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Use of an Analogy to Demonstrate the Origin and Nature 

 of Steady-State Errors in Control Systems 
 

Abstract 

 

 An introductory control systems course can be challenging to undergraduate students due to 

its fairly sophisticated mathematical nature.  For example, it can be difficult to comprehend how 

even a system composed of perfect components could have a steady-state error.  To help students 

understand such non-intuitive concepts, it is beneficial to offer them a visual example that 

involves a familiar scenario.  This paper describes a car race analogy which leverages these two 

complementary techniques in a one semester course for juniors and seniors in automatic control 

systems.   

 

 The analogy consists of two competing cars of differing masses and air drags with various 

inputs via the gas pedal.  Equations of motion are presented for the displacement, velocity, and 

acceleration for step, ramp, and parabolic inputs.  MATLAB® software is used to solve the 

equations and plot the results for analysis and comparison.  This familiar illustrative scenario 

allows students to discover easily and quickly how steady-state differences (analogous to errors) 

depend on the nature of the system and its type of input.  It also demonstrates the effects of some 

easily understood corrective actions to reduce or eliminate the differences and reinforces 

understanding of the derivative-integral relationships between the displacement, velocity, and 

acceleration responses.  

 

The graphical nature of this illustration fits well with the visual learning style of many 

students.  Through this multi-faceted investigative analogy, they gain an intuitive understanding 

of steady-state errors as a complement to the traditional mathematical treatment.  Results of a 

voluntary survey completed by the students indicated that they found the car race analogy helpful 

in understanding the origin and nature of steady-state errors in control systems. 

 

I.  Introduction 

 

Steady-state errors are an important consideration of control systems in a multitude of 

applications, such as the use of machine tools and robotics in manufacturing.  As such they form 

a key aspect of the theory of control systems that students must understand.  The origin and 

nature of steady-state errors can be easily discovered by students fairly early in their study of 

control systems.  This preparation is helpful as background for the more mathematically 

challenging aspects of corrective design measures, such as the use of proportional-integral-

derivative (PID) compensators, which typically follow later in their study of control systems. 

 

Through a simple graphical example introduced in a lecture, the instructor can guide students 

to understand how steady-state errors can occur in a system.  If time allows, the students can 

investigate the example in more depth as a homework assignment or on their own initiative.  

That such errors can occur in a system, even if it could be composed of ideal components, is not 

intuitive to most students.  The MATLAB® numeric computation software package, as used in 

this paper, can readily perform the simple calculations and construct plots of the results to 
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demonstrate the origin and nature of steady-state errors for various values of system parameters 

and types of input signals.  

 

The graphical example of a car race analogy presented in Section III of this paper is designed 

to match the preferred learning style of most engineering students which is visual, sensing, 

inductive, and active; and it provides balance to the traditional lecture presentation which is 

usually auditory, intuitive, deductive, and passive.
1
  As preparatory background to the car race 

analogy, the author’s pedagogy in engineering courses makes extensive use of analogies and 

demonstrations to illustrate concepts, as described in the following section. 
 

II.  Pedagogy--Extensive Use of Analogies and Demonstrations 

 

To address and enhance the varied learning styles of students in a typical engineering class, 

the author uses an array of supplemental teaching approaches, including the use of a numerical 

exercise to demonstrate the effects of feedback, to complement the primarily lecture style in this 

introductory course on automatic control systems.
2
  While most of the course with its 

prerequisite of ordinary differential equations is devoted to developing and applying the theory 

in this mathematically-based course, several complementary analogies and demonstrations are 

used to help the students understand the underlying concepts and performances.  The focus is 

primarily on first and second order systems, and especially ones dealing with motion control 

since the class typically includes both electrical and mechanical engineering students.   

   

After extensive coverage in several lectures of the underlying mathematical theory of the 

position and speed of a motion control system, the response of the system to a step input is 

demonstrated in the laboratory using a configurable MS150 Modular Servo System from 

Feedback, Inc.  Important aspects of this hardware demonstration include the effects of gain, 

inertia, and damping on the response of the system.  Students often express appreciation and 

state that this complementary demonstration helps to make the theory more meaningful to them 

and, hence, the motion responses less mysterious and more understandable. 

