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A first year common course on computational problem solving and
programming

Abstract 

This is a report on work-in-progress for an entry-level course, Engineering Computation Lab, in 
which engineering and other STEM students learn about computational problem-solving and 
programming. It provides a hybrid (on-line and in-person) environment for learning introductory 
programming and computational problem-solving. It runs at scale, serving 800-1000 engineering
students per term. Pedagogically, it uses active and problem-based learning using contexts more 
oriented towards the needs of engineering students than typical generic “intro programming” 
courses.  Autograded exercises and on-line access to information have been key to feasible 
operation at scale.   Learning how to operate effectively and smoothly at scale across a variety of 
lead instructor preferences, with the particular needs for computation by engineering students has
been the continuing challenge.  We report on our experiences, lessons learned, and plans for the 
future as we revise the course.

Course objectives

Use of computation is indisputably part of every engineer's foundational training.  However, 
there does not appear to be a consensus on the extent of such training, or its outcomes.  Training 
for professional software developers (as evidenced by what it would take to be seriously 
considered for a professional software development position nowadays) would seem to include 
the equivalent of at least several terms of courses to achieve a working knowledge of software 
development: programming in two or more languages, data structures, performance analysis, 
software design, and basic principles of software engineering such as testing, documentation, and
archival storage.   However, the conventional undergraduate engineering degree is already full of
other mandated science and discipline-specific course work.  Until the day arrives where enough 
time is given to establish mastery of software development, course designers would seem to need
to settle for the goal of introduction:   initial experience with of the skills and knowledge needed 
to create and use software to solve problems typical of an engineer's work.   This includes:

• Concepts of simple computation:  command-based access to technical functionality; 
scripting and introductory programming (variables, control statements, functions).

• Application of computation to engineering:  concepts of simple mathematical modeling 
and simulation, and their use to solve engineering design problems.

• Software engineering:  how to build software, get it working quickly, and having 
confidence that it works well.  Also, how to better amortize the cost of building software 
by designing for reuse. 

Mastery of these concepts is clearly beyond a single course, or even a year long sequence of 
courses.  Yet postponement to sophomore or junior year blocks access to even simple 
computation skills and concepts in the first years, which blocks more sophisticated use of 
software when it might be used by some for educational benefit. P
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Engineering Computation Lab, 2006-2013

The course was originated and underwent pilot development in 2005 under Jeremy Johnson with 
an enrollment consisting primarily of first-year Computer Science majors.  The first full 
deployment of the course began in 2006  at a scale of approximately 600 students/term. In 2008 
we made the transition into a course that was a hybrid of in-person lab activities and out-of-class 
on-line autograded exercises with approximately 800 students per term.. The course operates 
during the three quarters of our institution's academic year as a series of 15 two-hour class 
meetings (one unit credit per quarter) to better achieve the benefits of spaced learning1.  During a
term there were 4 two hour labs, with the 5th meeting a two hour proficiency exam. There were 
an on-line pre-lab prep quiz, and a post-lab on-line homework assignment. The course typically 
ran as approximately 30 lab sections of 30-35 students, across 20 different time periods. This is 
an example of a “flipped classroom,” in that most of the contact time was spent in active learning
from lab activities.

Choice of language

The first version of the course used Maple2 as the computation system and programming 
language.  Maple was selected for several reasons.

1. Maple is interactive, similar to systems such as Python, MATLAB or Mathematica that 
allow immediate execution and display of a single operation without a compilation 
phase.  This leads to more immediate feedback and interaction, more suited to 
developing a “personal computing” – getting results that are of interest and immediately 
useful for an individual's work.  Pedagogically, it allows students to get at least simple 
results immediately, with incremental growth from that point.

2. Maple has a large library of STEM procedures, permitting use of sophisticated technical 
computing without extensive user programming.  Typical small-scale software 
development consists of writing the scripting connecting invocations of library 
procedures, and providing the user interface programming that allows facile 
comprehension of computed results through tabular listing, plots and animations, etc.

