence and related mechatronic concepts. The IT students have already completed several

required courses in programming and computer configuration while the ME students have

completed courses in mechanisms, instrumentation and related subjects, as well as a minimum of

one required course in programming.

 The traditional languages of embedded systems development, mostly C and assembly-

language, have much to recommend them. With no operating system, they are fast, compact, and

capable and they have good access to hardware and peripherals. In addition they are well known

and accepted by the many engineers working in this field. However they are, in some senses,

holding back the development of embedded systems in that developers cannot easily take full

advantage of the many libraries and utilities developed for 32-bit systems using modern

operating systems like UNIX and Windows CE, nor do they have the advantages of modern

object-oriented languages

Many of these newer languages that may allow programmers to be more productive come

with system costs that make them prohibitive for small embedded systems. These languages

make the programmer's job easier at the expense of requiring better hardware and a full operating

system on the embedded system to run the resulting program. Many of these more sophisticated

systems also require per-user license fees, which poses a problem for price-sensitive embedded

systems.

Recently we explored the use of the popular Ruby scripting language as an alternative to

C and assembly-language and found some interesting advantages in using this language for

embedded systems development. This report will discuss how Ruby can be applied to the task of

real-time embedded system programming, including some extensions to overcome difficulties. It

will then analyze the suitability of Ruby for this class of applications. To more fully describe the

role that Ruby can play the viability of several other modern languages will be discussed.

Development Language Comparison

There are several issues that must be considered when choosing an appropriate language for

embedded systems development. One important issue is the difference between compiled and

interpreted languages. In general compiled languages, such as Pascal, Java, or C++, are

structured to help the programmer write error-free and maintainable code. Modular structure and

variable typing, for example, constrain the programmer in ways that lead to better code being

developed. These languages can be optimized by a good compiler and can produce fast and

reliable executable code. This comes at a cost of being more verbose in programming and

requiring compiling for each development cycle.

 One of the problems of embedded systems development is the fact that code is almost

always developed on a development machine. The development system typically has a different

architecture and OS than the target system, requiring special cross-compiler libraries to be used.

P
age 12.1572.3

When compiled the executable code is ported over to the target system where it is run. This

makes debugging and changing code tedious. The target system is typically much less capable

than the development system in terms of speed, memory and it usually doesn’t support a standard

keyboard, monitor and mouse.

Typical workarounds include using very simple interpreted versions of languages like C

which can be edited on the target system; running simulators on the development system to test

the code before porting it; automating the compile and port process or, most expensively,

running an emulator “pod” connecting the target and development systems so the target can be

run under direct control of the development system. The cabling and connecting of emulators

becomes very impractical in the later stages of developing very small systems or mobile systems.

 Most modern languages offer some provision for object-oriented programming. In an

object-oriented language, a programmer's focus shifts from writing a list of instructions to

writing the model to represent a real-life situation. This model can then be taught to solve

problems in a very intuitive and maintainable way. Life for the programmer is easier, coding

often happens faster, and teamwork and code reuse is encouraged. Object-oriented programs can

suffer from a performance hit when compared to compiled procedural programs, but this can

depend on compiler efficiency and, with modern fast hardware platforms, this may not be a

significant factor. The weaknesses of OO languages for embedded systems development are the

compile and upload time, the size of the executable code with associated libraries, the run-time

performance, and, very significantly, the relative difficulty in directly accessing the hardware

from the application language.

 In contrast to compiled languages interpreted languages can be quickly programmed and

instantly run. Languages such as Perl or any of the many dialects of BASIC are loosely typed,

relatively unstructured and designed for rapid code development by non-professional

programmers. This has many advantages for an embedded systems development environment

characterized by rapid development with many cycles of creation, testing and incremental

improvement. The extensive IO requirements of embedded systems development are well

supported by a development environment that permits many short experimental development

loops as hardware communication and response is explored and tuned. The well-known costs of

this approach are the lack of software structure and the consequent risk of poor coding habits and

also code that is difficult to debug and maintain. Consequently interpreted code is often only

recommended for short utility programs.

