
Paper ID #10040

UnLecture: Bridging the Gap between Computing Education and Software
Engineering Practice

Vignesh Subbian, University of Cincinnati

Vignesh Subbian is an instructor/teaching assistant in the Department of Electrical Engineering and Com-
puting Systems at the University of Cincinnati. His research interests include embedded computing sys-
tems, medical device design and development, point-of-care technologies for neurological care, and engi-
neering education.

Dr. Carla C. Purdy, University of Cincinnati

Carla Purdy is an associate professor in the School of Electrical Engineering and Computing Systems,
College of Engineering and Applied Science, at the University of Cincinnati and an affiliate faculty mem-
ber in UC’s Department of Women’s, Gender, and Sexuality Studies. She received her Ph.D. in Math-
ematics from the University of Illinois in 1975 and her PhD. in Computer Science from Texas A&M
University in 1986. She is the head of UC’s B.S. in Computer Engineering Program and the coordina-
tor of the Preparing Future Faculty in Engineering Program. Her research interests include embedded
systems and VLSI, intelligent embedded systems, software and systems engineering, computational biol-
ogy and synthetic biology, agent based modeling and simulation, mentoring, and diversity in science and
engineering.

c©American Society for Engineering Education, 2014

P
age 24.1301.1

UnLecture: Bridging the Gap between Computing Education and

Software Engineering Practice

Introduction

The University of Cincinnati (UC) is considered to be the birthplace of co-operative education

(co-op), with UC celebrating the 100-year anniversary of cooperative education, locally referred

to as “reality learning”1, in the year 2006. The co-op program at UC requires students to

alternate between taking academic classes and working in full-time professional job assignments.

While co-op is optional for some programs, it is a mandatory requirement for all engineering

programs at UC, which are specifically designed as 5-year programs to allow for students to

complete the necessary co-op requirements2, 3. Undergraduate engineering students complete five

co-op rotations between their sophomore and senior years, accumulating close to 20 months of

professional work experience in their field of study. Although instructors often relate concepts

presented in the classroom to students’ cooperative education, there is a need for teaching

methodologies to better integrate every student’s own real-world experience into engineering

classrooms. Our hypothesis is that reflecting on and disseminating knowledge and experience

that students gain through professional practice, in the context of a specific course in the

curriculum, can be a valuable resource for classroom instruction. Based on this hypothesis, we

have developed a novel pedagogical strategy called UnLecture that uses concepts from active

learning and peer instruction to fully integrate students' co-op experiences into their classroom

activities. This technique can also be applied in courses where students have worked in

internships.

UnLecture Overview

An UnLecture consists of a reflective writing component and a participant-driven discussion.

Each UnLecture session is based on a theme directly related to one of the course topics.

Typically, an UnLecture on a topic is scheduled after that topic has been covered in an in-class

lecture. A rubric is provided to the students a few days prior to the session. The rubric is the

central element facilitating various components of this technique, including the Student Learning

Outcomes (SLOs). It is a set of carefully designed questions divided into three sections:

Retrospection, Examination, and Reflection.

 Before the session, students retrospect their past co-op/internship assignments, recollect

details that are related to the session theme, and document some fine points based on the

questions in the rubric.

 During the session, students share their retrospective thoughts and learn from fellow

students’ cooperative education experiences. They also examine practices that were realized

in various course projects and assignments and analyze the differences and similarities

between their experiences in industry and their learning experience from the course.

 After the session, the students combine their perspectives from both retrospection and

examination to reflect on how they will perform differently in their next co-op rotation or

work assignment.

P
age 24.1301.2

Five UnLecture sessions were designed and executed as a part of the course EECE 3093C–

Software Engineering during the Summer 2013 semester. The following is the list of session

themes:

1. Project Management and Team Work

2. Requirements Analysis, Design, and Modeling

3. Software Implementation Techniques and Practices

4. Testing and Code Maintenance

5. Ethics and Technology/Patent Wars

It can be observed that session themes are closely related to topics in the discipline of software

engineering. Subsequent sections describe the rubric design and results related to each of the

sessions and provide evidence of how the UnLecture technique helped in achieving course goals.

The SLOs and the process model of the course are elaborated in a separate paper5.

