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Abstract 

Recent NASA missions like the Lunar Reconnaissance Orbiter (LRO) have produced vast 

archives of surface imagery that must be analyzed to locate landmarks with distinctive visual 

features, like craters, which provide important information about geologic history and potential 

mineral resources. Content Based Image Retrieval allows large archives of images to be 

efficiently queried based on visual content by indexing multidimensional feature vectors 

extracted from the images. Unlike images of particular objects or scenes traditionally retrieved 

using CBIR, surface images are not focused on any particular landmark so they must be pre-

processed to identify Regions of Interest (ROI) to be indexed for retrieval. Previous work 

identified ROIs using manual annotation and expensive detection algorithms for specific types of 

landmarks, such as Crater Detection Algorithms (CDA). In contrast, this work utilizes a general-

purpose saliency-based landmark detection algorithm for identifying ROIs which are then 

indexed for retrieval using feature vectors extracted from the ROI images. We evaluate the 

retrieval performance of several feature vectors and assess the saliency-based landmark detection 

performance in comparison to a comprehensive crater database created using manual annotation 

and a CDA. Experimental results demonstrate the advantages of the general-purpose saliency-

based CBIR system for exploring lunar surface imagery. 

1 Introduction 

Outer space contains a vast amount of resources that offer virtually unlimited wealth to the 

people that can access and use them for commercial purposes. The Moon and asteroid belt have a 

variety of resources varying from iron-nickel to silicates and possibly subterranean water ice [1].  

Planning landing sites for future missions to the Moon and beyond will require balancing a 

number of competing objectives, such as available water ice, proximity to interesting surface 

features, hazard to landing craft, rovers, habitats, etc. Image data mining of extraterrestrial data 

sets will help automate the discovery of geological formations important for missions to the 

Moon, Mars, and other planetary bodies.  

Planets and other bodies in the solar system share a number of visual features that provide 

important information on their formation and geology. Impact craters are distinct circular 
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depressions resulting from the hypervelocity impact of an asteroid or comet with a planetary 

surface [1], [2].  They are among the most studied geomorphological features in the Solar 

System because they yield information about the past and present geological chronology [3].  

There are also a number of other visually distinct surface features, such as basaltic flows and 

fractures, which yield important contextual information for accurately determining the geologic 

properties of craters. 

NASA is charting a bold new course into the cosmos, a journey that will take people back to the 

Moon, and eventually to Mars and beyond.  In addition to technological challenges on earth, it 

must fully account for meteoroids and their impacts. To this effort, in June 2009, NASA 

launched the Lunar Reconnaissance Orbiter (LRO) to the moon. LRO is equipped with seven 

onboard instruments, which together have delivered more than 192 terabytes of data, images and 

maps (Figure 1) -- the equivalent of nearly 41,000 typical DVDs. An objective of this study is to 

explore novel information technology in order to maximize the value of such large data sets. 

 

 

Figure 1:  Lunar crater images from LROC data set 

2 Informatics-based Approach to Planetary Exploration 

Data from past missions and many other resources can be used to discover visual features that 

characterize particular geological formations such as craters. For instance, feature vectors can be 

extracted from LROC imagery to build a large metadatabase (i.e., a multidimensional feature 

space). By clustering these feature vectors (i.e., points with coordinates) in the multidimensional 

feature space, the corresponding images are classified into categories (Figure 2).  Known 

properties of craters and other surface features can then be used to annotate feature clusters and 

assign geological properties to the categories. 

Content Based Image Retrieval (CBIR) utilizes the metadabase to search for images that are 

visually similar to a query image, such as an image of a newly discovered crater (Figure 3). It 
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allows the use of images of lunar craters with known geological properties to retrieve images of 

visually similar craters in the LROC data set. Annotations in the metadatabase may also be used 

as training sets for machine learning algorithms mining the large data set for unique features. 

This mechanism provides a novel means to remotely study lunar craters and plan future science 

and resource prospecting missions. It may also reveal implicit information, otherwise hidden in 

the very large LRO data sets. 

 

 

Figure 2:  Categorization of lunar craters based on their visual features. 