For scripting applications run-time speed is not usually a major factor and the execution-

time penalty of interpreted languages is acceptable, however for real-time applications the run-

time speed may be a serious barrier.

Many large applications are being written in interpreted or scripting languages. Faster

computers make the slower speed of scripts less important. As these interpreted languages

mature, they become more aligned with the good programming design that favors large and

maintainable programs.

Scripted languages also tend to be very portable, making programs written in them

instantly usable on multiple devices across hardware and operating systems

Strong typing and structure is not always associated with compiled code, nor is loose

typing always associated with interpreted code. They commonly are paired that way, however.

With a strongly typed language, since the compiler has more information available, it can catch

more errors automatically than a loosely typed language can. The trade-off for using a strongly

P
age 12.1572.4

typed language is that it typically requires more code writing, and in some cases can lead to

harder-to-read code.

Some languages lie between these two extremes, to try to bring in the best of both worlds – with

varying success.

 Another important issue for embedded systems is the ability to access the hardware

easily. This requires a language that can manipulate bits easily and a language/operating system

combination that allows free access to the hardware directly from the application source code.

Procedural languages such as C and assembly-code are both very good in this respect. They can

relatively easily access the hardware and give the programmer good control over the inputs and

outputs that comprise so much of embedded-system development. These languages also produce

very compact and fast executable programs. What they lack is the stronger structure of newer

object-oriented languages and they are also compiled (or assembled), and thus they lack the

immediacy of interpreted languages for development.

Real-time applications

A real-time application is a system that must respond to stimuli in a set period of time. A real-

time system is not necessarily a fast system. The required response time of a real-time system

may be a microsecond, an hour, or a day. However real-time constraints become difficult to meet

as the specified response time moves into the millisecond or faster range.

Real time constraints can be hard, meaning the system has failed if the constraint is not

met, or soft – meaning the performance is degraded but the system can continue to function if the

constraint is not met.

Embedded systems often have both hard and soft real-time constraints imposed on them.

When a consumer purchases an electronic device, the consumer takes for granted that the device

will be responsive in its interactions. As a result, manufacturers must put hardware and software

into the device that is capable of responding fast enough to qualify within the implied real-time

constraints, or in other words, to be fast enough to appease the user. In many cases they also

have hard real-time constraints. For instance software to speed control a motor must meet its

various control deadlines or the motor will malfunction, with possibly very serious

consequences.

Computer languages vary in their ability to produce real-time capable code. The

Assembly and C languages are very widely used because of their fine-grained control of exactly

what code gets executed when, and their free access to hardware. Often these languages run on

systems with little or no operating system or monitor so the programmer can (and must) directly

control the real-time response within the application suite. These systems offer no services that

run in the background to help the programmer get the job done. While this makes the

programmer's job more tedious, the programmer can ensure that a routine will take a constant

time to run and thus satisfy real-time requirements.

Multi-threading can also contribute to real-time capability. Multi-threading enables a

program to have multiple strings of instructions executing simultaneously on the system. Multi-

threading can make a system more responsive and capable of handling more than one simple task

at any given time. While nothing in assembly or C precludes writing multi-threaded software,

these languages do nothing to assist the programmer in writing it. Other more modern languages

include constructs that greatly aid the programmer in writing these responsive, capable programs.

 For the best embedded system programming we would like to have a language that

supports modern programming style well, including support for multi-threading and real-time

P
age 12.1572.5

implementations. A language that also supports fast development and direct interpreted control

also has great benefits. The Ruby language has many of these features.

Ruby Programming Language

Ruby is a modern, object-oriented, interpreted language
4, 5

 that is quickly gaining popularity,

especially in the open-source world. Ruby's strengths include terse yet readable code, an

interactive interpreter, multithreading support, a vast set of available libraries, and platform

independence.

Ruby provides a very dynamic and somewhat loosely-typed language. This makes

writing and deploying code across platforms very quick and easy. And though the interpreted

nature of Ruby code can add some non-deterministic timing on its programs, this need not

prohibit some real-time applications from being written using it because the variation in timing

brought in by the Ruby interpreter does stay within predictable limits.