   

Damping is an important factor in motion performance as graphically illustrated for the car 

race analogy in the next section of this paper.  To demonstrate to students the effect of damping 

on the responses of systems using readily available materials, clear glasses of liquids with 

different viscosities are placed on a table and then a leg of the table is given a swift, 

unannounced kick, often startling the students!  This physical action (without breaking a toe as 

yet!) approximates the application of an impulse excitation to the system and the resulting 

impulse responses for different levels of damping.  As another demonstration of damping, the 

classroom door with its damping cylinder is opened some and then slowly pulled shut.  For 

comparison of the required pulling forces, the door is opened again, but then quickly pulled shut.  

(So far, the door has not been pulled off its hinges during this enthusiastic demonstration of the 

effect of damping!) 

 

The subject of this paper is a car race analogy, refined over several years, used to help 

students understand the potentially perplexing concept of steady-state errors in systems.  

Coverage of this topic occurs about mid-semester following a review of the Laplace Transform, 

developing mathematical models for components and systems of components using transfer 
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functions, and analyzing the responses of feedback control systems by hand and with 

MATLAB® software.  As a close follow-up to the introduction of steady-state errors, the use of 

PID compensators is investigated to improve system performance, including eliminating steady-

state errors.  

  

In particular, the primary aim of this car race analogy is to graphically show students how 

steady-state errors can occur even if one could build a system using perfect components.  An 

error can occur in the steady-state response following a transient depending on the nature of the 

system (such as its mass and damping) and the type of input (such as a step, ramp, or parabolic 

change).  As an added benefit of graphically displaying the displacements, velocities, and 

accelerations of the two cars in a race, the plots reinforce how these variables are related though 

derivatives and integrals that the students first encountered in calculus and applied in physics.  

To relate to as many students as possible, a race between runners is mentioned to them as a 

similar analogy.  

 

Details of the illustrative car race analogy with the equations of motion and the comparative 

responses of two racing cars for various mass and damping conditions and types of inputs are 

presented in the next section.  The equations, along with the sample MATLAB® program in the 

Appendix, will enable interested readers to implement the graphical demonstration for their 

students. 

 

III.  Illustrative Car Race Analogy 

  

Imagine that two cars, labeled as Car #1 and Car #2, are in a car performance race at an 

automobile test track.  Car #1, with its lighter mass M and more streamlined design yielding less 

air drag as represented through a viscous damping coefficient B, will be considered as the 

reference car.  The following analyses will determine the differences in car performance of 

displacements, velocities, and accelerations as a function of time, including the steady-state 

differences which can be considered as analogous to steady-state errors in control systems.  The 

race scenario is represented in the block diagram of Figure 1. 

 

 
 

Fig. 1.  Block diagram. 

 

Car #1 

 

Car #2 

 

x1(t) 

 

x2(t) 

 

y1(t) 

 

y2(t) 

 

+ 

-

_

y3(t) = y1(t) – y2(t) 
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The motion of each car can be represented in the time domain by the following general 

differential equation of Newton’s Second Law: 

 

Md
2
y(t)/dt

2
 + Bdy(t)/dt + Ky(t) = x(t)          (1) 

        

where M is the mass of a car, B is the viscous damping coefficient representing air drag, and K is 

the “spring” constant taken as zero in this simple modeling of car motion, and where x(t) is the 

input (force excitation resulting from pressing the gas pedal) and y(t) is the output (displacement 

response of a car). 

 

The Laplace transform of this differential equation is: 

 

Ms
2
Y(s) + BsY(s) + KY(s) = X(s)      (2) 

 

where X(s) and Y(s) are the Laplace Transforms of x(t) and y(t), respectively.
3
 

 

The displacement, velocity, and acceleration responses of the two cars for various car and 

input parameters are illustrated in the following sections.  For simplicity, units for the parameters 

and variables are not included in the equations of motion of the two cars. 

 

A.  Displacement, Velocity, and Acceleration Responses of Each Car to a Step Input. 

 

Select the following parameter values for the two cars, with Car #2 heavier (larger M value) 

and less streamlined (greater B value) than Car #1: 

 

Car #1:      Car #2: 

 

M1 = 1; B1 = 1; K1 = 0   M2 = 1.25; B2 = 1.25; K2 = 0 

       

1)  Displacement for a Step Input:  The transfer function for displacement is 

 

                           1 

TD(s) = Y(s)/X(s) = ------------------      (3) 

            Ms
2
 + Bs + K 

 

where, for a step input, X(s) = A/s corresponding to x(t) = Au(t) where A is the amplitude of the 

step with u(t) being the unit step function, giving the displacement, Y(s), as 

 

   1 

 DS(s) = ------------------ (A/s)       (4) 

    Ms
2
 + Bs + K 

 

Note:  The MATLAB® program used in this paper to generate the displacement responses of 

the two cars to unit step inputs is listed as an example in the Appendix. 
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The displacements of the cars for identical step inputs with A1 = 1 and A2 = 1 are shown in 

Figure 2. 

