
AC 2012-3242: TEACHING ADAPTIVE FILTERS AND APPLICATIONS
IN ELECTRICAL AND COMPUTER ENGINEERING TECHNOLOGY PRO-
GRAM

Prof. Jean Jiang, Purdue University, North Central

Jean Jiang is currently with the College of Engineering and Technology at Purdue University, North
Central, Westville, Ind. She received her Ph.D. degree in electrical engineering from the University
of New Mexico in 1992. Her principal technical areas are in digital signal processing, adaptive signal
processing, and control systems. She has published a number of papers in these areas. She has co-authored
two textbooks: Fundamentals of Analog and Digital Signal Processing, Second Edition, AuthorHouse,
2008; and Analog Signal Processing and Filter Design, Linus Publications, 2009.

Prof. Li Tan, Purdue University, North Central

Li Tan is currently with the College of Engineering and Technology at Purdue University North Central,
Westville, Ind. He received his Ph.D. degree in electrical engineering from the University of New Mexico
in 1992. Tan is a Senior Member of IEEE. His principal technical areas include digital signal processing,
adaptive signal processing, and digital communications. He has published a number of papers in these
areas. He has authored and co-authored three textbooks: Digital Signal Processing:Fundamentals and
Applications, Elsevier/Academic Press, 2008; Fundamentals of Analog and Digital Signal Processing,
Second Edition, AuthorHouse, 2008; and Analog Signal Processing and Filter Design, Linus Publications,
2009.

c©American Society for Engineering Education, 2012

P
age 25.1238.1



 

   Teaching Adaptive Filters and Applications in Electrical and Computer 

Engineering Technology Program   
   

Abstract  
 

In this paper, we present our pedagogy and our experiences with teaching adaptive filters 

combined with applications in an advanced digital signal processing (DSP) course. This course is 

the second DSP course offered in the electrical and computer engineering technology (ECET) 

program according to the current trend of the DSP industry and students’ interests in their career 

development. A significant component of this course is adaptive filtering applications
1-7

. A 

prerequisite for students is a working knowledge of the Laplace transform, Fourier series, 

Fourier transform, z-transform, discrete Fourier transform, digital filter design, and real-time 

DSP coding skills with TMS320C6713, a high-performance floating-point digital signal 

processor
8-9 

(DSP board) by Texas Instruments, acquired through the first DSP course. Although 

adaptive filtering is an exciting topic which allows for the exploration of many real-life 

applications, teaching this topic is often challenging due to its relatively heavy reliance on 

advanced mathematics. It is possible for the traditional mathematics used for the adaptive 

filtering theory to be minimized so that engineering technology students can more easily 

understand and grasp key concepts. With the MATLAB software tool, students can simulate and 

verify different adaptive filtering applications. To enhance hands-on learning, students are 

required to implement adaptive filtering techniques taught during the lectures using a 

TMS320C6713. Furthermore, it can be shown that a TMS320C6713 with its stereo channels 

proves an effective and flexible tool for various DSP implementations.  

 

In this paper, we first focus on describing the pedagogy for teaching adaptive filter principles 

along with MATLAB simulations; then, we illustrate real-time DSP hands-on labs and projects 

with various applications. We will examine the assessment based on our collected data from 

course evaluations, student surveys and course work, and finally we will address possible 

improvement based on our assessment. 

 

I. Introduction 

  

The application of adaptive digital filtering technology has been found widely in modern 

electronic products, communication and control systems, computer peripherals, and multimedia 

devices
1-7

. In the area of digital signal processing (DSP) education for the engineering 

technology curriculum, the adaptive filter theory and techniques are considered to be advanced 

topics to be covered during the student’s senior year. The trend of using adaptive filters in the 

industry has generated an increasing demand for engineering technology graduates with this 

particular working knowledge and skills. Many engineering technology programs have already 

offered a standard initial DSP course in their undergraduate curricula, particularly in the 

electrical and computer engineering technology (ECET) curriculum. The first DSP course 

generally covers basic techniques such as finite impulse response (FIR) filter design, infinite 

impulse response (IIR) filter design, FIR and IIR filter applications, discrete Fourier transform 

(DFT), and the signal spectral algorithm. To keep the pace with the DSP industry, our ECET 

curriculum has advanced to offer a second DSP course covering a broad range of topics which 
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include adaptive filtering, waveform compression and coding, multi-rate DSP, image and video 

processing.  