3. Maple's standard user interface are  interactive worksheets allow text, 2-D mathematics, 
code, and graphics to be combined in a WYSIWYG fashion.  A publishing mechanism 
allows generation of html or pdf from worksheets.  This allowed us to write the lab and 
course notes3 using the same tools and in the same environment that the students used for
their own work.  For example, lab work could be entered by students within the same 
document that distributed the directions.  The availability of “clickable math”4 in the 
interface allowed an incremental approach to the introduction of linear expression and 
command syntax used in most conventional programming languages, providing a gentler
learning curve to the syntax that can often be a work bottleneck for beginners.

4. The course's on-line autograding system, Maple T.ATM uses the same programming 
language. Since Maple T.A. allowed questions to accept student responses using Maple 
syntax, this made it particularly easy to ask autograded programming questions that 
required students to submit code as their answer.
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Lab activities

Before each lab, students were expected to read course notes3, lab notes5 and take an on-line 
pre-lab prep quiz, to ensure familiarity with the programming concepts needed and activities that
they would be asked to do in the lab.    Labs typically started with a short (20 minute)  lab 
overview presented by the lab instructor.  This was their opportunity to emphasize what the 
students should have begun to understand through the readings by taking the pre-lab quiz.  Labs 
typically led students through a number of tasks. Work was in groups of two or three students, 
based on evidence-based research that such work enables better learning compared to individual 
work6,7.

Often there would be “scaffold” programming for the students to complete.  Typical labs would 
introduce some computational or programming concepts and ask the students to complete the 
programming for the following kinds of tasks:

Illustration 1: Lab exercise from 5.  In the previous lab, students had completed 
scaffolding of an HVAC time-step simulation.  In this lab, they learn how to steer 
simulation runs and display graphical output by building a GUI in Maple that invokes the
simulation.
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1. Create a plot for the population growth of a species in an ecosystem, and make 
predictions based on the graphical and numerical results.

2. Create an animation of the trajectory of a human cannon ball (from 8, pp. 462-465), based
on given formulae for velocity/position.  Variations included an improved model taking 
into account wind resistance, or generating a position plot of a bouncing ball.

3. Calculate a least-squares trendline from given time-temperature, or estimated-actual 
distance measured from a sensor, and to answer situational questions.

4. Write a control program for an autonomous car simulator, and test it on varying terrain 
with a common feature.

5. Calculate and plot the dynamic behavior of a chemical reaction involving four chemicals 
described through difference equations (approximating differential equations).

6. Calculate the area under a curve by developing a piecewise polynomial spline fit to data 
by using symbolic definite integration (originated by 9).  Use this to calculate the power 
developed by time-velocity measurements of a baseball batter's swing.

7. Complete and extend a time-step simulation of an HVAC system (see Illustration 1).  
Analyze a design space by varying heat/cooling parameters.  Design a control program 
for a ventilation fan and observe homeostatic temperature behavior based on the fan 
control parameters.

The lab work included getting the student to consider and answer questions that involved 
interpreting and steering  the use of programs they had developed, rather than just getting coding 
to pass specified tests.  This is one of the major differences of this course from a generic “intro 
programming” course.  It is ability to design, implement, and then use computation to solve 
problems that is most important to STEM students who need to develop programming skills.  We
found that doing this does not occur “for free” – there are time tradeoffs involved in having 
students learn about using computation for problem-solving, rather than learning additional 

Illustration 2: Sample coding problem from Maple T.A.
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programming features.

While this first course does not provide a complete education in computational engineering, we 
believe it provided a way to get students engaged early with the application of computation 
skills.  This makes possible follow-on courses where the integration of programming and 
problem-solving skills can be mastered through repeated, increasingly complex cycles of 
instruction.

Autograded problems:  pre-lab and post-lab activities

Maple T.A.10 is a proprietary on-line system for administering on-line exercises and tests.  Like 
other on-line systems, it allows instructor-constructed questions of the conventional sort – 
multiple choice, fill-in-the blank, matching, etc. Studies have indicated the effectiveness of 
on-line training for programming 11. We also took advantage of the cost/time saving features of 
centralized computerized grading in reduced staff resources for grading and its administration. 
The reason why we chose it over more common systems is that the Maple engine can be called 
on for problem generation and answer checking, giving it particular strength for work the STEM 
area.

