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Introduction 

Grades, how they are earned, and the institutional impetuses that drive them, are an issue 
of central importance in the engineering discipline.1-4  How grades are earned, how different 
institutions address grades and grade inequities, how instructional practices and policies affect 
grades, and other grading notions have been studied widely in engineering education.5-8 The 
effect of faculty on student grades, while studied,9 has not been probed as extensively within 
engineering education using a hierarchical linear model (HLM). 

One of the great, open questions in engineering education is whether or not the section 
makes a difference in a student’s grade. In other words, the effect of sectionality on grades to a 
large extent is unknown. Sectionality combines instructor effects, effects related to time-of-day 
of instruction, effects related to any tendency for students to coordinate their enrollment, and 
other effects. Experience and anecdotal evidence suggest that sectionality affects grades, but 
large-scale empirical studies of this phenomenon do not exist. Due to the inherent structured 
nature between course sections and students, standard linear regression models do not offer a 
robust solution to probing longitudinal systems containing multilevel variables.  Hierarchical 
Linear Models (HLMs) provide a robust solution to studying nested or hierarchical systems 
when compared with standard regression techniques.  We constructed a simple HLM to probe 
inter-section and intra-section variability in grades within the Multiple Institution Database for 
Investigating Engineering Longitudinal Development (MIDFIELD) by the calculation of 
intraclass correlation coefficient (ICCs).10, 11  We then examined grades from three sets of 
courses endemic to the first year engineering experience: the first chemistry course; the first 
calculus course; and the first physics course.  Our preliminary results indicate that the choice of a 
HLM to analyze our longitudinal database is correct due to strong variability in grades explained 
by the high intraclass correlation coefficient (ICC) for most of our MIDFIELD institutions across 
all three course types analyzed. 

Basics of HLM 

The world of hierarchical linear models (HLMs) is an expansive space, and fundamental 
texts in the discipline describe it in a detail beyond this paper.12-14  HLM is known by many 
names in different fields: the most popular being hierarchal linear models;15 multilevel models, 
(first coined by those in the social sciences);16 generalized linear mixed models, (a name 
favoured by economists);7 nested models;17 mixed models or mixed effects models, (used by 
biometrics researchers); random coefficient models;18 random effects models;19 random 
parameter models;20-23 split plot models; covariance components models, (as used by those in 
statistics); and more. 

While sparsely used within the field of engineering education, HLMs harken back to the 
work of Charles Hendersen, a professor of animal sciences at Cornell University, and a few of 
his contemporaries.24 As a modeling specialist, he developed different types of methodologies to 
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predict breeding outcomes related to butterfat production in cows. In his search for more precise 
calculations of variances and covariances, he inadvertently developed the HLM that is ubiquitous 
across academic disciplines today. While contemporaries of his did indeed deal with nested data 
at the time, Henderson developed the first statistically valid methodology for addressing different 
variance parameters. 

  

HLMs are models that address data sets organized into hierarchical structures.11, 15  The 
three, fundamental classes of HLM implemented across disciplines are: first, the growth curve 
model, which usually has a time variant structure where observations are nested within 
individuals; second, the within-person variation model, which proves useful for monitoring 
repeated measurements for one person or entity within a time invariant structure; and third, the 
clustered observations model, wherein there are tiered hierarchies such as students within 
sections within courses or, say, workers within factories within corporations. 

The fundamental assumption of HLM is that variance of parameters occurs at more than 
one level.  To organize and analyze data sets in such a hierarchical manner has many distinct 
advantages: first, acknowledges and addresses the interrelatedness of observations; second, it 
treats longitudinal data sets in a more natural way than cross-sectional analysis;25 third, unlike 
ANOVA variants, HLM does not require the same data structure for all members in any set, so 
not every member in any set has to have an outcome or measurement at the same interval; fourth, 
it acknowledges potentially holistic effects such as the impetuses of policy changes at higher 
levels upon lower levels, (such as institutional policies upon departments, and department policy 
changes upon instructors, and instructor policy changes upon students);15 and fifth, for every 
level in a HLM, a variant of the same predictor can be used, (ex., in a class-student database, 
student SAT can be used at the student level and average student SAT can be used at the class 
level). 