 

Teaching adaptive filters to ECET students in the second DSP course appears challenging 

because it requires applying relatively advanced mathematics with the optimization theory in a 

matrix form to develop concepts. However, with our teaching pedagogy, this barrier can be 

overcome through illustrating the topic using a single coefficient adaptive filter. MATLAB is a 

necessary tool used to verify adaptive theory and perform simulations of various adaptive 

filtering applications. To motivate our technology students oriented about hands-on experience, 

we required them to perform real-time DSP using a floating-point digital signal processor
8-9

, 

TMS320C6713 (development starter kit), to develop a comprehensive adaptive filtering project 

such as noise cancellation, and to demonstrate their working projects in class.  

 

In this paper, we will describe the course prerequisites, course topics, and outline learning 

outcomes. With a focus on adaptive filtering techniques, we will describe our teaching pedagogy, 

MATLAB simulations, and hands-on real-time DSP labs and projects. Finally, we will examine 

the course assessment according to our collected data from the course evaluations, student 

surveys and course work, and then we will address possible improvement based on our 

assessment. 

 

II. Learning Outcomes and Laboratories 

 

The adaptive filter techniques are covered in our advanced DSP course (ECET 499) offered 

during the senior year, involving a 16-week class schedule with three-hour lectures and three-

hour labs each week. Four weeks are allocated to covering adaptive filters. Prior to this second 

DSP course, the pre-requisite courses are: Introduction to Microcontrollers (ECET 209), Circuit 

Analysis Courses (ECET 207, ECET 257), Analog Network Signal Processing (ECET 307), and 

real-time DSP (ECET 357).  Figure 1 shows a flowchart for the related courses.  

 
Analog Network

Signal Procssing

(ECET 307)

Digial Signal Processing

(ECET 357)

Advanced DSP

(ECET 499)

Circuit Analysis

(ECET 207)

(ECET 257)

Microcontrollers

(ECET 209)

 
           Figure 1.  Flowchart of DSP-related courses. 

 

As shown in Figure 1, students in ECET209 gain background knowledge about the processor 

architecture, interface concepts, and basic C programming skills. The required skills of complex 

algebra and circuit analysis are covered in circuit courses such as AC Circuit Analysis (ECET 

207) and Power and RF Electronics (ECET 257). Our Analog Network Signal Processing (ECET 

307) course
10

 studies very important fundamental subjects: the Laplace transform, circuit 
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analysis using the Laplace transform, the Fourier series, and filter design concepts. These 

subjects are used extensively in the real-time DSP course (ECET 357), in which FIR filter 

design, IIR filter design, discrete Fourier transform (DFT), and signal spectrum and their 

applications are investigated. More importantly, the students are equipped with programming 

skills for using a floating-point digital signal processor, TMS320C6713, after successfully 

completing the first DSP course (ECET 357).   

 

The advanced DSP course (ECET 499) as shown in Figure 1 covers the following key topics: (1) 

adaptive filters with applications such as noise cancellation, system modeling and echo 

cancellation; (2) waveform coding and compression including pulse code modulation (PCM), 

mu-law compression, adaptive differential PCM (ADPCM) and windowed discrete-cosine 

transform (DCT); (3) multi-rate DSP including sampling rate conversion and polyphase 

implementations; (4) image equalization and noise filtering; (5) image segmentation, pseudo-

color generation and JPEG data compression; (6) other advanced DSP applications. These topics 

are covered through Chapters 10 to 13 in the DSP textbook
1
. The labs and projects are listed in 

Table 1. 

