
Paper ID #10607

Use of FreeRTOS in Teaching Real-time Embedded Systems Design Course

Dr. Nannan He, Minnesota State University, Mankato

Nannan He received the Ph.D. in computer engineering from Virginia Tech. From 2012 to present she is
an Assistant Professor at the ECET department in Minnesota State University at Mankato. Her teaching
and research interests are in safety-critical embedded software, real-time embedded systems, and software
verification. She is an IEEE member and reviewers for many conferences and journals in EDA field.

Dr. Han-Way Huang, Minnesota State University, Mankato

Ph.D. in computer engineering from Iowa State University Professor of ECET Department of Minnesota
State University, Mankato

c©American Society for Engineering Education, 2014

P
age 24.1307.1

Use of FreeRTOS in Teaching Real-time Embedded

Systems Design Course

Abstract

This paper presents our experiences of teaching the course “Real-time Embedded Systems

Design” by applying the free and open source Real-Time Operating System (RTOS) called

FreeRTOS. The emphasis is placed on how we adopted FreeRTOS as a real-world RTOS

example in both lectures and lab sessions from exercises preparation, lab equipment setup to lab

organization. Compared with existing real-time computing courses, the main difference of this

course is that we focus on teaching students the design and application development of real-time

embedded systems from the practitioner’s point of view, instead of introducing research or

theoretical topics. FreeRTOS is a real-time kernel/scheduler designed to run on a microcontroller

for embedded applications. It supports a large number of underlying microcontroller

architectures and has become the leading real-time computing platform for microcontrollers. In

this course, it has been applied to conducting experiments with multitask scheduling algorithms

and the real-time interfacing with microcontrollers for all our lab sessions and course projects.

Our primary experiences indicate that FreeRTOS is a richly featured, cost-efficient and well

supported RTOS for teaching real-time systems design and developing microcontroller-based

real-time applications.

Introduction

Nowadays, with the emergence of new processors and methods of processing, communications

and infrastructure, modern industrial automation systems require high real-time control

capabilities. There is an on-going work to achieve the education goal of increasing the technical

depth and broaden training by investigating deterministic timing techniques in complex real-time

automation systems at Minnesota State University, Mankato. As an important exploration step

towards this goal, a new real-time embedded system design course has been offered to electrical

engineering and computer engineering senior or graduate level students. At the same time, the

goal is also an important guideline in the course preparation and teaching practices, as a result

some special features of this course are formed compared with most existing real-time systems

design courses.

Real-time computing courses are mostly offered to computer science major students at the senior

or graduate level, with the aim of equipping them with the knowledge of conducting the

scientific research in this area. These courses typically focus on the theoretic topics in real-time

computing, such as various reference models of real-time systems, schedulability theory, design

and timing analysis of multi-task scheduling algorithms and operating systems. However, the

P
age 24.1307.2

real-time embedded systems design course presented in this paper emphasizes engineering issues

of designing and developing real-time systems in practical embedded applications like

automation. The course is taken by senior electrical engineering and computer engineering

students and some graduate students pursuing their Master degree. Other engineering students

with the appropriate software background could also take the course. It emphasizes teaching

students real-time systems design and applications from the practitioner’s point of view, instead

of targeting at research and theoretical topics as conventional real-time computing courses. After

taking this course, students are expected to demonstrate the ability of correctly defining and

designing real-time systems, and the ability of basic real-time application development. Active

learning and hands-on learning are the fundamental teaching approaches applied to this real-time

systems design course.

This new course covers the topics on RTOS relevant topics, such as multi-task scheduling,

system services, and resource policies and some application issues for developing real-time

systems, such as microcontroller, requirement analysis, performance analysis and verification of

real-time system design. Among these topics, RTOS is one of the core components of our new

course. In this course, we employed an existing free, open source Real-time Operating System

called FreeRTOS as a case study of RTOS in both lectures and lab sessions.