 
Fig. 2.  Displacements of the cars for step inputs. 

 

The difference of the car displacements for step inputs tends toward infinity as demonstrated 

in Figure 2.  

 

2)  Velocity for a Step Input:  The transfer function for velocity is 

 

     s 

TV(s) = [sY(s)]/X(s) = ------------------     (5) 

                Ms
2 

+ Bs + K 

 

where, for a step input of amplitude A, the velocity, sY(s), is 

 

   s   1 

 VS(s) = ----------------- (A/s) = ----------------- (A)    (6)      

   Ms
2 

+ Bs + K     Ms
2 

+ Bs + K 

 

The velocities of the cars for identical step inputs with A1 = 1 and A2 = 1 are shown in Figure 

3. 
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Fig. 3.  Velocities of the cars for step inputs. 

 

The difference of the car velocities for step inputs tends toward a finite value as 

demonstrated in Figure 3.  In addition, the velocity plots in Figure 3 correspond, as expected, to 

the rate of change (slope or 1st derivative) of the displacement plots of Figure 2.   

 

3)  Acceleration for a Step Input:  The transfer function for acceleration is 

                  

 s
2
 

TA(s) = [s
2
Y(s)]/X(s) = ------------------     (7) 

                 Ms
2
 + Bs + K 

 

where, for a step input of amplitude A, the acceleration, s
2
Y(s), is 

 

       s
2
     1 

 AS(s) = ------------------ (A/s) = ------------------ (As)    (8)      

   Ms
2
 + Bs + K        Ms

2
 + Bs + K 

 

The accelerations of the cars for identical step inputs with A1 = 1 and A2 = 1 are shown in 

Figure 4. 
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Fig. 4.  Accelerations of the cars for step inputs. 

 

The difference of the car accelerations for step inputs tends toward zero as demonstrated in 

Figure 4.  In addition, the acceleration plots in Figure 4 correspond, as expected, to the rate of 

change (slope or 1st derivative) of the velocity plots of Figure 3.   

 

B.  Displacement, Velocity, and Acceleration Responses of Each Car to a Ramp Input. 

 

Select the same parameter values as applied in Section III.A for the two cars. 

 

1)  Displacement for a Ramp Input:  For a ramp input, X(s) = A/s
2 

corresponding to x(t) = 

Atu(t) where A is the rate of change (slope) of the ramp, giving the displacement, Y(s), as 

 

    1             

 DR(s) = ------------------ (A/s
2
)       (9)      

      Ms
2
 + Bs + K 

 

The displacements of the cars for identical ramp inputs with A1 = 1 and A2 = 1 are shown in 

Figure 5. 
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Fig. 5.  Displacements of the cars for ramp inputs.   

 

The difference of the car displacements for ramp inputs tends toward infinity as 

demonstrated in Figure 5.  

 

2)  Velocity for a Ramp Input:  The corresponding ramp velocity, sY(s), is 

 

    s       1 

 VR(s) = ------------------ (A/s
2
) = ------------------ (A/s)   (10)      

    Ms
2
 + Bs + K      Ms

2
 + Bs + K 

 

This is the same result as the function for displacement with a step input (Equation 4).  

Therefore, the velocity responses of the cars to ramp inputs are the same as the displacement 

responses of the cars to step inputs as shown in Figure 2. 

 

3)  Acceleration for a Ramp Input:  The corresponding ramp acceleration, s
2
Y(s), is 

 

        s
2
       1 

 AR(s) = ------------------ (A/s
2
) = ------------------ (A)    (11)      

    Ms
2
 + Bs + K      Ms

2
 + Bs + K 

 

This is the same result as the function for velocity with a step input (Equation 6).  Therefore, 

the acceleration responses of the cars to ramp inputs are the same as the velocity responses of the 

cars to step inputs as shown in Figure 3. 
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C.  Displacement, Velocity, and Acceleration Responses of Each Car to a Parabolic Input. 

 

Select the same parameter values as applied in Sections III.A and III.B for the two cars. 