Ruby is specifically designed to be easy for programmers to create code
9
. On the other

hand Ruby’s creator, Yukihiro Matsumoto, has also specifically stated that run-time performance

was deliberately ignored in creating the language
10

. Thus using the language in embedded real-

time applications requires that we pay attention to these aspects. Mr. Matsumoto makes the point

that run-time performance and reliability is achieved by a combination of modern, fast hardware

and a well-written interpreter. This needs to be carefully considered in a real-time application.

Ruby has advantages over other popular scripting languages for embedded systems

development. Baas
1
 describes the problems of Perl’s syntax for non-experienced programmers,

Javascript’s web-orientation and Python’s weakness in object-oriented support. Ruby has none of

these weaknesses. Ruby may also have a speed advantage over Python
2
.

Ruby compilers are starting to become available. When they have matured, faster

execution time for Ruby will be available where needed.

The view has been expressed that the growth of Java applications environments, with

developments such as .NET, will eliminate the niche occupied by scripting languages
8
. Ruby still

has a significant advantage over object-oriented languages, such as Java, in that it allows for an

interpreted mode. Code can be edited directly on the target system over an ftp link and then run

using the ‘irb’ interpreter. The tedious steps of compiling and porting from the development

system to the target system step can be eliminated, allowing for much quicker development

cycles.

The Development Project

The class project requires that students design and build a small autonomous robot. A typical

design from a previous class is shown below

P
age 12.1572.6

Figure 1 Miniature autonomous robot, showing overall structure and camera. The computer platform is visible as

two layers of circuit board between the wheels and the camera tower.

The system peripherals include motors, motion sensors, a camera and actuators. The

computer system is a TS5500 X86-based Pentium class system on a PC104-compliant miniature

motherboard with multiple and varied IO capabilities. Communication with the system is by

serial port, Ethernet cable or wireless networking. The system can run various operating systems

but usually is used with a variant of the Linux OS.

The tasks that the miniature vehicle is required to complete include navigation around a

track, obstacle detection and avoidance, seeking colored balls, capturing and storing them and

then returning to a base station and discharging the balls into a ‘goal’. All operations must be

completed autonomously, using only the on-board intelligence programmed into the system.

The project had a number of real-time requirements. Sensor and camera data has to be processed

fast enough to make navigation, motor-speed and steering decisions to prevent the car from

going off a ledge or colliding with a wall. When the video camera found a correctly colored ball,

the car has to change course quickly so the ball stays in the camera’s view. The motors

themselves are speed controlled.

The Solution

The student team tried a few language alternatives, such as C, C++ and C#, before selecting

Ruby. Initially the student team, with one of the authors as lead programmer, developed the

software structure that would be used for the rest of the design. A set of libraries were created.

The libraries were divided into these layers, starting at the bottom:

• Utilities - wrappers, methods, and other useful code that is not at all hardware-specific

• EmbeddedX86.Ts5500 - wraps the Ts-5500 card itself, and nothing more

• Devices - all the hardware devices that can be attached to the target system

• Target system - wraps the whole embedded system, comprising of both the Ts-5500 card

and the devices attached to the IO ports

• “car” - the specific classes used to get the car to drive around the track and follow

programmed instructions

Code was designed to be reusable. Ruby’s cross-platform nature means that any of the code

could be ported to other embedded systems with minimal effort. Reusability was supported in

the application development by writing libraries in this layered fashion to maximize their

usefulness to other developers.

P
age 12.1572.7

The Object-oriented features of Ruby were used to create the libraries. Class libraries

defined all the functions the car would use, using several layers of abstraction, so that in the

future when the availability of add-on devices changes, or if the IO subsystem is changed, then

only the hardware-specific library layer would need to be re-written.