Caveats of HLM 

 The plethora of classic HLM papers in the literature can befuddle the novice researcher; 
however, there are a handful that demonstrate the fundamentals of HLM.10, 11, 15, 26, 27 Coleman et 
al’s classic paper details a HLM studying cognitive outcomes between private and public schools 
in the High School and Beyond study.28 They showed a difference between cognitive outcomes 
in time between public and private schools, but that result could be easily attained using linear 
regression. What makes Coleman et al’s work historic, is that their HLM showed that private 
schools engendered a greater, positive change in cognitive values for students who started off at 
a lower value upon matriculation. Their work illustrates the power of HLM; when used to 
explore differences in slope between hierarchical sets, HLM can uncover relationships standard 
linear regression techniques cannot. 
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Of great concern to the implementation of HLM to longitudinal data in engineering 
education is the validity of model choice.25, 29, 30 Although differences between large model 
categories can readily be explained, (such as those only using first-level variables and those 
containing second-level variables), more subtle differences, such as the introduction of a new or 
deletion of a time construct can beget differences. In such time variant models, colloquially 
referred to as growth curve models by HLM researchers, Morrell et al.’s research provides an 
example of avoiding such a quagmire. 29 By investigating in both a visual and statistical manner, 
Morrell et al. demonstrate the importance of considering how HLM time measurements are 
implemented. Specifically, they compare a growth curve model based on the first age of patients, 
and then introduce a “follow-up” patient time variable, leading to significantly different results. 
Their conclusion notes that implementing another time variable allowed them to compare and 
contrast a true, longitudinal model with a more cross-sectional one. 

 Whereas Morrell et al.’s work warns us of the folly inherit to considering a specific 
model choice, Astin and Denson’s work more generally summarizes the need for more capable 
methodologies to describe the intricacies of longitudinal data sets.30 Careful to stress the 
differences between ordinary least squares (OLS) regression and HLM, Astin and Denson 
explore a range of variables predicting the future political leanings of over 8,000 college students 
using OLS and HLM models.  While Astin and Denson conjecture that  HLM models yield more 
significant results with variables endemic to institutional-level effects, whereas those pertaining 
more to path analysis are better served by OLS models, they do not observe any such differences 
in their study.  The key to Astin and Denson’s work is that they show in clear terms that one can 
use two seemingly disparate models and receive strikingly similar results even when using 
multiple first-level (gender, SES, SAT, etc) and second-level effects (religious affiliation of the 
college, faculty political orientation, etc). 

Why Sectionality:  Instructor influence on student achievement 

The effect of teachers on student performance is well known and researched in K-12 
education.31  Sanders & Rivers found that a student’s sequence of teachers could affect 
achievement by as much as 50 percentile points.  Also, teacher training and background have 
also been shown to influence student achievement.9  A full review of the effect of teachers on 
student achievement is beyond the scope of this paper, but is clearly an established phenomenon 
at the K-12 level. 

Several studies in higher education have demonstrated the effect of faculty on student 
achievement.  Within the engineering context, Vogt (2008) found that faculty distance (defined 
as courses taught in a large lecture format with limited opportunities to interact directly with the 
professor) had a strong negative influence on self-efficacy, academic confidence, and 
GPA.6  These effects can be particularly pronounced among female students, who tend to report 
greater numbers of negative interactions with professors and a corresponding loss of academic 
confidence.32  Further evidence of the effect of a faculty member on student success is described 

P
age 25.1146.5



by the mismatch of the faculty member’s teaching style with the prevailing learning style of the 
students in the class. Such a mismatch can have serious consequences.8 The benefits of 
cooperative learning, peer learning, and active learning are well established in the literature, so 
the extent to which individual faculty use those instructional methods will have an effect on the 
success of the classes that they teach. The collective performance of a class of students will 
also  be affected by peer group effects that are beyond the influence of the faculty member’s 
instructional choices. More generally, research on the impact of student-faculty interaction 
describe another mechanism that will have the effect of creating section-level variability in class 
performance.33 

In addition to affecting individual student achievement, significant variance in grade 
inflation can also be attributed to individual faculty members. For example, in a study of two 
decades worth of data, Jewell et al. (2011) found that instructor effects were responsible for 
approximately 40 percent of the University of North Texas’s grade inflation over the sample 
period.7   

Recent ASEE papers using HLMs or HLM-like models  

 Borchers and Hee present the notion that the hierarchal nature of the data structures 
within their entrepreneurship program lend themselves to analysis via HLM.34 Although none of 
their work presented within this paper contains analyzed data, they succinctly describe a 
methodology for addressing hierarchical data using a nested relationship as we have in this 
current research.  They accurately describe the nature of structures such as “peer group, 
classroom, grade level, school, school district, state, and country,”(ibid, p.2) that are not easily 
treated as first level; thus, furthering the need for a HLM or a “holistic” (ibid, p.2) analysis. 