FreeRTOS is a real-time kernel/scheduler designed to be small enough to run on a

microcontroller. It provides the real time scheduling functionality, inter-task communication,

timing analysis and synchronization primitives for teaching RTOS. It also offers the rich

example projects as the bases for developing embedded real-time systems. Moreover, FreeRTOS

supports a large number of underlying microcontroller architectures including advanced ARM

Cortex
TM

-Mx series, and has become the standard RTOS for microcontrollers. To simplify the

structure of the application code, The FreeRTOS software provides time-related Application

Programming Interfaces. As a result, complex embedded real-time applications can be efficiently

built to meet their real-time processing deadlines on top of FreeRTOS. In this course, FreeRTOS

was applied to conducting experiments with multitask scheduling algorithms and real-time

interfacing with microcontrollers for all our lab sessions and course projects.

This paper presents the primary experiences of teaching real-time embedded systems design to

engineering students, with the emphasis of how we adopted FreeRTOS as a real-world RTOS

example in teaching to improve the teaching effectiveness. The description of this course is first

given, including course contents, learning outcomes and instruction approach. Next, a survey of

existing real-time operating/runtime systems is reported. Then, this paper describes the software

FreeRTOS and how we make use of FreeRTOS in lab assignments and course projects from

exercises preparation, software setup and implementation. Finally, the paper gives a conclusion

and discusses the future work.

P
age 24.1307.3

Figure 1. The course is designed

based on three core components.

2. Real-time embedded systems design course description

Our real-time embedded systems design course targets the learning of real-time systems design

and applications from the practitioner’s point of view. It has been offered for two years. This

course is organized as two hours of lecture and three hours of laboratory per week. It has three

main objectives.

 To improve students’ awareness of real-time specifications in critical automation controllers

and other embedded systems.

 For engineering students to apply modern development tools and advanced techniques to

designing and analyzing performance of small-scale real-time systems.

 To enable students to develop real-time applications to solve problems with specific timing

requirements.

Moreover, in order to accomplish the basic instruction approach of active learning and hands-on

learning, this course has an experiential component. It allows students to apply advanced

techniques learnt from this course to develop an understanding of their advantages and

disadvantages in different applications.

Course learning outcomes

Our overall aim is to equip students with the knowledge of designing real-time systems and

developing real-time applications to solve engineering problems in practice. In the development

of this course, we identify course learning outcomes that stem from this aim and extend to

learning activities. We developed twelve learning outcomes, classified into three core

components as shown in Figure 1.

1. To demonstrate the ability of correctly defining real-time systems

1.1 To identify problems as hard, firm or soft real-time system;

1.2 To articulate and contrast different definitions in real-time systems.

2. To demonstrate the ability of real-time systems design

2.1 To comprehend formal methods based specification

approaches and utilize modeling tools;

2.2 To understand the impact of hardware for real-time

performance;

2.3 To analyze the scheduling feasibility of a set of

independent tasks and derive schedules;

2.4 To understand resource policies and system

services for inter tasks communication and

synchronization;

2.5 To understand the challenges and applications of

performance analysis techniques; P
age 24.1307.4

2.6 To understand real-time issues on advanced distributed control networks such as

SCADA;

3. To demonstrate the ability of basic real-time application development

3.1 To understand real-time software testing, verification and system integration.

3.2 To be aware of performance optimization techniques.

3.3 To utilize modern tools to simulate executions and critique different implementation

choices.

3.4 To comprehend the architecture, functions and applications of one or two existing RTOS.

Course contents

The topics covered in this course include real-time scheduling approaches such as clock-driven

scheduling and static and dynamic priority driven scheduling, resource handling, timing analysis,

RTOS, hard and soft real-time systems, distributed real-time systems, concepts involved in the

modeling, design, analysis and verification of real-time systems. Course materials were drawn

from two text books
1, 2

, FreeRTOS tutorial book and reference manual, ARM Cortex-M

microcontrollers’ datasheets, websites, and other publications. Table 1 shows the classification of

these topics. In this table, the time schedule of each top-level topic is given for this one semester

course (~ 15 weeks). Please note that the topic 7 - Case studies (FreeRTOS) is not labeled with a

specific schedule because its sub topics are provided in the combination with other topics

throughout the semester.