 

       Table 1. List of labs for ECET 499. 

Lab 1. Adaptive noise cancelling 

Lab 2. Adaptive system modeling  

Lab 3. PCM codec, mu-law compression, and ADPCM codec, transform coding with 

applications to speech signal 

Lab 4. Sampling rate conversion and polyphase implementations 

Lab 5. Image processing basics 

Lab 6. Image processing: edge detection, pseudo color generation and JPEG color 

image compression 

Project: Real-time DSP project: tonal noise cancellation 

 

Notice that for labs 1-4 and course projects, students are required to perform MATLAB 

simulations first and then are required to focus on hands-on real-time DSP implementations 

using the TMS320C6713 board(s). The specific learning outcomes for adaptive filtering 

techniques are listed below: 

 

Learning outcome 1: Given an objective function such the mean squared error (MSE) function, develop an adaptive 

filter that seeks to minimize the given objective function by iteratively adjusting its parameters (such as its impulse 

response coefficients) to achieve the design goal in real time and under varying conditions.  

Learning outcome 2: Apply real-time adaptive filtering techniques for applications such as noise cancellation and 

system modeling. 

 

Labs 1-2 and course project listed in Table 1 are designed to fulfill these learning outcomes. 

 

A. Pedagogy for Teaching Adaptive Filter Techniques 

 

Our pedagogy for teaching adaptive filters includes the following steps: (1) using a single 

coefficient FIR filter to develop its Wiener filter solution; (2) introducing a single coefficient 
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steepest descent algorithm; (3) developing a single coefficient least mean square (LMS) 

algorithm; (4) extending a single coefficient LMS adaptive FIR filter to a standard LMS adaptive 

FIR filter; (5) performing MATLAB simulations for concept verifications.   

 

Figure 2 shows a Wiener filter for noise cancellation, where a single coefficient filter is used for 

illustration; that is, ( ) ( )y n wx n . w  is the adaptive coefficient and ( )y n  is the Wiener filter 

output, which approximates the noise ( )n n  in the corrupted signal. 

 




 e n( )

x n( )

d n s n n n( ) ( ) ( ) 

y n( )
Wiener fi l ter

Output

Noise

Signal and noise

 
Figure 2 Wiener filter for noise cancellation. 

 

The enhanced signal ( )e n is given by    

( ) ( ) ( )e n d n wx n   

Taking statistical expectation of the square of error leads to a quadratic function  
2 22J wP w R    

where 2 ( )J E e n     is the mean square error or output power. When it is minimized, the noise 

power is maximally reduced. Since 2 2 ( )E d n      (auto-correlation or power of the corrupted 

signal),  ( ) ( )P E d n x n  (cross-correlation), and 2 ( )R E x n     are constants, J  is a quadratic 

function of w  as shown below: 
J

w
w*

Jmin

 
Figure 3 MSE quadratic function. 

 

The best coefficient (optimal) *w  is unique which is corresponding to the minimum MSE error 

minJ .  By taking derivative of J  and setting it to zero leads the solution as 
* 1w R P  

A couple of numerical examples for finding the minimum locations of quadratic functions are 

given to develop the optimization concepts. Next, a steepest descent algorithm that is capable of 

minimizing the MSE function sample by sample to locate the filter coefficient(s) is introduced as 

follows: P
age 25.1238.5



1n n

dJ
w w

dw
    

constant controlling speed of convergence   and /dJ dw  is the gradient of the MSE function. 

The steepest descent method is more efficient since the matrix inverse of 1R  (for N filter 

coefficients) is not needed. Several numerical examples with a single coefficient filter are 

provided to show how iterations approach the optimal coefficient. To develop the LMS 

algorithm in terms of the sample based processing, a gradient /dJ dw  can be approximated by its 

instantaneous value; that is, 

 
 ( ) ( )

2 ( ) ( ) 2 ( ) ( )
d d n wx ndJ

d n wx n e n x n
dw dw


     

Substituting the instantaneous /dJ dw  to the steepest descent algorithm, the LMS algorithm for 

updating a single coefficient is achieved: 

1 2 ( ) ( )n nw w e n x n    

Finally by omitting iteration time index n  and extending one coefficient filter to N  coefficient 

filter, a standard LMS algorithm is obtained and listed in Table 2. 