Maple T.A. was used in the course as a vehicle for creating and delivering questions for pre- and 
post-lab activities, as well as the in-class proficiency exam at the end of each term.  After a few 
years' development, we came up with a battery of prospective problems that we could offer on a 
rotating basis, requiring only incremental or evolutionary revision from year to year.  We relied 
on the instructor- programmability to develop questions appropriate for the problem-solving/ 
programming dual nature of the work, at scale.  In particular, we developed techniques for 
delivering problem variants to students using random selection, random parameter values, and 

Illustration 3: Autonomous Car Simulator Scenario.  Students were given
an API for the simulator and asked to write a Maple control program to 
navigate through a family of scenarios. The white space is the “road” 
while the green are road shoulders.  The blue square is the target 
destination.
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random variation of the problem and its solution algorithm as described further in12,13 Having 
found a problem area, we would develop several questions that could be answered through 
computation from a model or code.  We would write the program that could check solutions for a
variant.  When the student asked for their assignment, the system would generate the particular 
version of the problem, along with the problem description and answer-checking specific to that 
version. 

Illustration 3 shows a scenario for an autonomous car controller problem.  Students in lab 
became familiar with an API for a simulated car controller, which allowed a car to move and turn
based on “stylized” sensor readings of its proximate environment.  In the autograded problems, 
they built upon their experience to write control programs for obstacles more ambitious than 
those they tackled in lab.   The variant creation would change the obstacle course so that 
different sequences of actions and turns were necessary. The presentation would include a 
dynamic generation of the textual description of the scenario, as well as animations illustrating 
the obstacle courses that provided the tests for the student controller.  

Because of the bi-weekly nature of the lab meetings, there was a week where students did not 
meet staff in lab.  This week was used for makeup labs and for completion of autograded 
homework exercises.  The nature of these exercises combined simple questions about knowledge
of language syntax, or one-line code solutions, with problems that required students to extend lab
programming to handle new situations, or to create small programs or scripts that were expected 
to be modifications or augmentations of programming given in the lab or in the course notes.  
Examples might include:

• Calculating the voltage across a resistor with a given amount of current flowing through 
it.

• Asking what angle and velocity would work to make the cannonball travel through a ring 
suspended a certain distance and height. 

• Answering questions that predict time or quantity from a trendline formula constructed 
from given data.

• Figuring out how to compose given plotting functions to create a specified picture, and 
entering the function invocation.

• Creating control programs to handle additional scenarios for the autonomous car.

About 120 problems were created for the course.  Many of these problems requiring the student 
to take multiple steps,  intended as a kind of problem-based learning 14.

Designing autograded questions

Instructor programmability of the autograder, as Maple T.A. allows, opens the door to more 
sophisticated question design, as described in13.  We have found the following to be important 
considerations in our design activities:  

1. What kind of question do you want to ask?  Given the particular selection of topics for the
week, there were numerous possibilities: knowledge acquisition/review from readings 
(where the humble true/false question was often good enough), problem-solving using 
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problems similar to ones covered in lab or the readings, exercises that would require 
result interpretation or reflective thinking, problem-solving that would require adaptation 
and transference of learning, etc. 

2. How much time should students expect to the week's autograded work will take, and how 
will you make your question selection fit within that time budget?  Despite its use of 
autograding, our course emphasizes learning through fixed amounts of lab time in social 
interaction with staff and lab partners.  There was not the development budget nor the 
inclination to use autograding as a kind of “intelligent personal tutor15,16” whereby a 
student works many hours being guided through programmed instruction until mastery of
a skill is detected.  Nevertheless, it was easy to come up with questions that would 
require far more time than the students thought they had for the course.  In conventional 
instruction  limiting the assigned work is also a way to avoid overloading the amount of 
grading effort for the staff, but with autograding this is not the case.   The “retry until 
success” work ethic also may require more time than conventional homework.  In a 
course like this that combines both skill-building practice, software development, and 
problem-based learning, it is important to be aware that problems may, by design, vary 
greatly in the length of time to do them. 