Unlike images of particular objects or scenes traditionally retrieved using CBIR, surface images 

are not focused on any particular landmark so they must be pre-processed to identify regions of 

interest (ROI) to be indexed for retrieval. Previous work identified ROIs using manual 

annotation and expensive detection algorithms for specific types of landmarks, such as Crater 

Detection Algorithms (CDAs). In contrast, this work utilizes a general-purpose saliency-based 

landmark detection algorithm for identifying ROIs that are then indexed for retrieval using 

feature vectors extracted from the ROI images. In this study, a general-purpose definition of 

landmark is provided and saliency-based object detection techniques, which are popular in 

computer vision research, are adopted to solve the landmark detection problem. Landmarks are 

extracted as ROIs and indexed into a CBIR system to provide a fast search capability. 
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Figure 3:  Investigate lunar craters by examining the geological properties of craters with 

similar appearance 

3 Related Work 

A number of geo-spatial image exploration methods have been proposed for varying purposes 

and planet types. As previously noted, impact craters are the most studied geomorphological 

features, and numerous CDAs have been published. They can be classified into unsupervised [4], 

[5] methods that use traditional image analysis techniques, and supervised methods [6], [7] that 

use trained classifiers accompanied with annotations. While early approaches use exhaustive 

search techniques [4], recent studies focus on faster techniques for detection of sub-kilometer 

sized craters due to the computational bottleneck to process mass amount of high-resolution 

surface image [6], [7]. Although sub-kilometer crater detection is not mature and fast enough to 

create a crater database, there exists some crater databases for larger lunar and Martian craters 

[8]. From those databases, it can be possible to query crater images through features such as 

radius and depth; however, crater databases contain just few useful features per crater, vastly 

limited compared to the corresponding visual features. 

There are a small number of Content Based Image Retrieval (CBIR) systems proposed for geo-

spatial image exploration. One of the early studies [9] proposes extraction of a feature vector per 

image segment and comparison of search segments to each other segment in the database. This 

can be considered as the most basic application of CBIR on planetary images. It can be 

applicable to retrieval of images in terms of surface texture type. Similarly, Jaroslaw et al. [10], 

proposes generation of a similarity map when a search region is given. Even though features are 

stored in database, both of the methods require search of entire set of image segments after the 

query. Those methods are not efficient enough to be applicable to a complete set of high-

resolution lunar images. A recent publication proposes to narrow down search space into ROIs 

by applying CDAs. However, as in the case of crater databases, this limits the functionality to a 

specific type of landmark. Saliency based ROI selection proposed in this study has a wider 

landmark definition that is more appropriate for a variety of emerging applications. 

Other than CBIR systems, Wagstaff et al. [11] uses saliency-based landmarking for surface 

imagery to identify and classify Martian surface features such as craters, dark slope streaks, or 

dust devil tracks. Wagstaff et al. demonstrates the flexibility of entropy-based saliency detection 
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on different landmark types. The present study applies a similar landmarking approach to CBIR 

systems using more challenging imagery from the LROC data set. 

4 Saliency-based Landmarking 

Compared to many landforms, the usual surface textures which cover wide areas on planetary 

surfaces are easy to explore because the extents of those regions can be determined by sampling 

over large distances. However, landforms which occur in small regions of interest (such as many 

craters) are difficult to explore due to the following reasons: 1) There are large numbers of these 

features with random variations and sizes distributed over a large area; and 2) Some of them 

cannot be explored because they occur rarely and hence researchers are unaware of their 

existence.  Despite their rarity and small size, the distribution or existence of these landforms 

carry important geological information about the surface. 

We have developed and implemented a method for extracting regions of interest (ROI) which 

have more distinctive information content than the surrounding area. Since these types of regions 

also stand out from the background and attract human attention, we used methods which are well 

studied in computer vision research for saliency detection. The saliency approach for landmark 

detection has also been seen in recent literature [11].  

Our method for detecting landmarks depends on the information content of a region measured by 

the entropy of each pixel in a small neighborhood. Thresholding and binary processing are 

applied in order to separate regions with higher entropy from the background. This procedure is 

applied at multiple scales in order to cover landmarks of different sizes.  For each ROI detected, 

visual features are extracted for indexing and search. The landmark detection procedure is 

depicted in Figure 5. 

 

Figure 4:  An example of ROIs resulting from saliency-based landform detection 

Initial tests of the saliency based landform detection algorithm were performed on 100m 

resolution lunar surface images using an OpenCV [12] implementation of the technique 

presented in [11].  This implementation was the basis for the CBIR system described in the next 
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section.  In a single scale, the algorithm was able to detect most of the craters from 5x5 to 30x30 

pixels as landforms as shown in Figure 4.  Larger landforms were also detected in different 

scales.  In most cases, landforms that were or were not craters were clearly differentiable from 

the shape of the landform contours (note that only the bounding boxes of contours are shown in 

the figure).  False detections tended to occur in cluttered regions where larger landmarks were 

searched for smaller landmarks (Figure 6). There were also cases where small landmarks on 

cluttered regions are skipped since they are combined with background.  Future work can 

investigate techniques to further improve the saliency based landform detection and also explore 

alternative methods such as the approach based on Digital Elevation Model [13]. 
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Figure 5:  Salient region detection and feature extraction 
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5 Lunar Image Mining System 