 

 Table 2. LMS adaptive FIR filter with N filter coefficients. 

             (1)  Initialize (0)w , (1)w , … ( 1)w N   to arbitrary values 

             (2)  Read ( )d n , ( )x n ,  and perform digital filtering 

  ( ) (0) ( ) (1) ( 1) ( 1) ( 1)y n w x n w x n w N x n N         

             (3)  Compute the output error 

  ( ) ( ) ( )e n d n y n   

             (4) Update each filter coefficient using the LMS algorithm 

          for 0, , 1i N   

  ( ) ( ) 2 ( ) ( )w i w i e n x n i    

 

To illustrate the functionality of an adaptive filter, MATLAB examples for noise cancellation 

and system modeling are provided. The principle of noise cancellation is shown in Figure 4. 

  



y n( )

d n s n n n( ) ( ) ( ) 

x n( )

e n d n y n s n( ) ( ) ( ) ~( )  





ADC

ADC

DAC

Adaptive fi lter

LMS algorithm

Noise

Signal and noise Error signal

 
Figure 4.  Noise canceller using an adaptive filter. 

  

The noise cancellation system in Figure 4 is assumed to have the following specifications: a 

sample rate = 8000 Hz; speech corrupted by a Gaussian noise with a power of 1 and delayed by 5 

samples from a white noise source; and an adaptive FIR filter used to remove the noise, where 
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the number of FIR filter coefficients = 21 and the convergence factor for the LMS algorithm is 

chosen to be 0.01. The speech waveforms and speech spectral plots for the original, corrupted 

reference noise and the clean one are plotted in Figure 5, respectively.  It is observed that the 

enhanced speech waveform and spectrum are very close to the originals. The LMS algorithm 

converges after approximately 400 iterations and is very effective for noise cancellation.   
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Figure 5. Original speech, corrupted speech, reference noise and clean speech. 

 

Another typical MATLAB example is system modeling, in which an adaptive FIR filter is 

applied to track the behavior of an unknown system by monitoring the unknown system’s input 

and output. Figure 6 depicts the configuration of the system modeling. 
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(a). Unknown system frequency response 

  




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Input

Output

 
 

(b) Block diagram 

 

Figure 6 Adaptive filter for system modeling. 
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As shown in the figure, ( )y n  is approaching the unknown system output during the adaptive 

process. Since both the unknown system and the adaptive filter use the same input, the transfer 

function of the adaptive filter will approximate the unknown system’s transfer function. In the 

simulation, the unknown system shown in Figure 6 is assumed to be a 4
th

-order band-pass IIR 

filter, in which 3-dB lower and upper cut-off frequencies are 1400 Hz and 1600 Hz with a 

sampling rate of 8000 Hz.  The system input contains 500 Hz, 1500 Hz, and 2500 Hz tones and 

its waveform ( )x n  is displayed in the left top plot in Figure 7.  The output of the unknown 

system is expected to contain the 1500 Hz tone only, since the other two tones are rejected by the 

unknown system. An adaptive FIR filter with 21 coefficients is used to model the band-pass 

unknown system, and the convergence factor of the adaptive filter is set to be 0.01.  In the time 

domain, the output waveforms of the unknown system ( )d n  and adaptive filter output ( )y n  are 

almost identical after the LMS algorithm converges around 70 samples. The error signal ( )e n  is 

also plotted to show how the adaptive filter keeps tracking the unknown system output with no 

difference. 
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Figure 7 Unknown system output, adaptive filter output and error output. 