Table 1. Course topics

1. Fundamentals (week 1) Requirement Eng. for real-time systems

 Basic concepts and misconceptions (semi-) Formal methods in system specification

 Multidisciplinary design challenges Real-time kernel Implementation in FreeRTOS

2. Hardware for real-time systems (2
nd

-3
rd

) 5. Performance analysis techniques (10
th

 – 12
th

)

 Process architecture Timing estimation of real-time system

 Architectural advancements Queue theory applications

 Peripheral interfacing Input/output performance

 Distributed real-time architecture 6. Additional application issues (13
th

 -14
th

)

3. Real-time operating systems (3
rd

 - 6
th

) Design for fault tolerance

 Multi-task scheduling Software verification & system integration

 System services for application programs Performance optimization

 RTOS selection issues 7. Case studies: RTOS in practices

4. Requirement engineering (6
th

 – 8
th

) FreeRTOS (open source)

P
age 24.1307.5

Instruction approach

Active learning and hands-on learning are fundamental teaching approaches applied to this real-

time system design course. All of the classes were held in the laboratory. For this course, this

setting eases the flexible adoption of a variety of teaching methods, depending on the

characteristics of different course topics in sequence. The main teaching formats and material

employed in this course are presented as the following.

At the beginning, we used power point slides presentation and class discussion to introduce

students the topics on defining real-time systems. These topics are basis for further learning.

Thus, it is important to help students to set up a solid and comprehensive foundation. In the class

discussion, some questions are designed to enable students to reflect on key concepts in real-time

systems, and to encourage active learning. Here are some examples: 1) Are real-time systems

synonymous with ‘fast or high performance’ systems?, 2) “In the statement ‘All practical

systems are ultimately real-time systems’, what is your idea of the degree of ‘real-time’?, 3)

“Where could a response time requirement of a system come from?”. As the discussions proceed,

students gradually deepen their comprehension at the same time are inspired to judiciously

observe and analyze real-time applications. The initial homework exercises in this course are

extracted from practical application problems. One example question is: considering an

automation system for the car assembly, describe three different event scenarios, classify the

system as hard, firm or soft real-time under each of these scenarios. Such exercises are designed

with open-end questions. The goal is for students to think and give the justification for their

answers, and to fortify students’ understanding so as to be able to apply it in practice.

The main purpose of introducing formal requirement engineering techniques is for students to

develop an appreciation of automated formal or semi-formal methods in rigorously specifying

real-time system requirements. An example sub-system requirements document for “Fuel

Management” from AIRBUS was introduced as a case study. Students are convinced that the

formal specification like State chart is not just a scientific research issue, in fact has been widely

used in requirement specification of safety-critical embedded systems in industry to avoid the

ambiguity caused by conventional text-based specifications. Later on, they showed great

enthusiasm in learning formal or semi-formal approaches. In the course evaluation, students

made several comments that the requirement engineering offered in this course was one of the

most beneficial aspects to them.

There is the increasing number of microcontrollers (MCUs) supporting real-time applications. In

this course, the following MCU development boards and Integrated Development Environment

(IDEs) are employed to be available for students.

– PIC24, dcPIC (Explorer 16 Development board from Microchip)

– ATmel SAM4S-EK (ARM Cortex-M4 microcontroller from Atmel)

– ATmel SAM4L-EK (ARM Cortex-M4 microcontroller for low power from Atmel)

P
age 24.1307.6

– µVision IDE for ARM programming from Keil

– Atmel Studio with Atmel Software Framework (ASF) from Atmel

– MPLAB IDE from Microchip

The above MCUs are selected as they are all supported by the FreeRTOS software which is the

main RTOS studied in this course.

The last part of this course offers students the topics which are served for the application

development core component. As real-time systems are often applied in the ‘critical’ embedded

applications with respect to reliability, safety and security, verification and validation (V&V) is

an important issue in real-time application development. An on-going research on the model-

based V&V is incorporated in this course so that students could be exposed with latest V&V

advances.