3. What application area should the question be about?  The topics covered in a particular 
lab cycle would often be fertile grounds for any number of questions.  For example, in the
“human cannonball” portion of the course, one could come up with a number of variants 
of the basic problem, requiring different formulas, different boundary or starting 
conditions, different kinds of information.  To keep current the idea that the knowledge 
and skill-building in the course was intended to have transferability to situations not 
literally the same as covered in lab, problems on other topics would be used.  The 
programming of the autograded problem would be used to present more information 
about the new domain, rather than relying on student familiarity with the problem area, 
sometimes including graphs, formulae, or animations.

4. How much scaffolding do you want to put into the question?  Some students had a lot of 
difficulty with problems requiring multiple steps to solve them, because they could not 
figure out how to get to the goal from the start.  The hinting mechanism of Maple T.A. 
was better at giving short, one sentence general advice.  It was also difficult to sense what
a student's conceptual problems were from the numeric or programming answers they 
submitted.  As we developed experience with certain problems, we were able to develop 
on-line notes that were helpful to many (although at the cost of not providing as full an 
experience at self-directed discovery of solutions).  We found useful to break up longer 
problems into multiple parts, asking for intermediate results or realizations before to the 
final answers.  With this approach, students could see that they were making progress 
even if not getting to the end.  Visits to the walk-in clinics became more productive 
because the staff had more information about where a student was running into problems.
Generating a multi-step problem just means modifying the solution algorithm for the final
result to output intermediate results it computes along the way.  The sequence of results 
can then be used in a multi-part question.

5. What information does this programming of a problem solution need, and where will the 
students find it? In the later portions of the course, some of the problems relied on the 
software packages developed for the course, such as the autonomous car simulator.  To 
avoid unintended or misinformed use of alternatives (e.g. older versions of the packages 
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that were somehow still on someone's web pages), the directions needed to be specific 
about providing hyperlinks to the intended files.

6. How much effort will it be to test the questions before release?  Testing questions for 
comprehensibility and correct operation is an important fact of life when operating at 
scale.  Even if only 5% of the students run into problems or ask questions in our course, 
that will generate 40-50 situations that require a staff response.  We had to treat our 
autograded questions like software engineering, allocating testers and time for testing 
before release.

7. How much computer time does it take to generate the question, and to check the 
solution?  In this era of gigahertz/gigabyte computers, it is easy to think that any problem
suitable for introductory students would use negligible amounts of computing time.  
However, larger problems (due to a realistic application, or for anti-gaming purposes, see 
next section) requiring dynamic generation to produce  can take a significant fraction of a
second to create on-the-fly. An example of this would be a problem generating a 
sophisticated animation to help present an explanation of a new application area.  While a
half second of computer time is no issue for autograding a class of 30 students, when 
operating at scale it can lead to server saturation and unacceptable response times.   One 
can avoid problem generation bottlenecks by looking for alternatives that require less 
computation, or by precomputing hundreds or thousands of variants and storing them on 
the server.  Then most of  generation time is spent in modest amounts of disk access,  e.g. 
retrieving an animation file rather than computing many frames of a complex scene.

Autograding and “gaming the system”

By “gaming”, we mean the activities of students who operate the autograding system but wish to 
bypass learning or trying to solve a problem with an authentic general-purpose approach17. An 
example of this might be a student who, after learning that a testing algorithm checks a student 
program on three fixed inputs, just writes a series of if statements that deliver the correct 
statement in only those three cases, foregoing the programming that might provide the correct 
answer in any other case. The use of variants, and requiring solutions to several different 
versions of the problem, is itself a way to encourage students to work out the solution on their 
own rather than relying on look up or trying to get by using verbatim responses they get from 
classmates or web site look up.