 

In the frequency domain, the first plot shows the input frequency components of 500 Hz, 1500 

Hz, and 2500 Hz. The second plot shows the unknown system output spectrum with the 1500 Hz 

tone while the third plot displays the adaptive filter output spectrum with the 1500 Hz tone. It is 

apparent that the adaptive filter tracks the characteristics of the unknown system.   

 

B. Real-time Laboratory Content 

 

Each adaptive filtering lab consists of two portions: MATLAB simulation and real-time DSP 

implementation with a single DSP board. The MATLAB simulation must be completed prior to 

the real-time implementation. We only describe real-time hands-on labs and projects. A single 

DSP board setup and program segment for verifying input and output signals are shown in 

Figure 8a and Figure 8b, respectively, where the sampling rate is 8000 samples per second.  
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Figure 8a Real-time DSP laboratory setup. 

 
float xL[1]={0.0}; 

float xR[1]={0}; 

float yL[1]={0.0}; 

float yR[1]={0,0}; 

interrupt void c_int11() 

{ 

      float lc; /*left channel input */ 

      float rc; /*right channel input */ 

  float lcnew; /*left channel output */ 

  float rcnew; /*right channel output */ 

  int i; 

//Left channel and right channel inputs 

AIC23_data.combo=input_sample(); 

     lc=(float) (AIC23_data.channel[LEFT]); 

     rc= (float) (AIC23_data.channel[RIGHT]); 

// Insert DSP algorithm below  

 xL[0]=lc; /* Input from the left channel */ 

 xR[0]=rc; /* Input from the right channel */ 

     yL[0]=xL[0];  /* simplest DSP equation for the left channel*/ 

     yR[0]=xR[0];  /* simplest DSP equation for the right channel*/ 

// End of the DSP algorithm 

      lcnew=yL[0]; 

      rcnew=yR[0]; 

      AIC23_data.channel[LEFT]=(short) lcnew; 

      AIC23_data.channel[RIGHT]=(short) rcnew; 

      output_sample(AIC23_data.combo); 

} 
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Figure 8b. Program segment for verifying input and output. 

 

A configuration for Lab 1 (adaptive noise cancellation) is shown in Figure 9a, where the primary 

signal is a generated sinusoid and corrupted internally by a reference noise from the analog to 

digital conversion (ADC) channel. The reference noise can be set as a tonal noise fed via a 

function generator or from other noise source using microphone and amplifier. The output 

(difference between the corrupted signal and the adaptive filter output) presents a restored clean 

signal, similar to the original one from the internal digital oscillator. The sample program 

segment is given in Figure 9b. 

 







Noise

from line in

Sinewave generator

Adaptive

FIR filter

x n n( ) ( ) 

( )y n ADF output

e n( ) Output


( )d n corrupted signal

( )Channel simulated

( ) sinusoidyy n 

( )n n noise
DAC

ADC

( )xn n

 

TI TMS320C6713

DSP Board

Left Line In

(LCI)

Right Line In

(RCI)

Left Line Out

(LCO)

Right Line Out

(RCO)

Noise source

(from generator)

Oscilloscope

( )xn n
( )e n

RCI not used

RCO not used

 
 

           Figure 9a Laboratory setup for noise cancellation using a LMS adaptive filter. 

 

 
float b[2]={0.0, 0.587785}; /*Numerical coefficients for the 800 Hz digital oscillator*/ 

float a[3]={1, -1.618034, 1};/*Denominator coefficients for the digital oscillator*/ 

float x[2]={5000, 0.0}; /*Set up the input as an impulse function*/ 

float yy[3]={0.0,0.0,0.};  

float xn[20]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; /*Reference input buffer*/ 

float w[20]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; /*adaptive filter coefficients*/ 

float d[1]={0.0}; /* Corrupted signal*/ 

float y[1]={0,0}; /* Adaptive filter output */ 

float e[1]={0.0}; /* Enhanced signal */ 

float mu=0.000000000004; /*Adaptive filter convergence factor*/ 

interrupt void c_int11() 

