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Universal Range Data Acquisition for Educational Laboratories Using 
Microsoft Kinect 

Abstract 

Many experiments conducted in engineering and science laboratories involve the acquisition of 
range data such as linear or angular position, velocity and acceleration, distance, displacement, etc. 
This type of data acquisition (DAQ) is accomplished by sensors, DAQ measurement hardware and 
a computer with programmable software. This approach to DAQ can cause a series of problems 
hampering its implementation in educational laboratories. For instance, many sophisticated 
sensors (e.g. laser scanners) and the DAQ hardware are expensive, often the sensors and DAQ 
hardware and peripheral devices require modifications for being reused in other applications and 
most experimental setups need to be calibrated before each measurement. These facts tend to 
increase the up-front cost of the experimental devices and add to the required operating time. 
Therefore, low-cost range sensors such as the Microsoft Kinect could become a cost-effective and 
versatile DAQ alternative. Furthermore, Kinect has acceptable performance regarding sensitivity, 
accuracy, stability and reliability as well as low error rates, cost and power consumption. 

In this paper, the concept of using Kinect as a substitute range DAQ is presented and a prototype 
implementation targeting educational experiments is introduced. This system has several attractive 
features besides low cost, including that it (in conjunction with appropriate software) can be 
trained to recognize and remember multiple objects, is able to track these objects simultaneously, 
does neither need to be customized nor modified for measurements in different applications, and 
uses all the surface data (as opposed to single-point tracking) to calculate the positions and 
deformations of objects, which results in low drifting error. Taking advantage of these desirable 
characteristics, Kinect is believed to have the potential for becoming an economical and versatile 
tool for adoption in a wide variety of educational laboratories. 

1. Introduction 

A data acquisition system is usually defined as an electronic instrument or group of interconnected 
electronic hardware apparatus used for the measurement and quantization of analog signals for 
digital analysis or processing of certain physical phenomena [1]. Compared to traditional hands-on 
only laboratories, experiments equipped with a DAQ system can hold considerable value for the 
students’ learning outcomes. The students can develop a better understanding of the investigated 
phenomena because the efficiency of the data-gathering process makes it easy to repeat the 
experiment several times. Repeating experiments also enables the students to develop proficiency 
in instrumentation and measuring techniques. Running multiple experiments under different 
conditions enables the students to analyze a more complete set of data and to check the validity 
and/or limitations of the theoretical models, principles and assumptions, and ultimately to acquire 
a better understanding of the underlying physical phenomena. Furthermore, the efficiency gained 
by using DAQ systems can also assist the instructor in developing approaches to promote 
collaboration and teamwork activity among the students. Finally, the reduction in time of each run 
of the experiment can also reduce the number of passive participants (known as observers) in the 
experiment [2]. 

When designing a DAQ system for educational experiments, certain requirements are considered 
as fundamental. The time needed for the students to learn to use the system should be as short as 
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possible, the system should not be too complicated to operate, the students should be able to add 
resources (i.e. a new apparatus) to the system during the learning process as their level of 
knowledge increases, and the system should be robust enough to prevent certain kinds of error [3]. 
Successfully designing a suitable DAQ system that satisfies the above-mentioned requirements 
even for experienced engineering students is quite difficult from an educational point of view. 
Also, the availability and continuous development of many sensors, signal conditioning circuits 
and actuators makes it difficult to set up a well functioning and inexpensive educational DAQ 
framework [4]. 

One of the fundamental capabilities of a DAQ system is the possibility to adapt it to different 
applications. For students to conduct different experiments, the instructors should be able to easily 
modify the existing DAQ systems instead of purchasing new ones. However, in current DAQ 
systems, the sensors and signal conditioning circuits need significant modifications and calibration 
before they can be used in new applications, which adds to the operating time. Also, many of the 
sophisticated sensors are expensive, which limits their accessibility to many educational 
institutions [5]. Therefore, the Microsoft Kinect becomes a promising alternative as range data 
sensor, with the associated benefits of being inexpensive, suitable for being modified as universal 
sensor used in different applications and capable of producing acceptable measurement results. 