One of the problems with a cross-platform language is accessing the hardware, however

library functions are available. Ruby does not support memory-mapped I/O or serial port control

(baud rate, etc.). Two very convenient Ruby extensions
6
 added support for these operations:

ioport(i-o_port_access) and serialport (ruby-serialport). By cross-

compiling these for the target system, and copying the resulting binary files onto the system,

Ruby was able to access programs support for serial communication and memory-mapped I/O on

the target system very easily. For example communication routines written in C program were

much shorter in Ruby. There are supporting libraries, of course, but they are short and readable.

Once the libraries were created the team found that software development was much

easier. Software could be written at a fairly high level of abstraction. Direct control of IO was

possible through the library functions, code development and test cycles were very fast since

design intentions could be very easily expressed in terms of the available classes and they could

be implanted immediately using the on-board interpreter. This capability became very important

at various stages of the project, such as tuning delay loops for accurate navigation and for motor

speed control. In fact, the ability to very quickly write small pieces of code and test them became

a hall-mark of this team’s development and differed noticeably from previous years.

Support for real-time applications was still constrained by the capability of the hardware

platform and the Linux OS. Ruby’s compliance with threaded code was fast enough for most

navigation tasks and for real-time object identification but the load on the CPU was too large to

permit direct Pulse-Width Modulation (PWM) control of the motors for speed control. PWM

control of multiple motors requires toggling individual IO ports at 15 KHz or more, and

recalculating delays until the next toggle point dynamically. The combination of Ruby and

hardware could not do this. This task was delegated to a separate hardware chip with built-in

PWM capability.

Summary and Conclusions

Overall the implementation of Ruby as a embedded systems development language was very

successful. The inherent programmer-friendly features of Ruby and its object-orientation made

software development clean and relatively bug free. The interpreted nature of the language

allowed for very fast development cycles directly on the target system.

The software structure that has been developed is extensible and portable. Ruby does not

inherently support real-time programming but a combination of IO libraries and with some help

from hardware allowed all the real-time tasks to be handled well. This disadvantage is

outweighed by the significant advantages.

In future the usefulness of OO scripting languages for embedded systems development will

increase. Key improvements that could help the process would include:

• Integration of the language with a real-time operating system allowing for true real-time

control

• Availability of a full binary-level compiler to increase execution speed of time critical

modules.

P
age 12.1572.8

We expect future development with this platform or similar language/OS/hardware platforms in

the future to extend the capabilities of the system.

Bibliography
1. Baas, B Ruby in the CS Curriculum. Journal of Computing Sciences in Colleges, Vol 17, No. 5 (April 2002) ,

Pages: 95 - 103

2. Baird Kevin C. Generating music notation in real time Linux Journal, Vol 2004, Issue 128 (Dec 2004) Page 3

3. Helps R. Teaching Embedded Systems From Eight Bits to Operating Systems and Networks, Proceedings, ASEE

Annual Conference 2002 (Montreal). Session 3647

4. Matsumoto, Yukihiro. The Ruby Programming Language Jun 12, 2000.

http://www.informit.com/articles/article.asp?p=18225&redir=1&rl=1

5. RubyCentral, What is Ruby? http://www.rubycentral.com/misc/intro.html

6. RAA Ruby Application Archive, http://raa.ruby-lang.org/ Accessed April 2006.

7. Singer, Michael. PC milestone--notebooks outsell desktops. Cnet News.com. http://news.co.com/PC+milestone--

notebooks+outsell+desktops/2100-1047_3-5731417.html

8. Spinellis, D. Java makes scripting languages irrelevant Software, IEEE Vol 22, Issue 3, May-June 2005

Page(s):70 – 71

9. Venner, Bill, The Philosophy of Ruby: A Conversation with Yukihiro Matsumoto, Part I. Artima.com, On-line

interview, September 29, 2003, http://www.artima.com/intv/ruby4.html

10. Venner, Bill, The Philosophy of Ruby: A Conversation with Yukihiro Matsumoto, Part II. Artima.com, On-line

interview, p3, November 17, 2003, http://www.artima.com/intv/tuesday.htm

P
age 12.1572.9