 

1)  Displacement for a Parabolic Input:  For a parabolic input, X(s) = A/s
3
 corresponding to 

x(t) = (A/2)t
2
u(t) where A is the rate of change (slope) of the parabola, giving the displacement, 

Y(s), as 

 

    1             

 DP(s) = ------------------ (A/s
3
)       (12)      

    Ms
2
 + Bs + K            

 

The displacements of the cars for identical parabolic inputs with A1 = 1 and A2 = 1 are shown 

in Figure 6. 

 

 
Fig. 6.  Displacements of the cars for parabolic inputs.   

 

The difference of the car displacements for parabolic inputs tends toward infinity as 

demonstrated in Figure 6. 
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2)  Velocity for a Parabolic Input:  The corresponding parabolic velocity, sY(s), is 

 

    s      1 

 VP(s) = ------------------ (A/s
3
) = ------------------ (A/s

2
)   (13)      

    Ms
2
 + Bs + K      Ms

2
 + Bs + K 

 

This is the same result as the function for displacement with a ramp input (Equation 9).  

Therefore, the velocity responses of the cars to parabolic inputs are the same as the displacement 

responses of the cars to ramp inputs as shown in Figure 5. 

 

3)  Acceleration for a Parabolic Input:  The corresponding parabolic acceleration, s
2
Y(s), is 

 

        s
2
      1 

 AP(s) = ------------------ (A/s
3
) = ------------------ (A/s)   (14)      

    Ms
2
 + Bs + K      Ms

2
 + Bs + K 

 

This is the same result as the function for velocity with a ramp input (Equation 10), or for 

displacement with a step input (Equation 4).  Therefore, the acceleration responses of the cars to 

parabolic inputs are the same as the displacement responses of the cars to step inputs as shown in 

Figure 2. 

 

D.  Summary of Steady-State Differences. 
 

The results of the steady-state differences (analogous for illustrative purposes to traditional 

steady-state errors in control systems) of the displacement, velocity, and acceleration responses 

for step, ramp, and parabolic inputs for this illustrative car example are summarized in Table I. 

 

Table I.  Summary of Steady-State Differences 

 

 Step Ramp Parabolic 

Displacement Infinite Infinite Infinite 

Velocity Finite Infinite Infinite 

Acceleration Zero Finite Infinite 

 

The results in Table I agree whether obtained by examining the responses in the time-domain 

as t approaches infinity, or obtained in the s-domain by applying the Final-Value Theorem of 

Laplace Transform Theory.
3-5

  As expected, rapidly changing inputs make it difficult for Car #2 

with its larger mass and greater air drag to match the performance of Car #1. 

 

E.  Implementation of Changes to Impact the Car Performances. 

 

The performance of control systems depends on the nature of both the system and its input, 

as illustrated by varying the car and input parameters of this illustrative example, such as 

follows: 
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1)  Impact of Car Parameters on Performance:  As observed in the above figures, the 

displacement, velocity, and acceleration of Car #2 with its larger mass and greater damping (air 

drag) system characteristics lag those of Car #1 for identical inputs.  One way to enable Car #2 to 

catch up with Car #1 in performance is to redesign it to use lighter materials to reduce its mass 

and to make it more streamlined to reduce its air drag. 

 

To model this scenario, select the following identical parameter values for the two cars, with 

the parameters of Car #2 equal to those of Car #1: 

 

Car #1:      Car #2: 

 

M1 = 1; B1 = 1; K1 = 0   M2 = 1; B2 = 1; K2 = 0 

       

To illustrate the car performances for this scenario, the drivers apply step inputs of equal 

amplitudes to the gas pedals, specifically A1 = 1 for Car #1 and A2 = 1 for Car #2.   

 

As expected with identical parameters values for both cars, the displacements, velocities, and 

accelerations of the cars for step inputs of equal amplitudes are identical to those of Car 1 in 

Figures 2, 3, and 4, respectively. 

 

2)  Impact of Input Parameters on Performance: 

 

a)  Displacements of the Cars for Different Step Inputs: 

 

As observed in Figures 2-6, the displacement, velocity, and acceleration of Car #2 with its 

larger mass and greater damping (air drag) system characteristics lag those of Car #1 for 

identical inputs.  Another way to enable Car #2 to catch up with Car #1 in performance is for the 

driver of Car #2 to apply more input to the gas pedal than by the driver of Car #1. 