Student Demographics

The Summer 2013 class had an enrollment of ten students (5 computer science, 4 computer

engineering, and 1 computer engineering technology). The class size was significantly lower

when compared to historical enrollment data because several students were on a co-op rotation

during the summer in order to account for the recent academic calendar conversion from a

quarter to a semester system. The small class size, however, provided an opportunity to

implement and carefully assess feasibility of UnLectures. Out of the 10 students, 8 students had

completed at least 1 co-op rotation in the industry. Two students did not have prior co-op or

industry experience because the student transferred from a different major or institution that

didn’t require co-op as a part of their degree requirements or the student chose to do an on-

campus research co-op and has yet to pursue an industry co-op rotation. Each student without co-

op experience is paired with an experienced peer for UnLecture-related activities. In this way,

these students receive firsthand information on industry expectations and the nature of co-op.

UnLecture I: Project Management and Team Work

This is the first of the five participatory sessions that were conducted during the semester. The

primary objective of this session is to discuss different team models and project management

aspects, and also to provide an opportunity for students to get acquainted with the format of the

session. Table I shows the rubric for this UnLecture. In the retrospective part of this session,

students provided background information related to their co-op position and then presented the

organizational model and managerial aspects of the company/team that they worked for. Figure 1

shows the distribution of Summer 2013 students’ employers based on company size. Figure 2

shows the distribution of students’ roles in their co-op assignment. The size of specific teams

within the company varied from 2 to approximately 30, with some teams distributed across the

nation or in different countries. It can observed from both Figure 1 and Figure 2 that, for a class

size of 10, there is a good distribution of employers, ranging from start-ups to well-established

enterprises, and at least one student in each of the following roles: designer/architect, developer,

test engineer, and application support engineer. This kind of diversity in co-op assignments is

P
age 24.1301.3

extremely useful and important because students receive different perspectives on working in the

software industry. In the next portion of the session (examination), students discussed their views

on the pair programming model of the course in relation to the team model of their co-op

assignment. After the session, students documented the last section of the rubric (reflection). The

following are some excerpts from reflection:

 “All of my experience has been in very small teams and it was interesting to hear about

teams that were 25+ people …and about teams that were international and the benefits and

difficulties of having people working at different time zones across the world.”

 “It [the course team model] is different from my internship, where I was stuck alone for a

long time with frequent unclear instructions.”

 “It was interesting to see how their [fellow students'] co-ops were different from mine,

especially those who worked on testing teams. I hope to gain experience doing testing in this

course that I will be able to take back to my next co-op.”

 “On my next co-op term, I would like to work on a larger team rather than just two people.”

 “…because I have not yet completed a co-op, I do not have a good idea of what a co-op

entails. Listening to my classmates talk about [co-ops]… has given me more insight and

confidence that material learned in this class will be relevant and useful for my first co-op.”

Table I Rubric for UnLecture I: Project Management and Team Work

Objective: The purpose of this assignment is to document and share your project management and team

work experiences from your co-op, internship, or other industry work experiences.

Prelude: In this section, you are required to include the following information related to at least 2 past

industry projects: title/role, company/organization (optional), and overview of the team that you were a

part of, summary of your responsibilities, duration of each assigned task, and duration of the project.

Retrospection: For each project you listed, write a retrospective essay based on the following questions:

1.1. What was your team model (team size, who led the team? How were tasks delegated? etc.)? Describe

the technical nature of the team (example: development or testing or both, support etc.)

1.2. Who made important decisions in the team? How were decisions made?

1.3. What kinds of meetings were conducted (example: stand-up meetings, all-hands weekly meetings,

town-hall meetings, etc.) and how often? How were meetings/decisions documented and

communicated?

1.4. What problems/issues did you encounter while working in teams? How did you resolve them? What

were some benefits of team work?

Examination:

2.1. What are your thoughts on the team model of this course? Besides size, how is it different from or

similar to your past experiences (include pros and cons)?

Reflection:

3.1. What did you learn from this UnLecture session? In other words, what are your thoughts on

conversations that you had with your classmates and their experiences?

3.2. Based on this discussion and the team work experience in this class, what will you do differently in

your next co-op or industry work assignment?

P
age 24.1301.4

Figure 1 Distribution of Students' Industry Experience

Figure 2 Distribution of Students' Role in Industry

UnLecture II: Requirements Analysis and Design

The focus of this UnLecture is to document and discuss software development life cycle (SDLC)

models, business process models, requirements analysis, and design and modeling experiences

from students’ co-op assignments. Table II presents the rubric for this UnLecture.