The Lunar Image Mining (LIM) system has been implemented using several frameworks which 

were integrated with the OpenCV-based image-processing pipeline to provide a user-friendly 

interface for studying lunar imagery.  The Geospatial Data Abstraction Library (GDAL) [14] is 

used to efficiently access LRO imagery stored in the PDS image file format.  We use the Lucene 

Image Retrival (LIRE) library [15], [16] with the search engine to store and index landform 

feature vectors for use during similarity search.  NASA‟s World Wind library [17] is used to 

implement a 3D interface (Figure 7) for viewing and interacting with GIS (Geographic 

Information System) data sets. This approach is motivated by the fact that NASA scientists are 

already familiar with the World Wind operating environment.  The current prototype allows the 

user to browse and search imagery to identify interesting locations and display similar locations.   

 

LRO imagery was retrieved from [18].  The multi-resolution Reduced Data Records (RDR) for 

the LROC were downloaded as they provide preprocessed projected mosaics at relatively high 

resolution suitable for our study.  An imagery pre-processor was developed, using GDAL and 

OpenCV, to construct image pyramids from the LRO imagery, suitable for display using World 

Wind.  Each tile in the pyramid is then processed as shown in Figure 5 to detect landmark ROIs 

and perform feature extraction.  We note that the image pyramids will also be useful in the long-

term for image processing and data mining at different resolutions, and partitioning the imagery 

for distributed processing using Hadoop [19] and other Big Data [20] technologies. 

The current LIM implementation provides command-line tools for extracting and indexing 

landmarks and features while similarity search is performed from a user-friendly UI as shown in 

Figure 7.  Image retrieval queries begin with the user selecting a region with known properties 

such as a previously studied crater.  The corresponding feature vector is then extracted from this 

query region, and compared with feature vectors stored in the Lucene index to find the set of 

feature vectors nearest to the query image in the multidimensional feature space. 

 a)  b)  

Figure 6: False detections of small landmarks on top of large landmarks. 

Although three main large landmarks are taken inside bounding boxes, many 

unnecessary small landmarks also appear inside large landmarks. a) Surface 

image, b) ROIs drawn on image 
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Figure 7 Screenshot of UI prototype showing similarity search results 

6 Software System Testing and Experiments 

Three kinds of initial visual features were used in our study to facilitate software testing, namely 

Gabor features, image intensity, and Hu invariants.  Gabor features count occurrences of special 

spatial frequency regions in an image. The intensity feature is implemented by normalizing 

image sizes and creating feature vectors directly from pixel values of the ROI image.  Finally, 

Hu invariants are scale and rotation invariant values which represent shape of a binary image. 

The shape in this case is the binary mask of the region that is extracted in earlier processes of 

entropy filtering and thresholding (Figure 5).  Although software testing indicates that the LIM 

prototype is operating correctly and efficiently, it is desirable to investigate additional visual 

features to improve the image data mining results.   

The results of several similarity searches using the three features are shown in Figure 8. These 

results are based on 12,905 ROI images extracted from 100m/pixel-resolution LRO Wide Angle 

Camera imagery in region bounded by coordinates 0.0N 0.0E and 60.0N 90.0E [18]. 1/8 of the 

total image area was processed. As can be seen from the results, searches that depend on Gabor 

feature are not consistent. This is likely due to ROIs being too small to provide enough texture 

content for Gabor features to be effective. Intensity feature performs best, however, compared to 

Hu invariant features, intensity features are sensitive to position and intensity variations and are 

rotationally variant. These limitations are most noticeable in query images that have direction, 

such as the 5
th

, where searching using intensity feature brings results in a single direction, while 

using Hu invariant features yields results invariant of direction. While the Hu invariant feature is 

quite successful in representing the shape of the region, it does not consider the content of the 

region, yielding less accurate results compared to the intensity feature. 
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(a) 

 

(b) 

 

(c) 

Figure 8: Similarity search results. For each row, the 

leftmost image is the query image and the remaining 

images are the top 10 most similar. Using feature: 

a)Gabor b)Intensity c)Hu invariants 
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6.1 Landmarking 

It is important to gauge the effectiveness of the general-purpose saliency-based landmarking 

approach for identifying different classes of landforms. As craters are the only known lunar 

surface features to be extensively catalogued we utilize a recent crater database [8] to serve as a 

ground truth and measure how well the set of detected landmarks covers the set of known 

craters. For this purpose a subset of the crater database was extracted yielding 12,212 entries 

lying within the range of indexed LROC RDR imagery between 60.0S 0.0E and 30.0N 90.0E. 