{ 

      float lc; /*left channel input */ 

      float rc; /*right channel input */ 

  float lcnew; /*left channel output */ 

  float rcnew; /*right channel output */ 

  int i; 

//Left channel and right channel inputs 

AIC23_data.combo=input_sample(); 

     lc=(float) (AIC23_data.channel[LEFT]); 

     rc= (float) (AIC23_data.channel[RIGHT]); 
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// Insert DSP algorithm below  

    yy[0]=b[0]*x[0]+b[1]*x[1]-a[1]*yy[1]+a[2]*yy[2]; /* Generate 800 Hz tone*/ 

    d[0]=yy[0]+0.5*xn[5]; /*Corrupted signal: d(n)=yy(n)+0.5*xn(n-5)*/ 

    for(i=1;i>0;i--) /*Update the digital oscillator input buffer*/ 

    { x[i]=x[i-1]; } 

     x[0]=0; 

    for(i=2;i>0;i--) /*Update the digital oscillator output buffer*/ 

    { yy[i]=yy[i-1]; } 

     for(i=19;i>0;i--) /*Update the reference noise buffer  input buffer*/ 

    { xn[i]=xn[i-1]; } 

     xn[0]=lc; 

// Adaptive filter 

    y[0]=0; 

    for(i=0;i<20; i++) 

    { y[0]=y[0]+w[i]*xn[i];} 

     e[0]=d[0]-y[0]; /* Enhanced output */ 

     for(i=0;i<20; i++)  

    { w[i]=w[i]+2*mu*e[0]*xn[i];} /* LMS algorithm */ 

// End of the DSP algorithm 

      lcnew=e[0]; /* Send to DAC */ 

      rcnew=rc; /* keep the original data */ 

      AIC23_data.channel[LEFT]=(short) lcnew; 

      AIC23_data.channel[RIGHT]=(short) rcnew; 

      output_sample(AIC23_data.combo); 

} 

 

 

Figure 9b. Program segment for noise cancellation in Lab 1. 

 

The implementation of system modeling in lab 2 is displayed in Figure 10a, where the input is 

fed from a function generator. The unknown system is a band-pass filter with a lower cut-off 

frequency of 1400 Hz and an upper cut-off frequency of 1600 Hz. When the input frequency is 

swept from 200 Hz to 3000 Hz, the output shows a maximum peak when the frequency is dialed 

to around 1500 Hz. Hence, the adaptive filter acts like the unknown system. Figure 10b shows 

the sample program segment. 
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Figure 10a. Laboratory setup for system modeling using a LMS adaptive filter. 

 

 
/*Numerical coefficients */ 

/*for the bandpass filter (unknown system) with fL=1.4 kHz, fH=1.6 kHz*/ 

float b[5]={ 0.005542761540433,  0.000000000000002,  -0.011085523080870,  

                   0.000000000000003   0.005542761540431};  

/*Denominator coefficients */ 

/*for the bandpass filter (unknown system) with fL=1.4 kHz, fH=1.6 kHz*/ 

float a[5]={ 1.000000000000000,  -1.450496619180500.  2.306093105231476, 

                  -1.297577189144526   0.800817049322883}; 

float xn[40]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 

                        0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; /*Reference input buffer*/ 

float w[40]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 

                      0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; /*adaptive filter coefficients*/ 

float d[1]={0.0}; /*Unknown system output */ 

float y[1]={0,0}; /* Adaptive filter output */ 

float e[1]={0.0}; /* Error signal */ 

float mu=0.000000000002; /*Adaptive filter convergence factor*/ 

interrupt void c_int11() 

{ 

      float lc; /*left channel input */ 

      float rc; /*right channel input */ 

  float lcnew; /*left channel output */ 

  float rcnew; /*right channel output */ 

  int i; 