Table II Rubric for UnLecture II: Requirements Analysis and Design

Retrospection:

1.1. What SDLC model did your team/company use? Who were customers to your team? Were they

internal or external? How were requirements obtained from customers? How were requirements

documented and communicated? How clear or unclear were the requirements? How did you/your

team deal with unclear requirements?

1.2. What design strategies did your team use before starting implementation? What tools/techniques did

you use for design/modeling? Did you have brainstorming (or “powwow”) sessions? Elaborate.

Examination:

2.1. What are your thoughts on requirements analysis, design and modeling techniques used this course?

How are they different from or similar to your past experiences?

Reflection: Similar to the reflection section in Table I

SDLC models are usually covered at the beginning of the semester, and this UnLecture was a

good place to revisit and discuss those models, especially because it is also an important SLO of

P
age 24.1301.5

the course5. The course uses a combination of waterfall and agile models for the laboratory

project. Figure 3 shows the distribution of SDLC models that students used in their co-op

assignment or previous software-related projects. An important objective of this session is to

emphasize the connection between the software development process and the application needs.

The following excerpts from student reports are examples of how UnLecture furthers the

understanding of concepts that students learn from traditional lectures and laboratory projects.

 “I do remember seeing a diagram (in my co-op) that was made during one of our meetings …

I believe it was a class diagram, since it showed what some classes would contain and what

methods we would need to implement. I didn’t know UML then…”

 “It does seem like it takes a lot of time to create models for a software project but it will force

you to think and know how the software will be structured and designed. This can also lead

to solving many issues that may arise before any coding is actually begun.”

 “Another point from this Unlecture I found interesting was when one student talked about his

experience as a free-lance web-site developer. As I’ve never been responsible for

requirements gathering myself, I thought his perspective on customers on opposite ends of

the spectrum was very interesting…”

 “When designing large systems, I can see how it (structured design) could be useful…”

Figure 3 Distribution of SDLC models used by employers of Summer 2013 class

UnLecture III: Software Implementation Techniques and Practices

In this UnLecture, students discuss software construction and programming techniques, with

specific focus on the object-oriented programming (OOP) paradigm. The rubric for this session

is shown in Table III. The inherent goal of this session, as demonstrated in the rubric, is to

reinforce the fundamentals of OOP and broaden students' ability to follow generally accepted

programming practices. Students provided specific examples of their programming styles and

how they applied their theoretical knowledge of OOP concepts to actual practice, which was

evidently useful for students who generally follow a code-first-and-fix-later approach. It was

intriguing to see how peer instruction successfully inserted itself into the process. The following

are excerpts from both student reports and actual dialogue during the session.

P
age 24.1301.6

 “(for this UnLecture), I also had to really think about, what and how I think about before I

start to program. It seems like the majority of my programming has been code and fix

approach.”

 “A new concept that I learned while on my coop was the practice of defense in depth.

Defense in depth means … (explains the concept with example).”

 “I realized I was attempting to do things in a procedural mindset instead of using OOP.”

 “I often use rubber ducking for debugging, and sometimes even for designing my classes and

methods … (explains how the technique works).”

Table III Rubric for UnLecture III: Software Implementation Techniques and Practices

Retrospection:

1.1. Briefly describe a software module that you were tasked with. Was it a part of a system/application or

was it a part of an automation/scripting? In what language(s) did you program?

1.2. What OOP concepts did you use while programming at work? Give specific examples. What

software-related concept(s) did you realize during the course of a specific project? (In other words,

you knew the concept theoretically, but actually applied it while working on the project). What “best”

programming practices did you follow/learn?

1.3. Explain your thought process during a typical programming session (This is an open-ended question)

Examination:

2.2. Explain, with examples, OOP concepts and design patterns that you have used in this class.

Reflection: Similar to the reflection section in Table I

UnLecture IV: Software Testing and Code Maintenance

In this session, students with software testing experience were identified prior to the session and

were assigned as session moderators. This was primarily done to evaluate UnLectures for larger

classes. Also, not many students are exposed to testing in their initial co-op rotations; the

majority of them work as developers (see Figure 2). In this class, there were two students with

shadowing experience in testing and quality assurance (QA) teams, and only one student who

actually worked as a testing intern. These three students led the discussion based on the rubric

shown in Table IV, and other students benefited from these leaders' experience in software

testing. Additionally, test-first development is central to the design process of this course and

hence, a significant amount of time was spent on discussing testing experiences from the course

(see examination section in Table IV). This UnLecture also covered topics in code maintenance,

as presented in the rubric in Table IV. Typically, lectures/UnLectures are an hour long, but given

the breadth of topics in this UnLecture, and the need to discuss both testing and QA topics in the

same session, a 90-minute meeting is recommended. The peer-moderated format of UnLecture

was well-received by all students, and several of them produced very detailed and well-thought-

out summary reports. A few excerpts from the reports are as follows:

 “…I also learned that it is good practice to write a test case whenever a bug is found, in case

the bug ever resurfaces.”