 

To model this scenario, select the same parameter values as applied in Sections III.A and 

III.B for the two cars: 

 

Car #1:      Car #2: 

 

M1 = 1; B1 = 1; K1 = 0   M2 = 1.25; B2 = 1.25; K2 = 0 

       

To illustrate the car performances for this scenario, apply a step input of amplitude A1 = 1 for 

Car #1 and a step input of larger amplitude A2 = 1.25 for Car #2. 

 

With different parameters values for the cars, the displacements, velocities, and accelerations 

of the cars for step inputs of the selected compensating amplitudes are identical to those of Car 1 

in Figures 2, 3, and 4, respectively. 
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b)  Displacements of the Cars for Step versus Ramp Inputs: 

 

Another way to enable Car #2 to catch up with Car #1 in performance is for the driver of Car 

#2 to increase the input to the gas pedal over time, eventually exceeding the input by the driver 

of Car #1. 

 

To model this scenario, select the same parameter values for the two cars as used in Section 

III.E.2.a. 

 

To illustrate the car performances for this scenario, apply a step input of amplitude A1 = 1 for 

Car #1 and, for example, a ramp input of slope A2 = 0.5 for Car #2.  The resulting displacements 

of the two cars are shown in Figure 7. 

 
Fig. 7.  Displacements of the cars for step versus ramp inputs. 

 

As observed with different parameters values for the cars, the displacements of the cars for 

step versus ramp inputs are different as shown in Figure 7.  Car #2 eventually catches, and 

passes, Car #1.  Similarly, the velocities and accelerations of the cars for step versus ramp or 

parabolic inputs will be different. 
 

IV.  Assessment and Evaluation of the Car Race Analogy 

 

A copy of the manuscript of this car race analogy paper was distributed to the students prior 

to analytical coverage of steady-state errors.  The nature and differences of the transient 
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responses and their steady-state errors for various system characteristics and types of inputs were 

then explained to them as a tutorial using the graphical results in this paper.  

 

To assess and evaluate the effectiveness of the car race analogy to explain steady-state errors 

in automatic control systems, the students were asked to provide their opinions using a survey 

form.  Space was available on the form for them to also provide comments and suggestions. 

   

The course enrolled 14 students, consisting of 6 women and 8 men in 2010, and 20 students, 

with 7 women and 13 men, in 2011.  Nineteen (56%) of the 34 combined number of students 

enrolled in this fall semester, 3-credit hour, course responded to this voluntary survey shown in 

Table II.   

 

Table II.  Survey to Assess and Evaluate the Effectiveness of the Steady-State Error Analogy 

 

EGR 404 Automatic Control Systems (3 credit hours) 

(Combined Results for Fall Semesters 2010 and 2011) 

  

Questions: Very 

Much 

Acceptably Very 

Little 

Not at 

All 

1.  Did you have any previous knowledge of 

steady-state errors? 

 7 8 4 

2.  Did the analogy motivate you to learn more 

about steady-state errors? 

6 12 1  

3.  Did it increase your understanding of the 

sources of steady-state errors in automatic 

control systems? 

9 8 2  

4.  Did it increase your understanding of the 

effects of steady-state errors on the 

performance of automatic control systems? 

11 8   

5.  Do you recommend the use of this analogy in 

future offerings of the course? 

10 9   

      

Comments about the Effectiveness of the Analogy: 

 This analogy was very understandable and related to real life examples.  This made it 

easy to comprehend.  The analogy was well researched and made a clear relationship 

between negative feedback and stability.  It was also amazing how it applied to different 

order systems. 

 Was very helpful and useful for me in my senior project class. 

 It is indeed useful.  I still visualize it when working with control/feedback systems in 

other classes. 

 The analogy was very easy to imagine in the case of the car race because I drive a car and 

have first-hand knowledge of how driving a car works.  By taking an analogy that was 

easily translated and related to everyday life, I believe I was more accurately able to 

understand steady-state errors. 

 The analogy helped me to understand what would happen due to errors, but not what 

caused them. 
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 I could relate to it just fine.  It made sense and I saw the connection easily. 

 I think if effectively illustrates the problem of steady-state errors.  It helps to picture and 

bring physical meaning to steady-state error which is a hard problem to understand. 

 Applying the concept of steady-state errors to something that everyone has a general 

understanding of, racing cars, is very helpful. 

 Very simple analogy; makes the concept easy to understand. 