Each of these craters was then compared with the 309,827 indexed ROIs to determine whether it 

significantly overlapped, contained, or was contained by an ROI. Covered ROIs were annotated 

as such for the following experiments. Landmarking coverage was found to be 40.95%: 5001 

crater DB entries covered by 6190 ROIs. A summary of the different types of coverage is shown 

in Table 1. The large number of ROIs contained by crater DB entries is due to the maximum size 

of ROIs being much smaller than for the crater DB entries, i.e. the ROIs cover portions of large 

craters. 

 
DB Entries ROI 

Overlapped 1201 1356 

Containing 791 856 

Contained 3676 3978 

Table 1: Crater DB Coverage 

It is important to note that a significant number of ROIs were of craters that were not covered by 

crater database entries. This would imply that there is in fact a significant false negative rate and 

actual coverage would be greater than 40%, however quantifying the false negative rate will be 

left to future work. 

6.2 Precision and Recall 

To measure the CBIR performance of the three visual features two cross validation experiments 

were performed to measure precision and recall based on search queries using previously 

annotated ROIs covered by craters from a crater database [8] and a set of manually annotated 

craters. In the first experiment, a 10-fold cross validation was performed using 1000 randomly 

selected crater DB annotated ROIs and 8100 non-annotated ROIs, for a final precision of 10% 

using 100 queries per validation. The second experiment was similar, except 880 randomly 

selected manually annotated crater ROIs and 794 manually annotated non-crater ROIs were used 

with 792 queries per validation. In both experiments the interpolated precision-recall curve and 

mean average precision (MAP) were calculated. 

The results of the first experiment are shown in Figure 9 and Figure 10. Relevant ROIs were 

randomly selected from the set of annotated ROIs that were not contained by a crater DB entry, 

i.e. they overlap or contain the entries (to avoid ROIs of portions of craters). There is a rapid 

decline in maximum precision for all features, however the Intensity features seems to perform 

the best, followed by the Hu features which fare slightly better than Gabor features. For all 

features, the mean precision does not significantly vary from the final precision of the validation 

data set. This would indicate that on average none of the features are discriminative enough to 

effectively distinguish between crater and non-crater ROIs, however the quality of the crater DB 
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annotations is also to blame. Many annotated ROIs were parts of craters, such as crater rims, 

sloping walls, etc., which would negatively effect the resulting precision. The extremely low 

mean precision with extremely high max precision for the Intensity feature may also be 

explained by the low quality of the annotations, since the Intensity feature is much more 

selective than the Hu and Gabor features. 

 

Figure 9: Maximum precision vs. recall using crater DB annotations 

 

Figure 10: Mean precision vs. recall using crater DB annotations 

To better judge the quality of the three visual features a portion of the indexed ROIs were 

manually annotated to only label those ROIs which contained one or more significant craters as 

relevant, all others, such as crater rims, slopes, and other landforms were labeled as irrelevant. 

Note that these annotations were based purely on subjective visual inspection and not on 
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containment of known craters from the crater database. The results of the second experiment 

using these manual annotations are shown in Figure 11 and Figure 12. As before, Intensity 

features perform significantly better than Hu and Gabor features. Compared to using crater DB 

annotations, using manually annotated crater ROIs results in a slightly slower decline in 

maximum precision for the Gabor and Hu features, with a noticeably greater loss in precision 

with Intensity features. Likewise, the mean precision varies much more significantly from the 

final precision, but still does not achieve greater than about 17%. Clearly more discriminative 

visual features will need to be found to improve the average search performance. 

 

Figure 11: Maximum precision vs. recall using manual annotations 

 

Figure 12: Mean precision vs. recall using manual annotations 

The mean average precision for all features in both experiments is summarized in Table 2. 
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MAP Gabor Hu Intensity 

Crater 0.1078 0.1157 0.1168 

Manual 0.1381 0.1251 0.1647 

Table 2: Mean Average Precision 

6.3 Discussion 

Based on the previous results it is clear that more discriminative ROI feature vectors are 

required. However, without an accurate ground truth it will be difficult to evaluate the 

performance of additional visual features and the crater database used [8] is the most 

comprehensive small-crater database known. Detailed manual annotation of high-resolution 

images for a relatively large area will likely be required to best compare the performance of 

different visual features for retrieving different landmarks. Thankfully the LIM system currently 

provides an easy to use interface designed for this task. There is also significant room for 

improvement in the landmark detection algorithm as well. Although approximately 40% of 

known craters were detected using only saliency-based landmarking without employing 

specialized CDAs, it is likely that a more refined landmarking algorithm that took into account 

additional visual features would cover more known and unknown craters as well as other types 

of landmarks. 