Table 2. A survey of RTOSs

Name License Platforms Description

FreeRTOS Free ARM, IA32,

Cortex-M3, PIC,

MSP430, STM32

A real-time kernel designed to be small enough run on

a MCU, be potable to a large number of MCUs.

http://www.freertos.org

CooCox

CoOS

BSD

ARM, STM32,

NXP LPC1000,

TI LM3s8963,

An embedded real-time multi-task OS special for

ARM Cortex M series.

http://www.coocox.org/CoOS.htm

QNX Mixed ARM, IA32,

MIPS, PowerPC,

SH-4, xScale

A commercial Unix-like RTOS, targeting at general

purpose usage, being widely used with in a variety of

devices including cars and mobile phones.

http://www.qnx.com/

Window CE

or WinCE

Proprietary ARM, MIPS, x86,

SuperH

An OS and kernel developed by Microsoft for

embedded systems; a variety of IDE supporting

development for WinCE

http://www.microsoft.com/windowsembedded/en-

us/windows-embedded-compact-2013.aspx

scmRTOS Free ARM,

Cortex-M3,

MSP 430, AVR

A free tiny preemptive RTOS intended for use with

Single-Chip MCUs. The key features are max speed

and min code/RAM size requirements.

http://scmrtos.sourceforge.net/ScmRTOS

Micrium

uc/OS-IIs

Proprietary ARM, ST32 PIC24 A priority-based pre-preemptive real-time

multitasking operating system kernel, featuring

unlimited application tasks. http://micrium.com/

CoDeSys SP

Runtime

System

Proprietary X86, ARM,

Infineon TriCore

Full-feature OS; Component based architecture for

customer adaptations to various platforms.

www.codesys.com/products/codesys-runtime.html P
age 24.1307.7

3. RTOSs survey

Every real-time system contains some operating system (OS) like functionalities: 1) Providing an

interface to the input/output hardware; 2) providing coordination of virtual concurrency in a

uniprocessor environment; 3) providing true concurrency with multi-core processors and

distributed system architectures. In general, a RTOS has three main principal goals: 1) to offer a

reliable, predictable, and low-overhead platform for multi-tasking and resource sharing; 2) to

make the application software design easier and less hardware bound; 3) to make engineers in

various industry fields to concentrate on their core product knowledge. However, full-feature

operating system (OS) is not always the good solution in embedded systems for two main

reasons. First, it is hard to meet design constraints of low-end embedded systems, such as system

cost and complexity, response time and the punctuality. Second, the MCU is heavily occupied by

the system software, instead of executing the time-critical application.

Nowadays, there are many RTOSs available from both commercial and research communities.

These RTOSs have different license types, target usage and supported platforms. In order to

select the suitable RTOS for our teaching purposes, we first did a survey of existing RTOSs

whose target usage is in embedded applications, as shown in the table below. We follow three

selection principles: 1) the license is low-cost or free; 2) The RTOS is portable to a large number

of MCUs; 3) The RTOS is well-documented. Compared with other RTOS systems, FreeRTOS is

free and supports most common MCUs from multiple manufactures. Moreover, it is easy to

access a comprehensive FreeRTOS reference manual and lab exercises developed using

FreeRTOS.

4. Introduction to FreeRTOS

FreeRTOS is chosen as the case study of RTOS to study multitask scheduling policies and real-

time interfacing with MCUs. It provides real time scheduling functionality, inter-task

communication, timing analysis and synchronization primitives. On top of FreeRTOS,

complicated Cortex-M4 MCU applications can be efficiently built to meet their hard real-time

requirements. It supports organizing these applications as a collection of independent threads of

execution.

Since each of the MCUs used in our lab has one processor core, only one task can be executing

at any one time. By computing the scheduling policy designed by the application developer,

FreeRTOS is responsible of deciding which task (i.e., one thread of execution) should be

executing at a time. Using the priority-based scheduling as an example, the application code first

assigns higher priorities to tasks that implement hard real-time requirements, and lower priorities

to tasks that implement soft or firm real-time requirements. Then, FreeRTOS could take care of

the rest of the work and determine which task should be executing by examining the priority

P
age 24.1307.8

assigned to each task by the applications. Thus, hard real-time tasks can always guarantee to be

executed ahead of soft real-time task.