 Borchers and Hee agree with our treatment of a HLM system and the MIDFIELD 
database in general, in that a preponderance of qualitative impetuses effect something as simple 
as student placement in a particular section. In other words, no student choice is completely 
random, as many statistical methods assume.  In MIDFIELD, our observations have led us to 
conclude in multiple instances that institutional policies, policies that differentiate between 
institutional cultures, can dominate the statistical evaluation of any student outcome variables.35 
Their proposed methodology overlaps with our current analysis is in the treatment of classroom 
variance. As they correctly assert, simply “bringing down” (Borchers and Hee, 2011, p.7) 
classroom variables without a HLM structure can have the deleterious effect of attenuating 
calculated variability by 80-90%. 

 Beyond simply expressing institutional level effects on student performance, Padilla et al. 
note in their 2005 paper the importance of eliminating aggregation bias and misestimated 
standard errors that occur when researchers ignore the nested structures inherent in HLM. 36 The 
treatment of HLM in light of aggregation errors by Padilla is elegantly explained as “when an 
explanatory variable can take on different meanings.” (ibid, p.) HLM measures mean values at 
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each level, so while student grade averages within a section have one meaning, their average at 
the institutional level has another meaning. Padilla et al. noted a 19% variance in grades based 
solely on institutional differences. 

 Within engineering design research, the only recent use of HLM is the work of Lawanto. 
Using HLM to evaluate self-appraising or self-managing or level of difficulty would prove 
indispensable to constructing new protocol.  Their paper uses a HLM model to evaluate the 
relationship between two research questions, although their results are not explicit enough to 
provide serve as a primer for future research. 37 

Faculty training, such as time in industry, 38 has also been recently discussed within our 
field. Harper and Terenzini’s work used a level-2 model to explore the relationships between 
faculty experience and student participation in co-curricular activities.  Unlike many analyses 
that use models to prove a statistical correlation, their work succeeds by demonstrating that some 
common factors such as gender, SAT, and high school GPA are statistically insignificant in 
engendering co-curricular comparison compared to the engineering programs and faculty 
themselves.  

 While not to be confused with HLM, hierarchical regression modeling can be 
successfully used in place of a HLM as another recent work discusses.39 When the intra-class 
correlation function approaches a low number, (traditionally around 3% or less depending on 
various effects,) a multi-level model can be abandoned as long as the researcher is comfortable 
that the convergence of the resulting variability. 

Methodology 

A note on our data set and MIDFIELD in general 

The MIDFIELD database contains records for 701,190 first-time-in-college students 
matriculating in any major at participating institutions.35, 40 The initial population for this study 
consisted of 137,071 first-time-in-college (FTIC) students who ever matriculated in engineering 
at one of nine of our MIDFIELD institutions in 1988 and later, for which data is available. We 
tallied all of the instances when students enrolled in a first semester/quarter, core chemistry, 
calculus, or physics class required for engineering majors that contained section data.  We further 
pared down this population by removing students who repeated a course and received zero 
credits as per institution policy and cleaning up any remaining, erroneous section and grade data. 
The net contention of these routines yielded a data set of 161,456 instances of student who ever 
declared an engineering major and their grades within three, core course sections. 

The MIDFIELD schools are all public institutions and are mostly located in the 
southeastern United States, yet their size and diversity help make the results generalizable. These 
partner institutions have larger overall enrollment and engineering programs than average 
compared to the more than 300 colleges with engineering programs. The partners include six of 
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the fifty largest U.S. engineering programs in terms of undergraduate enrollment, resulting in a 
population that includes more than 1/10 of all engineering graduates of U.S. engineering 
programs. MIDFIELD’s female population comprises 22.1 percent of students, which aligns with 
national averages of 20 percent from 1999-200341 and 22 percent in 2005.42    

The construction and Explanation of a simple HLM  

 The simplest way to explain HLM to the researcher adept in regression techniques is to 
write a linear regression formula. For instance, the equation for a line in linear regression is, 

Yi =  β0 + β1Xi, + ei 

 Obviously, this is the equation for a line and hence the name is linear regression.  Here, 
Yi is the dependent variable (or criterion), β0 is the intercept, β1 is the slope, Xi is the predictor 
variable, and ei is the residual (or sometimes as it is colloquially called, the error). 

 In HLM, a standard model equation looks like, 

Yij =  β0j + β1jXi, + eij 

 The only difference between our linear regression model and our HLM here is that the 
HLM model has the added j subscript, which is our nested or clustered unit factor.  This means 
that for every value of our hierarchy there is an outcome (or dependent variable), intercept, slope, 
and residual.  Another way of putting this is that every classroom has its own outcome, intercept, 
slope, and residual values determined by the students in that classroom.  