      While allowing retries is a good way of encouraging students to pursue correct answers if 
success is not immediate, it also can be gamed using exhaustive trial and error.  Unfortunately in 
the initial years of the course Maple T.A. did not have a convenient way of setting up an 
assignment so that some parts would allow unlimited retries and other sections (such as with 
questions that are true/false or multiple choice) that do not.  True/false or multiple choice 
questions are obvious kinds of questions that could be gamed with unlimited retries. Other 
examples:  a math-oriented problem that asked for a fill-in-the-blank integer solution where it 
was clear that the only sensible values would be between 1 and 10;  an optimization problem 
requiring a three digit answer that  could be gamed by doing a plot and then exhaustively trying 
all numbers around where the plot indicates the optimum occurs. Sometimes in trying to simplify
the work of students by presenting a situation simple enough for a student to quickly understand, 
the situation be solved through short-cuts that avoid the intended techniques being intended.  
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      To avoid asking questions that can be easily solved through exhaustive trial-and-error, create 
problems where a large amount of manual effort is needed for likely success.    For example, 
changing the precision required or range of plausibly correct answers so that there are a 
minimum of hundreds of possibilities to try. 

Another kind of “gaming” are students who will try (authentically) to answer an autograded 
question without using the techniques of the course.  An example for this course is the desire of 
some students to stick with finding answers with hand calculators (which they are experienced in
and confident about using from high school work) rather than learning programming.  For this 
reason we typically designed problems to a) require working with data sets that were too large to 
solve through eyeballing or to key into a hand calculator (i.e. don't ask the student to write a 
program to add together numbers and then give them only three number to process), b) ask for 
solution to two or three versions of the problem that differed only in minor ways parametrically, 
to favor use of techniques such as programming where procedural reuse is easy, and c) were 
situations where use of computation would be authentically better than other approaches such as 
logic, commonsense reasoning, visual inspection, or lookup.  The vulnerability again arises from 
the fact that autograders can't see the work the students do to get their answer, combined with an 
instructor's natural inclination to give students a simple situation that does not make them work 
too long to understand what is being asked.

Proficiency exam

Each of the three quarters of the original version of the course ended with a proctored 
proficiency exam in the lab section.  Use of computation tools and their on-line help, along with 
information on the course web site during the exam was expected, but proctoring included 
electronic and personal measures (network blocks, desktop monitoring, walk-by inspection) to 
discourage unauthorized access to information.

The exam asked students to demonstrate their programming and problem-solving skills by doing 
so during the test.  The exam given to each section consisted of a subset of the pre- and post- lab 
autograded exercises.  All exercises for the term were made available for practice ahead of exam 
wee, but students did not know which questions would be used for their section's exam until they
took the exam.  Thus, all sections across all time periods were on equal footing as far as knowing
what would be asked, and how to prepare for them.  It also made it possible to give makeup 
exams for excused absences or exceptional circumstances.  During the exam, students were 
allowed access to the electronic course and lab notes stored on the course web site, as well as 
on-line help built into the version of Maple running on their computer.  They were expected to 
construct Maple scripts on their computer to calculate the results the Maple T.A. problems 
requested. submit them to Maple T.A. Since most exercises came in numerous variants, the exam
tested whether student had become familiar with the programming and technical concepts to be 
able to recreate and solve a problem that they had supposedly mastered.    Because the exam was 
autograded,  results were available to students as they exited the exam.
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Having a proctored exam worth a significant component of the final grade was also an 
anti-gaming measure, in that it detected the absence of genuine learning during the practice 
afforded by the lab and autograded exercises.

Lessons learned from the first version of the course – strengths

Much of the effort in the past few years went into the authoring the founding materials.  For 
example, even though extensive use of autograding made it possible to run the course with the 
staffing resources given, instructor authorship of autograded problems that come in variants is an
exercise in software engineering:  each problem took approximately five hours to develop and 
test to the point of release.  While this amount of effort per problem would be prohibitively 
expensive for a “use once” problem, the scale and reusability of the problems across multiple 
exercises and tests, and across multiple course offerings, provided a solid economic rationale for 
this work.  In “steady state”, one would expect question development to be more incremental and
feasible within the time budget conventionally allocated for development for large “flagship” 
courses.  Development of the lab and course notes required several revisions to improve clarity 
of exposition, and achieve appropriate pacing of the work.  Topics were reordered to try to 
satisfy external needs, such as the need for earlier control statements and user-developed 
procedures arising from a LEGO robot programming project being handled in a concurrent 
Engineering Design course.

Because we viewed the course as constantly evolving over its first few years as we grew in 
experience and understanding, we sought information expediently for formative rather than 
summative evaluation. 