2. Using Kinect as Promising DAQ Alternative 

The Microsoft Kinect system consists of a horizontal bar with built-in cameras, an accelerometer, 
a structured light projector and a microphone array. On the horizontal bar, there are three sensors: 
two infrared laser sensors used to acquire depth data with a range of 0.6-6.0 m and a RGB (red, 
green and blue color mode) camera with 640×480 pixels. The angular range of the cameras is 
57°× 43° (horizontal × vertical), in which the vertical range can be extended to 54° by using the tilt 
motor [6,7]. The depth data is designed to have 11 bits, which provides 2048 levels of sensitivity 
[8]. 

Since its release in November 2010, Kinect has been proved to have great potential for 
applications in various areas. A fall-detection system for the elderly and the vulnerable was 
presented [9]. Similarly, the possibility to use Kinect in physical rehabilitation for young adults 
with motor disabilities was explored [10]. The two applications mentioned above, along with 
many other potential opportunities, were all developed based on the skeleton tracking feature of 
Kinect. Besides skeleton tracking, a virtually unlimited number of possible applications can be 
realized through direct computing using the 3D point cloud generated by the Kinect sensor. 
Examples include 3D object scanning and surface reconstruction [11], hand-gesture recognition 
[12], indoor mapping [13], etc. The application introduced in this paper is but one example of 
manipulating 3D point clouds. 
The development of so many applications using Kinect in such as short time is possible because of 
its outstanding technical features. The Kinect has a low error value, the random error of depth 
measurements increases from a few mm to 4 cm as the distance increases to the maximum of the 
range. A properly calibrated Kinect sensor does not produce larger systematic error than a 
sophisticate laser scanner [14]. When the sensor is operating at a 30 Hz frame rate, the relative 
latency is found to be 106 ms on average, which makes real time applications possible. Also, 
Kinect’s lateral resolution is measured to be 3 mm at a distance of 2 m, which is sufficient for 
comparatively less sophisticate application [15]. The accuracy of a calibrated Kinect sensor turns 
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out to be +/-1 mm, which is very precise compared to the accuracy of +/-1 cm of a Kinect sensor 
that is not calibrated [16]. 

On the down side, Kinect has comparatively low x/y resolution and depth accuracy for 
applications such as 3D scanning. The density of points decreases with increasing distance, which 
leads to a low depth resolution at large distances (7 cm at the maximum of the range) [14]. These 
disadvantages need to be considered when developing related applications. 

3. Algorithms Used for Motion Detection 

3.1 Introduction 

The Kinect system generates a point cloud with 640×480 pixels, each associated with their depth 
data and RGB value. In order to employ the Kinect as a range sensor as proposed, one needs to be 
able to use point cloud data to identify objects and track their motions. In section 3.2, two common 
algorithms (Lucas-Kanade [17] and Horn-Schunck [18]) will be summarized, which are used for 
tracking unidentified objects. These techniques are helpful when one needs to determine what the 
objects’ motions are and when they occur, instead of finding their shapes and deformations, and 
they require only pixel brightness, which can be derived from the RGB data. In section 3.3, a 
simple technique that uses only the depth data from the point cloud will be introduced to track 
multiple moving objects. In section 3.4, a combination of algorithms using both depth and RGB 
data will be introduced, which will then be proved to be best suitable for our application. 

3.2 Lucas-Kanade and Horn-Schunck Methods 

Methods used to track unidentified objects involve tracking significant key points rather than 
extended objects. The term key points (also called corners) refers to points with a strong gradient 
of the pixel value (in our case, the brightness derived from the RGB value) in two orthogonal 
directions. These key points are unique and have a good chance of being identifiable again in the 
subsequent picture frames. 

The Lucas-Kanade method relies only on local information that is derived from a small window 
around the point of interest. This is the reason that this method can be used only in sparse context 
(i.e. objects of simple geometry and texture, low image noise, etc.). In order to employ this 
method, a corner to be tracked needs to be identified first. Then, a window consisting of N×M 
pixels needs to be established (for simplicity, a N×N window was selected here). Finally, the 
motion direction vector [ ]Tvu  can be calculated from the following 2N equations: 

( ) ( )
( ) ( )

( ) ( )

( )
( )

( )

