 For our results presented within this paper, we utilized the simplest form of HLM, which 
is called the intercept-only model, 

Yij =  β0j + eij 

 Because the intercept-only model utilizes only intercepts, it is a simple and ideal tool to 
probe variability within hierarchical structures.13, 14  The intercept-only model is also called the 
null model or the empty model or the fully unconditional model.15   

 The most important calculation to undertake when employing the intercept-only model is 
the intra-class correlation (ICC).  The ICC is a ratio that tells the researcher the degree to which 
the variability discussed in his or her model lies within one structure or another.  For instance, 
where the ICC is given by,	

ܥܥܫ ൌ ߩ	 ൌ 	
߬଴଴

߬଴଴ ൅ ଶߪ
ൌ 	

ܷܰሺ1,1ሻ
ܷܰሺ1,1ሻ ൅ ݁௜௝

 

 The factor τ଴଴ (or UN(1,1) within SAS models) is the variability between levels and σ2 

(or residual within SAS models) is the variability within levels.  In our case for this preliminary 
model, we have the variability of grades between course sections, and the variability of grades 
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within those sections. Here, a value of 0.15 would mean that 15% of the total variability of our 
intercept-only model lies between course sections.  Where the ICC falls under 3%, it has 
traditionally been thought that this threshold indicates that HLM may not gleam useful results 
and the data are better suited to analysis using traditional linear regression. 

Results 

 After performing an intercept-only analysis on the first core chemistry, calculus, and 
physics courses with section data, we produced the following results in Tables 1 (calculus I), 2 
(chemistry I), and 3 (physics I).  Our institutions have been randomly assigned a number that is 
the same for all three tables. Remember, that UN(1,1) is standard notation for  τ଴଴, and in the 
intercept-only that is the between-level variability. Here, that means UN(1,1) is the variability 
between course sections.  The residual value here is eij or σ2, which is the variability within 
course sections. The intraclass correlation coefficient is calculated as explained earlier in this 
paper and reported in all three tables. Finally, the convergence factor, usually designated by ρ 
indicated all of the results were significant and was less than 0.0001 for every calculation 
reported here. We have presented results here for the intercept-only model, and will present 
clustered observation and growth curve models as part of our future work. 

Table 1. Table of results from the first core calculus course  

Institution UN(1,1) SE Residual SE ICC Intercept SE 
ALL 0.2507 0.008947 1.4429 0.00835 0.148028 2.3047 0.009864

1 0.1903 0.01605 1.5184 0.02306 0.111371 2.5309 0.01841
2 0.1096 0.0252 1.6834 0.04697 0.061127 1.9803 0.02991
3 0.1958 0.01844 1.5044 0.02356 0.115163 2.1321 0.02369
4 0.155 0.01523 1.3719 0.02023 0.101513 2.4528 0.02274

5 0.1695 0.0177 1.3168 0.01593 0.114042 2.5186 0.02334
6 0.3222 0.04311 1.6478 0.04825 0.163553 2.3323 0.04033
7 0.04731 0.008621 1.2952 0.01894 0.03524 2.3486 0.02294
8 0.4001 0.0524 1.7531 0.04348 0.185816 2.0184 0.04819
9 0.1743 0.02918 1.5974 0.04361 0.09838 1.8378 0.03316

 

Table 2. Table of results from the first core chemistry course  

Institution UN(1,1) SE Residual SE ICC Intercept SE 
ALL 0.3899 0.01396 1.2209 0.007642 0.242054 2.4514 0.01313

1 0.2668 0.01654 0.9013 0.01319 0.228405 2.9399 0.01897
2 0.09258 0.0194 1.5112 0.03618 0.057726 2.1721 0.02417
3 0.05687 0.00866 1.2014 0.0162 0.045197 2.3037 0.02168
4 0.08957 0.0187 1.1998 0.02855 0.069468 2.548 0.03098
5 0.2365 0.02995 1.35 0.01858 0.14907 2.3691 0.03912
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6 0.5266 0.0616 1.4319 0.0378 0.268879 2.2361 0.04377
7 0.06628 0.01555 0.9488 0.01808 0.065295 2.7636 0.03437
8 0.3878 0.06471 1.6522 0.05703 0.190098 1.8637 0.06203
9 0.1187 0.02301 1.5405 0.03828 0.071541 1.7618 0.03103

 

 

Table 3. Table of results from the first core physics course  

Institution UN(1,1) SE Residual SE ICC Intercept SE 
ALL 0.2238 0.01143 1.1259 0.007235 0.165815 2.4221 0.01405