//Left channel and right channel inputs 

AIC23_data.combo=input_sample(); 

     lc=(float) (AIC23_data.channel[LEFT]); 

     rc= (float) (AIC23_data.channel[RIGHT]); 

// Insert DSP algorithm below  

    for(i=39;i>0;i--) /*Update the input buffer*/ 

    { x[i]=x[i-1]; } 

     x[0]=lc; 

    d[0]=b[0]*x[0]+ b[1]*x[1]+ b[2]*x[2]+ b[3]*x[3]+ b[4]*x[4] 

              -a[1]*d[1]-a[2]*d[2]- a[3]*d[3]- a[4]*d[4]; /*Unknown system output*/ 

// Adaptive filter 

    y[0]=0; 

    for(i=0;i<40; i++) 

    { y[0]=y[0]+w[i]*x[i];} 

     e[0]=d[0]-y[0]; /* Error output */ 

     for(i=0;i<40; i++)  

    { w[i]=w[i]+2*mu*e[0]*x[i];} /* LMS algorithm */ 

// End of the DSP algorithm 

      lcnew=y[0]; /* Send the tracked output */ 

      rcnew=e[0]; /* Send the error signal*/ 

      AIC23_data.channel[LEFT]=(short) lcnew; 

      AIC23_data.channel[RIGHT]=(short) rcnew; 

      output_sample(AIC23_data.combo); 

} 

 

 

Figure 10b. Program segment for system modeling in Lab 2. 
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Finally, a course project is assigned. Students are divided into groups (two persons per group) to 

develop their selected DSP projects and to generate their design reports. At the end of the 

semester, everybody is required to demonstrate his/her project to the entire class so that the 

students can learn from each other. During the project’s developing phase, students can obtain 

advice from their instructor and work on their projects under the supervision of their instructor.  

 

Figure 11 shows an example of a tonal noise reduction system that uses two TI DSP boards. The 

first DSP board is used to create a real-time corrupted signal mixed by the mono audio source 

(Left Line In [LCI1]) from any audio device, and the tonal noise (Right Line In [RCI1]) 

generated from the function generator. The output (Left line Out [LCO1]) is the corrupted signal, 

which is fed to the second DSP board for a noise cancellation application. The second DSP board 

receives the corrupted signal  ( ) ( ) ( )d n s n n n   from channel LCI2 (Left Line In). The tonal 

noise ( )n n  in the corrupted signal is then cancelled by the adaptive FIR filter output ( )y n  using 

the reference noise input ( )x n (Right Line In [RCI2]). Finally, the enhanced signal ( )e n  is sent 

to the output (Left Line Out [LCO2]) to produce a clean mono audio signal. 

 



y n( )

d n s n n n( ) ( ) ( ) 

x n( )

e n d n y n s n( ) ( ) ( ) ~( )  





ADC

ADC

DAC

Adaptive fi lter

LMS algorithm

Noise

Signal and noise Error signal

 
(a) Block diagram for adaptive noise cancellation 
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Right Line Out

RCO2
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TI TMS320C6713

DSP Board 1

Left Line In

LCI1

Right Line In

RCI1

Left Line Out

LCO1
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RCO1

Tonal

Reference

Noise

Corrupted

Audio

Mixing audio

and tonal noise
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fi ltering

Enhanced

Audio

( )s n

( )x n ( )d n

( )x n

( )s n

RCO1 not used

RCO2 not used

 
(b) Laboratory setup for adaptive noise cancellation. 

 

Figure 11 Tonal noise cancellation with the LMS adaptive FIR filter. 
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III. Learning Outcome Assessment 

 

The assessment presented here consists of a total of 12 student responses and is derived from our 

collected data from the course offered in spring of 2010 and fall of 2010. At the end of each 

semester, we conducted a student self-assessment. A student survey was given before the final 

exam asking each student to evaluate his/her achievement in the learning outcomes. Students 

were asked to select one of the following five (5) choices: understand well, understand, 

somewhat understand, somewhat confused, and confused. For statistical purposes, the five 

choices were assigned the scores of 5, 4, 3, 2, and 1, respectively. The average rating scores for 

learning outcomes are listed in row 2 Table 3. 