Besides helping ensure an application meets its processing deadlines, FreeRTOS can bring other

benefits. To help students better understand the usage of this RTOS, three other main benefits are

introduced through lab exercises. First, the kernel is responsible for timing and provides time-

related APIs to the application. This allows the structure of the application code to be simpler

and the overall code size to be smaller. Second, the idle tasks which are created automatically by

the RTOS can be used to measure spare processing capacity, to perform checks in the

background, or to place the processor into a low-power mode. Third, gatekeeper tasks provided

by the RTOS can be used to serialize access to peripherals.

5. Application of FreeRTOS

Educators have explored hands-on RTOS

development for enhancing student learning in real-

time systems course
5, 6

. The lab assignment based on

the FreeRTOS is the important experiential

component of this course, which aims at gives student

rich hands-on experience in building real-time

systems.

Three things are prepared for tutoring each lab session

before students start working on the lab assignment.

First, a list of questions is designed for students to

figure out the answers during each lab session. These

questions serve as the guidelines to assist students’

hands-on learning. Second, the concepts or algorithms related to each lab work, which have been

introduced in lectures, are reviewed. Thirdly, as software programing is the main task in each

lab, a set of relevant API functions are introduced to students for the efficient programming.

These APIs are provided by either FreeRTOS or certain libraries included in a particular IDE. A

standard demo project which incorporates MCU development board, simulator, logic analyzer

and miniature RTOS with all basic features, is provided to students. They make use of this demo

project as the basis to construct more application specific projects, which could achieve more

efficient development compared with creating application from scratch. According to the course

evaluation report, students gave the feedback that they benefit most from the hands-on

programming experience.

Figure 2. The RTOS lab assignment

includes six core components.

P
age 24.1307.9

Lab assignments on FreeRTOS

The lab assignments based on FreeRTOS consist of five key components. Figure 2 shows core

lab components. More details are presented in the following:

1. Task Management

Include 8 lab exercises on creating tasks, creating tasks, experimenting with task priorities,

using Block state to create a time delay, combining continuous processing tasks and periodic

tasks, defining an idle task hook function, changing task priorities, and deleting a task.

2. Queue Management

Have 4 lab exercises on creating queue for task-to-task communication, sending data to a

queue, receiving data from a queue, managing the stored data, blocking on a queue, and the

effects of task priorities when sending to and receiving from a queue.

3. Interrupt Management

3 lab exercises are arranged on deferred interrupt processing, using binary semaphores /

counting semaphores to synchronize a task, and using queues within an interrupt service

routine.

4. Resource Management

2 lab assignments are given on mutual exclusion, mutex, priority inheritance and gatekeeper

tasks for protecting resource access.

5. Memory Management

1 lab assignment on different memory allocation schemes to illustrate their pros and cons.

Other tools are also employed for system development in this course, for example,

FreeRTOSplusTrace from Atmel is used for simulating and observing execution traces for

debugging.

6. Conclusion

This paper presents our primary experience of teaching the new course “Real-time Embedded

Systems Design”. First, the description of this course is presented. Second, we introduce a survey

of RTOSs portable to ARM platform, especially an open source RTOS – freeRTOS with which

the lab assignments are designed. In the future, we hope to apply another IDE Keil µVision

which is dedicated for ARM programming to this course, refine lab assignments and propose

new projects on developing FreeRTOS-based real-time applications.

References

1. “Real-Time Systems” Jane W.S. Liu, Prentice Hall.

P
age 24.1307.10

2. “Real-Time Systems Design and Analysis: Tools for the Practitioner” 4
th

 edition, Philipp A. Laplante, Seppo J.

Ovaska, Wiley Publisher.

3. “The FreeRTOS
TM

 Reference Manual”, FreeRTOS online.

4. “Using the FreeRTOS Real Time Kernel – A Practical Guide – Cortex-M3 Edition”, FreeRTOS online.

5. Kumar, G.S.A.; Mercado, R.; Manimaran, G.; Rover, D.T., "Enhancing student learning with hands-on RTOS

development in real-time systems course," Frontiers in Education Conference, 2008. FIE 2008. 38th Annual,

vol., no., pp.S2H-11,S2H-16, 22-25 Oct. 2008.

6. Yu JX, Zhao YG, Li Y and Duang HY, “An Example of Course Project of Real-Time Multitask Programming”,

I.J. Education and Management Engineering on MECS, 2012.

P
age 24.1307.11