1 0.1708 0.0199 0.9418 0.01854 0.153514 2.6287 0.02693
2 0.05667 0.01809 1.211 0.03829 0.044704 2.3403 0.02883
3 0.1616 0.01954 1.307 0.01974 0.110037 2.1877 0.03016
4 0.0827 0.01439 1.2179 0.01954 0.063586 2.3778 0.0327
5 0.1252 0.01692 1.2577 0.01894 0.090534 2.3858 0.02867
6 0.6472 0.08008 1.2458 0.03859 0.341891 2.5402 0.05799
7 0.02418 0.004712 0.8266 0.01096 0.028421 2.7459 0.01902
8 0.3066 0.06185 1.3118 0.03934 0.189446 1.8588 0.07346
9 0.2737 0.1001 0.9619 0.07792 0.221512 2.5246 0.1132

 

 

Discussion and Conclusion 

Several conclusions can be drawn by examining Tables 1, 2, and 3.  These tables show 
tremendous variation in the magnitude of the ICC between different institutions.  These range 
from as little as 0.028 to as much as 0.34.  This corresponds to section accounting for as little as 
2.8% of the total variance in final grade to as much as 34% of the variance.  There is also 
variation in the intercept term for each institution, which corresponds to the grand mean of the 
grades assigned for a course at a given institution.  Institutions 2 and 7 are notable in that they 
both display very low variance across all three of the courses investigated in this study.   This 
could imply that these institutions have instituted policies to reduce sectional differences in their 
introductory courses via conscious coordination between sections.  The coordination of course 
grades by a single instructor, a single professor teaching all of the sections of a class, or an 
instructor or instructional team that does not change over multiple years may reduce variance 
between sections.  Not having access to this information is a limitation of this data set.  However, 
these results clearly indicate that the section of a given class can have a significant impact on 
student achievement, a result consistent with the assertions of Vogt, Felder, and Astin.6, 8, 30 P
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In addition to low ICCs, institution 7 also has high intercept values across all three 
courses.  This suggests that institution 7 has a range restriction due to giving out uniformly 
higher grades and passing more students than comparable institutions. 

Grading schemes can also have a significant effect on variance.  In normative grading, 
students are graded in comparison to their peers and grade assignment is generally governed by a 
desired distribution of final grades.  If these distributions are by section such that each section 
has the same distribution, this would have the effect of minimizing variance between sections.  
This would also make it nearly impossible to judge the relative teaching abilities of different 
instructors based on student grades.  On the other hand, if the distribution is across all of the 
sections of a course in a given semester, sectional variance could be much greater with stronger 
sections assigning a greater proportion of high grades and weaker sections assigning more low 
grades. 

In contrast to normative grading schemes, criterion grading evaluates students based on 
their mastery of a predetermined set of learning outcomes.  When this grading scheme is 
employed, discrimination between students is deemphasized in favor of trying to achieve 
mastery.  If the majority of students master the required material, this will result in grade range 
reduction compared to classes employing a normative grading scheme. 

It is also worth noting that there is much less variation in the ICCs for Calculus I than are 
present in both Physics I and Chemistry I due to a variety of possible reasons.  Calculus may be 
somewhat easier to grade consistently than the other two courses due to a clear “right answer” to 
both homework and exam problems and general lack of open-ended assignments.  On the other 
hand, Chemistry and Physics can have problems that are more difficult to grade consistently 
across sections, and laboratory courses leave a significant portion of the grade to the discretion of 
laboratory instructors who may neither teach the corresponding lecture nor grade consistently 
across sections. 

Beyond simply expressing institutional level effects on student performance, Padilla et al. 
note in their 2005 paper the importance of eliminating aggregation bias and misestimated 
standard errors that occur when researchers ignore the nested structures inherent in HLM.36 The 
treatment of HLM in light of aggregation errors by Padilla is elegantly explained as “when an 
explanatory variable can take on different meanings.” (ibid, p. 2) HLM measures mean values at 
each level, so while student grade averages within a section have one meaning, their average at 
the institutional level has another meaning. Padilla et al. noted a 19% variance in grades based 
solely on institutional differences. Their result complements our work, as we noted sectional 
variability on the same order (this is particularly expected since Padilla et al. studied an earlier 
version of the same dataset).  

  Overall, we are pleased with the results from the preliminary stages of our analysis of 
three core courses endemic to engineering curricula in our data set. We hope that the introduction 

P
age 25.1146.11



of such a strong variance of student grades at the course section level generates significant 
discussion in the community.  Although multiple factors have already been suggested that can 
result in sectional differences in grades, the use of additional data from MIDFIELD can shed 
some light on which factors are of greatest importance. A clarification of the factors that result in 
sectional differences will be the subject of continued quantitative study and represents an 
opportunity for qualitative study as well. 
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