                                   Table 3. Student survey and instructor assessment. 
Learning Outcomes O1 O2 

Student Survey 4.3 4.5 

Instructor assessment 4.1 4.6 

 

An instructor assessment based on the final exams and laboratory projects was also conducted. In 

order to do this, we designed a final exam in which the course learning outcome 1 was covered 

by the problems. We then computed the average points from all the students for the problem(s). 

The average rating on a scale from 1 to 5 was obtained by dividing the average points by the 

designated points for that problem(s) and then multiplying the result by 5. Outcome 2 was 

similarly assessed based on the student’s adaptive filter labs and projects. The instructor 

assessment is included in row 3 of Table 3. 

 

The rating scores from the student survey and the ones from the instructor were consistent. The 

rating for course leaning outcome 1 (O1) had a slightly bigger gap, in which the score from 

instructor rating was lower than the one from the student survey by 0.2. There is a smaller gap 

for O2. These discrepancies indicate that our ECET students were strong in hand-on 

applications. 

 

We also conducted another student survey regarding our real-time adaptive filter labs. A set of 

questions, which are listed in Table 4, was given to students for evaluation. The students were 

allowed to select one of the following five (5) choices: strongly agree, agree, somewhat agree, 

disagree and strongly disagree. The corresponding rating scores were designated as 5, 4, 3, 2, and 

1, respectively. Each average rating score is listed in Table 5. 
 

      Table 4. Survey questions for real-time DSP labs. 
Q1. Do you feel you can significantly grasp concepts of adaptive signal 

processing by working on real-time DSP coding? 

Q2. Are you excited to work on real-time adaptive filter labs and projects? 

Q3. Do you feel that real-time adaptive filtering is absolutely necessary in this 

course? 

Q4. Does real-time coding of adaptive filters improve your problem solving 

ability? 

Q5. Do you want more real-time adaptive filtering labs and projects in this 

course? 

Q6. Do you want to learn more on DSP subjects and applications if possible in 
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the future? 

 

 

              Table 5. Student survey for real-time adaptive filter labs. 
Question No. Q1 Q2 Q3 Q4 Q5 Q6 

Student Survey 4.3 5.0 4.8 4.7 4.8 4.8 

 

The average rating scores shown in Table 5 indicated the following: 

 

(1)  Students strongly agreed that learning adaptive filters should involve real-time 

adaptive filter labs, which improved their problem solving ability.  

(2) Most of the students remained excited about the course, since the hands-on real-time 

laboratories motivated them.  

 (3) Students were eager to learn more about real-time adaptive filter subjects.  

(4) The rating score for grasping adaptive concepts from adaptive filter labs was 

relatively low in comparison to the others. This indicated that students had not only learnt 

concepts from labs but also from class lectures, homework assignments, and MATLAB 

simulations. 

 

V. Course Improvement 

  

Based on our experiences in teaching adaptive filters with real-time DSP labs, we felt that the 

topic is well covered with suitable lectures and laboratories. We also felt that one particular 

prerequisite course, Real-time Digital Signal Processing (ECET 357), plays a very important role 

for students’ success in the second DSP course. We will continue to keep the standard in 

developing student real-time DSP skills. We would also like to encourage students to develop 

more comprehensive and challenging projects in the area of adaptive filtering such as echo 

cancellation, active noise control, adaptive IIR filters, etc.  

 

VI. Conclusion 

 

We have presented our pedagogy and our experiences with teaching adaptive filter techniques 

with both MATLAB simulations and real-time adaptive filter laboratories. From our assessment, 

we have found that hands-on real-time adaptive filter labs with practical applications can 

motivate students to achieve learning objectives and can increase students’ levels of interest in 

the area of DSP. We also expect that students will apply their gained knowledge and skills in 

adaptive filters to their senior design projects. 
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