 I liked the analogy because it is easy to understand.  Most people can grasp the idea of 

how weight and engine performance can affect the acceleration and velocity of a car. 

 The analogy offers a better understanding of steady-state errors because the analogy is 

based on the well known concept of cars with displacement, velocity, and acceleration. 

 Easy to relate to and understand. 

 The analogy really described the importance and different effects of steady-state errors.  

The different examples showed the variation of the errors. 

 The analogy was very clear; I liked how one car was used as a baseline to compare with 

car 2. 

 Good description of each scenario before analysis was shown.  Helpful introduction to 

get us started in understanding steady-state errors.  Very, very helpful comments about 

what we should notice in each graph, even in comparison to others. 

 I thought it was great to relate topics such as position, velocity, and acceleration to a 

system familiar to everyone – cars. 

 It was easy to understand. 

Suggestions for Improvements of the Analogy: 

 Though the analogy was very easy to understand and imagine, I think it could be bettered 

in the way you present the analogy.  Try and find a way to keep it fun and engaging.  

 Perhaps use an analogy that would help the students to understand both what causes 

errors and what would happen to the system due to errors. 

 I have none, sorry, it’s a great analogy. 

 Make a lab demonstration. 

 I found it a little repetitive; however, it was very clear. 

 Make a MATLAB® code we can play with to graph it on a computer and have the 

students interact with it more and see how the graphs change in that sense.  

(Author’s Note:  The sample MATLAB® program that is included in the Appendix of 

this paper was distributed to the students as part of the manuscript of this paper.) 

 

As expected, and as a good starting point for learning a new topic, the majority (12 of 19 or 

63%) of the students had combined “very little” or “not at all” prior knowledge of steady-state 

errors as indicated by the results for question #1 in Table II.  And as the results for questions #2, 

3, 4, and 5 indicate, the vast majority of the students found the car analogy to be helpful in 

illustrating how an automatic control system can have a steady-state error, even if the system 

could be built using perfect components, based solely on the nature of the system and its input.  

Table II shows that the combined results for the “very much” and “acceptably” categories are 
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18/19 or 95%, 17/19 or 89%, 19/19 or 100%, and 19/19 or 100%, respectively, for questions #2, 

3, 4, and 5. 

  

Based on student feedback, such as above, the author continues to refine and enhance the 

nature and presentation of this car race analogy with each offering of the course.  Since the 

students have experience driving, or at least riding in cars, none of them have ever expressed any 

written or verbal misgivings about the use of the car race analogy based on their gender, minority 

status, nationality, etc.  The goal is to provide a valuable conceptual understanding prior to 

detailed analytical coverage of steady-state errors in control systems.   

 

V.  Summary 

 

Through an illustrative car race example (or, if preferred, runners in track or cross country 

events) that is familiar to students through life experiences, the author has presented a graphical 

example that allows students to discover the origin and nature of steady-state errors that vary 

with the system and input characteristics of control systems.  This flexible example also enables 

students to explore various compensation measures to reduce or eliminate such errors.  As an 

additional benefit, students can view the derivative and integral relationships between the sets of 

graphs that relate displacement, velocity, and acceleration to complement and reinforce their 

learning in calculus, physics, and engineering.  This multi-faceted example is designed to appeal 

to the preferred learning style of most engineering students, namely visual, sensing, inductive, 

and active.   
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Appendix 

 

A sample MATLAB® program, used in this paper to generate the displacement responses of the 

two cars to unit step inputs in Figure 2, is: 

 

M1 = 1; 

B1 = 1; 

K1 = 0; 

num1 = [0 0 1]; 

den1 = [M1 B1 K1]; 

den1 = conv(den1,[1]); 

  

M2 = 1.25; 

B2 = 1.25; 

K2 = 0; 

num2 = [0 0 1]; 

den2 = [M2 B2 K2]; 

den2 = conv(den2,[1]); 

  

t = 0:0.01:10; 

  

step(num1,den1,t); 

step(num2,den2,t); 

  

y1 = step(num1,den1,t); 

y2 = step(num2,den2,t); 

  

y3 = y1 - y2; 

  

plot(t,y1,'k-',t,y2,'k--',t,y3,'k:','LineWidth',1.5) 

  

x = t; 

  

xlabel('Time') 

ylabel('Displacement') 

  

legend('Car 1 Displacement','Car 2 Displacement','Displacement Difference','Location','Best') 
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