−=




























Nt

2t

1t

NyNx

2y2x

1y1x

PI

PI
PI

v
u

PIPI

PIPI
PIPI


 

where xI  and yI  are the spatial derivatives of the brightness value of one pixel compared with the 
brightness values of the neighboring pixels in the two orthogonal directions for the first image and 

tI  is the derivative of the brightness of the same pixel between different images at different times. 
The system of equations can be solved using least-squares minimization. 
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The Lucas-Kanade method [17] is based on certain assumptions, namely brightness constancy, 
spatial coherence and temporal persistence [19]. The pixel data (in this case, the brightness) of a 
certain point does not change from frame to frame, neighboring points on the same surface should 
all undergo similar motions, and the motions of points change only slowly with time. The 
requirement of small motions is especially difficult to satisfy in a video camera running at frame 
rates of 30 Hz as in our target application, in which large and non-coherent motions are 
commonplace. For these reasons, the Lucas-Kanade method would exhibit a week performance in 
our case. 

The Horn-Schunck method [18] is also based on the brightness constancy assumption. 
Furthermore, it assumes smoothness in the optical flow (i.e. the pattern of the apparent motion of 
objects, surfaces and edges [20]) over the whole image by minimizing the distortions in the flow. 
The direction vector [ ]Tvu  of points of interest can be computed from the following relation: 
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in which ∆  is the Laplace operator and α  is a regularization constant. Larger values of α  lead to 
smoother motion flow vectors. 

Compared to the Lucas-Kanade method, the Horn-Schunck method produces a smoother flow and 
global information instead of local information. Furthermore, it uses more than two frames, thus 
rendering the derivatives more accurate. On the other hand, this method produces a larger number 
of optical flow vectors, is too sensitive to image noise [21], causes sharp boundaries between 
objects and their background to become distorted into smooth shapes, and the multi-time 
calculation using multiple frames makes this method slow [22]. These characteristics make the 
Horn-Schnuck method unsuitable for the application presented here. 

3.3. Depth Data Method 

A simple method using only the depth data of the point cloud is commonly implemented in a 
variety of simple applications and is available in almost all libraries for dealing with point cloud 
data processing [23]. This method only requires one to record and compare two depth maps ( )tD  
and ( )ttD ∆+ , and at the point of interest, to compare the values of ( )tD nm ,  and ( )ttD nm ∆+, , 
where the indices m and n refer to the position of the pixel in an image. If the difference of the 
pixel between two maps is larger than a threshold value α , then this point is classified as a moving 
point. Then, the algorithms automatically merges the points located near the point of interest if 
they have similar depth values (i.e. have a smaller depth data difference than a threshold value β ), 
and subsequently those points are considered as being part of the same object. 

It can be seen that this method has several disadvantages. First of all, the threshold values α  and 
β  need to be defined by the user, which may require some trial and error. Then, the movement of 
the objects to be tracked also needs to be slow enough in order to prevent the result from becoming 
noisy, but not slow enough such that no depth change can be detected within two consecutive 
frames. Also, the moving object needs to have a significantly different depth value from those of 
the points near it. Otherwise, the algorithm may mistake environment points for points of the 
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object. These shortcomings hamper the use of this simple algorithm in the universal sensor 
application introduced in this paper. 

3.4 Hybrid Algorithm 

In the application of using Kinect as range sensor, the system needs to first recognize the moving 
objects and then track their motions accordingly. Some applications may even involve identifying 
the moving objects’ deformations. Furthermore, the system should be able to work at flexible 
environments, including the case where the background is chaotic and possibly changing over 
time. Under those assumptions, the two methods briefly summarized above become unsuitable and 
cannot produce the desired results. In this section, an efficient algorithm that uses both depth and 
RGB data is introduced. First, the depth data method introduced in Section 3.3 above is used to 
detect the potentially moving area, which is fast due to the method’s simplicity. Then, a search for 
the moving objects that are already programmed to be recognizable to the system is conducted in 
the local area where motions are most likely to occur. 

Algorithms for object recognition using 2D pixels generated by cameras or 3D point clouds 
created by 3D scanners represent mature technologies and large numbers of publications 
describing them are available. Also, a lot of algorithms have been modified to interact with the 
Kinect system, such as the ‘Instance Distance Learning’ algorithm used to detect objects from 
pre-built RGB-D datasets [24]. However, in our case of an educational range sensor application, 
the objects that need to be tracked usually have simple geometries and surface textures, such as 
spheres, cubes, cylinders, etc. In addition, those objects can be considered as rigid bodies, i.e. they 
experience no noticeable deformation in most scenarios. Therefore, algorithms designed to 
recognize complicated surfaces and geometries become overqualified and too time consuming in 
these cases. Algorithms using 2D or 3D data need to be traded off for better results such as 
introduced in [25], where 3D data are used when objects lack a discriminating visual feature (e.g. 
large, uniformly colored surfaces). In most cases, only a simple 2D recognition method such as 
shape matching using shape contexts is needed [26]. 