P
age 24.1301.7

 “I thought that the way he (a fellow student/moderator) was able to come in with prepared

examples of how testing was done within his company was very informative to someone like

me who really has had no formal experience with software testing.”

 “When I worked with the team running stress tests, it was actually not led by the testers, but

by a lead developer on the team. It consisted of… (explains how stress tests are run on

databases).” This is an example of a topic that was presented minimally in the lecture, but

was re-visited and covered with examples in an UnLecture.

Table IV Rubric for UnLecture IV: Software Testing and Code Maintenance

Retrospection:

Part I: Testing

1.1. If you were a part of a testing or QA team, explain in detail the testing practices of the team, test

suite, kinds of tests that were written or used, quality of tests (i.e., ability of the tests to find bugs),

and build/deployment process, and, finally, share your learning experience from the testing/QA team.

1.2. If you were not a part of a testing/QA team, explain your interactions with the testing team.

1.3. Besides just compiling/running, how did you test the code correctness? How did you ensure that you

did not break the main build?

1.4. How did you debug your code? What are some common debugging practices/tools of your team?

Give specific examples of bugs that you encountered. How did you fix them?

Part II: Code Maintenance

1.5. Explain code maintenance practices of your team (give details about version control and associated

tools)? How often did you update, commit and/or merge, and build?

1.6. Explain the release cycle of your team. How were releases made to customers? How often did

customers receive releases?

1.7. When did you first learn about version control? After learning to do version control, how did it

change your views on maintaining code?

Examination:

2.3. Share the kinds/levels of tests you wrote as a part of this course. Give specific examples, if any, of

how tests found bugs in your code?

2.4. What did you learn from writing test cases and test plans?

2.5. What are your thoughts on code maintenance and release cycle in this course? How are these different

from or similar to your past experiences (pros, cons)?

Reflection: Similar to the reflection section in Table I

UnLecture V: Software Engineering Ethics and Technology/Patent Wars

This is the last participatory session in the series of UnLectures that were conducted in Summer

2013. It consisted of one typical course topic on software engineering ethics and one non-

traditional discussion topic on patent wars. This UnLecture is an example of adding an active

learning component to abstract topics such as business and legal aspects of software engineering,

along with information that doesn’t necessarily require lecturing, but may require research or

critical thinking, such as the IEEE/ACM Software Engineering Code of Ethics. Instead of

listening to lectures, students use their research and reading to inform their discussions during

UnLectures. The primary focus of this UnLecture is to discuss ethical issues and dilemmas

related to software engineering in both industry and academia. As a research exercise, student

P
age 24.1301.8

teams are also assigned readings on an ongoing or past technology/patent war in the software

industry. This exercise is meant to broaden their awareness of software Intellectual Property (IP)

and associated infringements. The rubric for this UnLecture is show in Table V.

Table V Rubric for UnLecture V: Software Engineering Ethics and Technology/Patent Wars

Retrospection:

Part I: Ethics

1.1. What are your personal ethical principles related to a) workplace b) software engineering. You may

give specific examples.

1.2. What ethical questions have arisen in your professional experience? Explain how you (or the person

involved) resolved the dilemma? Relate each experience to a clause in the IEEE/ACM Software

Engineering Code of Ethics (include the clause #).

1.3. Pick a specific clause from one of the 8 principles in the IEEE/ACM Software Engineering Code of

Ethics (include the clause #). Critique the selected clause quantitatively. Include examples, as needed.

Note: Avoid using the same clause for both (1.2) and (1.3).

1.4. Were you given any kind of orientation/training, formal or informal, on ethical practices, as a part of

your co-op/internship?

1.5. Explain general work/business ethics of your team/company (example: policies regarding data

storage, server access, access to internet content during work, work-from-home options, etc.)

Part II: Technology Patent Wars: Research and investigate the patent/IP war that was assigned to you, and

then answer the following questions:

1.6. Briefly describe the case and involved parties (who initiated the lawsuit (plaintiff) against whom

(defendant), what was the plaintiff’s claim? etc.)