We found that the package of activities (labs, reliance on written materials and active learning) 
were effective at allowing to acquire some of the skills we were providing training for in the 
course. For example, we introduced the Least Squares data fitting concept in a lab problem 
tackled by students in groups,  with the same grade given collectively to each group member.  
Subsequent autograded results for  individuals found that the skill seemed to be acquired by over 
80% of students, and with persistent results when the question was asked again a term later.

Illustration 4: Example Maple T.A. question for MATLAB-based version of the course.  The 
student response is translated from MATLAB syntax to Maple syntax automatically so that the 
Maple engine within Maple T.A.  can check the symbolic answer.
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Event Test average

Fall, 2010 post-lab quiz (874 students) 87.0%

Fall, 2010, end of term proficiency exam (551 
students)

81.2%

Winter, 2010 review quiz (802 students) 86.3%

Table 1: Performance on a least squares data fitting problem (Not all students were given the 
problem on the proficiency exam to avoid predictability across exam time periods.)

the students to pass the proficiency exams averaging 80% as indicated in Table 2.  The decline in
the scores from progressive terms, which we attribute to the increasing difficulty of the work, 
similar to that reported in other introductory programming courses18. However, the term-by-term 
achievement scores remained steady over several years' operation of the course.

CS121 (first term) CS 122 (second term) CS 123 (third term)

89% 80% 76%

Table 2: Proficiency exam scores for 2011-2012 year, approx. 800 students

Our system logs for Maple T.A. indicated that the most popular times for work were evenings.  
By allowing retries, we believed we encourage a “attempt until success” work standard that is 
crucial to success in programming.  The lack of sophisticated feedback by the autograder was 
frustrating at times to some students, since they did not have any easy way to proceed after 
submitting a solution and having it marked wrong.  However, the use of autograding allowed us 
to reallocate staff resources from grading to providing walk-in clinic hours to serving students 
who did have difficulties. 

A typical year's operation saw over 122,000 problems graded automatically – not including the 
additional grading resulting from student retries. We attempted to keep the entire class on a 
single schedule of due dates, but this imposed significant swings in the load on the autograding 
system.  Fortunately our system administrators were able to deploy adequate server power to 
handle our size class. Nevertheless, system performance requires careful attention in courses 
where significant resources are needed for autograding.

Lessons learned from the first version of the course – limitations of the original format

Maple T.A.'s grading of submitted programming had significant limitations.  Input is 
inconvenient (cut and paste of the program into a small text box).  If a program would fail, the 
autograder result would not include any of the standard feedback and error messages that the 
desktop version of Maple would give for the same program.  It did not safely sandbox certain 
kinds of “runaway” computations which would cause the server to become unresponsive.  
Because of these issues, we tended to ask “applied” problems where the input to Maple T.A. 
consisted of results computed by students after developing and executing code on their own 
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computers.  This meant that the course was weak in the area of drilling students on mastery of 
development of small programs, away from lab.  While many students (as indicated by the 
course marks) were able to learn programming despite the lack of good low-level automatic 
feedback, we saw that there were some students who were not well-served by this deficiency.

The limited time available for course work, in class and outside, meant that even with 
autograding there was not enough time to exercise all skills separately and then in integration.  
This produces a less-than-ideal situation for a subject where there are lengthy chains of 
interdependent skills.  In some cases, we were forced to fall back on the hope that what we 
required would be sufficient for some students, and by providing social reinforcement many of 
the rest to go beyond required work to the level needed to complete their mastery.  

Because of the difficulties of executing student program submissions, we did not pursue the 
important notion that a program can be evaluated in several different ways  – correctness, 
run-time efficiency, quality of coding style, quality of design, and how well the computed 
answers satisfy the need of the user.  We think that the effort/feedback experience of trying to 
satisfy an autograder on multiple criteria simultaneously would be worthwhile for students, but it
remains as yet unimplemented in our course.

Our impressions anecdotally from the institutionally mandated course surveys and from 
discussions with individuals is that some students struggle with the need for original synthetic 
thought that is the basis of being successful programming; they seem to be more comfortable 
with STEM work that is recall- or pattern-matching based.  They also find the abstraction of both
mathematical modeling and the dynamic state changes of a computer program to be hard to work
with, with a resulting decline in motivation.  We realized  that finding ways of increasing 
motivation and finding ways of reducing the stress of the cognitive load of abstraction might be a
way to having more students succeed in the learning tasks.