Many other feature types, such as Haar-like features or gradient histograms, could possibly be 

added to the system. However, the usefulness of a feature depends ultimately on the intention of 

search. If the user is searching for a landmark with a particular shape, a feature like the Hu 

invariant may be best suited. On the other hand, if a user is seeking landforms with the same 

geographic orientation, features that are sensitive to directionality (like the intensity feature) will 

yield better results. Future work can study interactive image retrieval techniques that use 

machine learning to refine query parameters and determine the relevance of available features to 

a particular query. 

In these initial results, a very large number of ROIs were extracted from a relatively small 

sample of lunar imagery. As the system is scaled up and higher resolution imagery is processed 

there will likely be many millions of indexed ROIs. Searching through such a large data set will 

not be very efficient. To address this issue we have begun investigating clustering techniques, 

such as k-means clustering [21], [22] and Locality Sensitive Hashing [23] to identify clusters of 

neighboring ROIs within the multidimensional feature space and assign representative ROIs for 

each cluster. Searching through this much smaller set of representative ROIs will be much more 

efficient. These clusters will also form the basis for the image mining and annotation features 

described earlier. 

7 Future Work 

The results accomplished in this six-month exploratory research have demonstrated the validity 

of the informatics-based approach to planetary discovery.  Continued research and development 

is needed to significantly improve the LIM system: P
age 24.1065.15



1. Currently, the similarly search is based on a sequential scan of the feature vectors.  More 

effective multidimensional access methods are necessary to support efficient search on 

much larger data sets. 

2. The initial feature vectors used in this study to facilitate software testing have limited 

performance.  The LIM prototype, nevertheless, provides a test bed for exploring 

additional feature vectors in order to better classify landform types and improve the 

image data mining results. 

3. No single set of features is universally effective for different search requirements.  It is 

desirable to employ machine learning methods to develop intelligent query optimization 

techniques to select the best subset of features for a given query.  For instance, classifiers 

can be trained to recognize different categories of queries and select the best features for 

each category. 

4. Search techniques based on user relevance feedback can also be considered for the LIM 

environment.  In each search iteration the user marks the relevant images retrieved by the 

system.  These images can then be used to refine the search criteria for the next round of 

user relevance feedback.  This iterative process can be repeated until the user is satisfied 

with the retrieval result.    

5. Image segmentation technique can be developed to uncover and characterize meaningful 

regions of planets. This requires novel landmark-based spatial clustering techniques. 

6. The LIM system can be extended to support elevation data and hyperspectral imagery. 

Ultimately, it is highly desirable to develop a more complete IT environment, as illustrated in 

Figure 13, which will enable NASA scientists to effectively study various very large image data 

sets using image mining facilities.  This system has four major subsystems: 

1. Meta Database Management System: Scientists will be able to use the automatic feature 

extraction mechanism to build the multidimensional metadatabase and maintain the 

image database for the LROC and LOLA data sets. 

2. Image Retrieval System: Scientists will be able to use an image with known geologic 

properties to retrieve similar images to study their properties. 

3. Image Mining System: Scientists will be able to use machine learning and data mining 

techniques such as image classifiers and mining algorithms to investigate different 

classes of extraterrestrial objects (i.e., lunar craters). 

4. User Interface: The user interface provides a unified view of the above systems to ensure 

user friendliness. 
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Figure 13:  An advanced IT Environment for studying very large extraterrestrial data sets 

The implementation of this system should be highly modularized to provide extensibility. Users 

will be able to install additional feature extractors into the image-processing pipeline. Additional 

machine learning algorithms may also be installed into the image mining system. The user 

interface, metadatabase, image-processors, and image mining components will be highly 

decoupled to allow for replacement or use with similar components. Loose coupling will also 

allow the system to be easily scaled over a cluster or cloud-computing provider for “big data” 

operations. 

8 Conclusion 

There is a clear need for better tools to tackle the overwhelming amount of imagery data 

collected by NASA missions in the past, present, and future.  This study has demonstrated the 

potential of an image data mining system based on a content-based image retrieval framework.  

Further work as discussed in this report will provide a powerful image data mining tool that can 

help NASA and private-sector scientists and engineers analyze surface imagery for mission 

planning, resource prospecting, and scientific research.   
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