1.7. Explain specific technical details (related to hardware, software, design, and/or name/logo) behind the

claim/IP violation?

1.8. What was the outcome of the lawsuit? What is your take on the outcome (potential/favorable

outcomes, if the suit is still ongoing)? Include your own perspectives.

1.9. (Open-ended question) In your own opinion, what is the next big thing in the software industry?

Which technology has the potential to revolutionize the software industry?

Examination:

2.6. What ethical questions did you face in this course and how did you resolve the dilemma?

Reflection: Similar to reflection section in Table I

Results and Discussion

A total of 15% of the course grade was allocated to UnLectures. Attendance and participation in

the five UnLectures constituted 5%, and the reflective writing components, before and after the

sessions, were assigned the remaining 10% of the grade. The rubric is provided a week before

the session to allow for students to complete the retrospection and examination sections.

Students are advised to complete the reflection section on the same day as the session, and

submit the entire report within a day after the session. UnLecture evaluation results including

excerpts from student feedback are shown in Table VI. Besides minor criticism on the amount

of writing an UnLecture entails, the student responses were mostly positive and appreciative.

The writing component is extremely important for achieving SLOs and hence, it may not be

combined into a group assignment. Finally, the success of UnLectures lies in careful placement

of the sessions within the course calendar. The Summer 2013 semester was in fact a controlled

P
age 24.1301.9

experiment to determine the placement of the five UnLectures in relation to the lectures and the

release cycle of the course laboratory project4.

Table VI Evaluation Results

Course-specific Question
Strongly

Disagree
Disagree Neutral Agree

Strongly

Agree

The UnLecture sessions helped in relating my industry/work

experience to this course (and vice versa)
0% 0% 20% 40% 40%

The combination of both in-class lectures and UnLecture sessions

enhanced the learning experience in this course
0% 0% 0% 60% 40%

Excerpts from student feedback

1. “The unlectures were really fun. I really enjoyed talking about and hearing others' perspectives from industry.”

2. “This was a very informative course and I learned a lot. I could relate a lot of what I did in co-op to this course.”

3. “I thought that the unlecture sessions were a good addition to the course.”

4.
“These [questions/issues discussed in unlectures] also came up in several of my co-op interviews this year and I believe that the

background information I learned in this class played a major role in some of the jobs I was offered.”

5. “I didn’t expect to write 5 essays for an engineering class.”

Conclusion

This paper has described a novel pedagogical strategy to methodically integrate outcomes from

both experiential and classroom learning. The software engineering UnLecture rubrics presented

in this paper are useful examples for understanding the technique and recreating them for other

engineering disciplines. The rubrics can be tremendously valuable to software engineering

educators, particularly to those in institutions that have integrated cooperative education or

internships in their academic programs. With careful planning and rubric design, UnLectures can

be integrated into other electrical and computer engineering courses5 and also into courses in

other engineering disciplines as well. Finally, it is worth mentioning that, besides providing

evidence of how students value the UnLecture technique, students’ experiential learning reports

are reliable sources to inform teaching and cooperative education research. A detailed report on

how the concept of UnLecture evolved and how it compares to other active learning techniques

in the literature is presented in a separate paper6.

References

1. N. L. Zimpher, and R. D. Wright, “100 Years of Reality Learning,” Community College Journal, vol. 76, no. 3,

2006, pp. 24-26.

2. K. Cedercreutz and C. Cates, “Cooperative Education at the University of Cincinnati: A strategic asset in

evolution,” Peer Review, Fall 2010, vol. 12, no.4, pp. 20.

P
age 24.1301.10

3. L. Harrisberger, R. Heydinger, J. Seeley, and M. Talburtt, Experiential Learning in Engineering Education,

American Society for Engineering Education, 1976.

4. V. Subbian and F. R. Beyette “Developing a new advanced microcontrollers course as a part of embedded

systems curriculum,” IEEE/ASEE Frontiers in Education Conference, 2013, pp. 1462-1464.

5. V. Subbian and C. Purdy “A hybrid design methodology for an introductory software engineering course with

integrated mobile application development,” ASEE Annual Conference, 2014.

6. V. Subbian and C. Purdy “UnLecture: A novel active learning based pedagogical strategy for engineering

courses,” ASEE Annual Conference, 2014.

P
age 24.1301.11