4. Experiment and Results 

4.1 Pendulum Experiment 

The simple pendulum experiment is an introductory level experiment in physics. The period of an 
ideal simple gravitational pendulum depends only on the swing length L and the strength of gravity 
g and is independent of the mass m of the bob. If the amplitude θ  (i.e. the angle that the pendulum 
swings away from the vertical) is small, the period T can be calculated from gL2T π≈ . 
Therefore, from measurements of the swing length L and period T, the gravitational constant g can 
be calculated. 

The governing differential equation for the motion of a simple pendulum is 

0sin
L
g

dt
d

2

2

=θ+
θ , 

which is based on the assumptions that the cord is massless, the motion is planar and there is no 
energy loss due to friction or air resistance. If the air resistance is considered, the equation can be 
modified as 
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where µ  denotes the  damping coefficient. 

4.2 Experiment Implementation 

A simple pendulum was constructed using a tennis ball as swinging mass (see Figure 1). The 
pendulum was placed in front of a cluttered background in order to prove that the system functions 
in complex environments. 

 

Figure 1: Experimental results 

The hybrid algorithm implemented here is composed of the following three steps: 

1. Use first part of hybrid algorithm, compare depth data map ( )tD nm ,  and ( )ttD nm ∆+, , highlight 

points with depth value change larger than preset threshold (see Figure 1b). 

2. In neighborhood of points that moved, at map of time tt ∆+ , run object recognition algorithms 
to find desired object (here a sphere, see Figure 1c). 

3. Use recognized points to calculate center point and radius of spherical object and direction of 
motion of object (see Figure 1d). 

In this example of an educational experiment, the data most desired is the changing location of the 
center of the swinging mass ( ) ( )( )tytx , , from which the amplitude ( )tθ  can be determined. By 
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plotting and analyzing the graph of ( )tθ , the students are then able to calculate the gravitational 
constant g and study the influence of friction on the behavior of the simple pendulum. 

4.3 Results and Future Research 

Taking advantage of both the efficiency of the depth method and the power of the shape 
recognition algorithm, the system is able to track multiple moving objects with simple geometries 
in real time in an acceptable manner. However, the system is still in proof-of-concept stage and has 
some disadvantages that hamper its broader usage as powerful range sensor in educational 
laboratories. From Figure 1b, apparent noise can be noticed. While most of the noise that is not 
related to the object is filtered out in the object recognition stage, some of it may still affect the 
final results. Also note that no user interface for this system has been designed yet, which prevents 
the accessibility of this system for most users. 

The next stage of research will focus mainly on two areas. First, additional object recognition 
algorithms such as divide-and-conquer search [27], histograms of receptive field responses [28], 
geometric hashing [29], etc. will be explored and the most suitable algorithms for different 
application scenarios will be determined. In addition, the number of pre-recognized objects in our 
data set will be increased for broader and more universal usage in different experiments. Potential 
user interface designs include also the integration of the system into a game-based multi-user 
collaborative learning environment using the technology introduced previously [30]. Combining 
the advantages of real laboratories and virtual learning environments, the system will exhibit 
increased accessibility, user friendliness, flexibility, and at the end, improved learning outcomes 
[31]. 

5. Conclusion 

In this paper, several algorithms used in 2D/3D object recognition and motion tracking were 
studied and compared, and a hybrid algorithm suitable for using Kinect as universal range sensor 
was developed. Based on that algorithm, a prototype application using Kinect as range DAQ in 
educational experiments was introduced. This low-cost system is able to identify and track 
multiple objects, and, in contrast to traditional DAQ systems, it does not need modification or 
adjustment in order to be used in different applications. The presented algorithm is efficient and 
can operate in almost real time. In light of these advantages, Kinect was shown to have great 
potential for becoming an economical and versatile tool for a variety of applications in educational 
laboratories. 
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