Finally, the current limitations of autograding technology meant that the assigned work was 
“directed” – doing particular things for particular results.  While much of introductory 
college-level course work is of that nature,, it meant that questions where the answers could not 
be anticipated or evaluated easily through an algorithm.  Open-ended problems or project-based 
work19–21 could not be accommodated. While this is no worse than courses that use problems 
from the back of textbook, nevertheless, the appeal of project-based work is that some students 
respond better to circumstances where authentic original work is necessary.

Engineering Computation Lab 2.0: revision and refinement.  

The course is now in the process of revision, keeping its strengths while addressing limitations 
and weaknesses. 

1. There are more contact hours. The class is now run two terms instead of three, but with 
weekly instead of bi-weekly labs and a weekly one hour lecture. This increases the 
number of contact hours from 30 to 60, of which at least 40 are active learning. This 
should increase the inventory of skills that are explicitly exercised and discussed, which 
should lead to further learning success by the types of students currently having 
difficulty.
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2. To address the limitations of the autograded feedback there are bi-weekly assignments 
graded manually .  This should allow better quality high-level feedback to students, 
which should improve the quality of learning to those who pay attention to the feedback.

3. The course has switched from Maple to MATLAB as the programming language, to 
increase the potential of direct application in subsequent engineering work. Even though 
we believe that the primary value of a first course in programming is the transferable 
experiences about how programming languages and software design and development 
work, there may also be more enthusiasm by some students at using a language that is 
widely used professionally. The shift to MATLAB allows the course to more easily work 
with  data analysis (e.g. interpretation of statistical results), data acquisition, and device 
control.  This may broaden student interest and increase motivation.  However, the  
course will continue in include some work on applications of mathematical modeling. 
Maple T.A. has the ability to execute MATLAB as a side process as well as the ability to 
execute modest amounts of MATLAB code by symbolically translating it and having the 
Maple engine execute it.  Thus we feel that  there are similar capabilities for autograding 
MATLAB work  in Maple T.A.  A simple MATLAB skill-building question is shown in
Illustration 4. 

4. The course is adding project-based learning assignments22, allowing more open-ended 
and self-directed practice with programming, even though there is a continuing need for 
prefacing such work with smaller learning steps such as skill-building and 
“homework-sized” problem-solving23  This should create circumstances for authentic 
student inventive thinking, potentially increasing student motivation to achieve success in
programming.

5. In order to provide better quality automated program testing  we also have introduced use
of Cody CourseworkTM24–26.  Cody Coursework automatically tests and scores 
student-submitted MATLAB programming.  Test result output includes the  same 
run-time error diagnostics that students see when running their programs on their own 
computers, addressing one of the most serious weaknesses of Maple T.A. used as a 
program tester. Cody Coursework is hosted in the cloud, so it removes the task of 
maintaining an autograding system from the university staff.  

6. We are conducting experiments with using MATLAB autograding for badge awards. We 
believe that one of the drawbacks of courses such as this which strive to provide 
immediately useful skills to engineering students, is that it is difficult for “consumers of 
skill” such as employers or later courses to know exactly what the students should be able
to do.  We also are extending the use of autograded problems in a proctored proficiency 
exam to certification of specific MATLAB skills through an Open Badge-based 
certification scheme27–30.  This will allow students to advertise their achievement of such 
skills in a verifiable and more detailed way than a course grade on a transcript.  As an 
artifact, we intend to provide review documentation and on-line exercises so that one 
could attempt badge certification even after the course had ended.

As part of the course redesign an increased emphasis is being placed on systematic collection of 
information that can be used in formative evaluation of the course materials and pedagogical 
procedures.  The goal is to guide further evolution of the course.  This concern with metrics and 
measures includes ongoing development and refinement of measurement instruments that allow 
more complete understanding of the knowledge various students bring to their course and more 
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complete understanding of their views on such things as the usefulness of various course 
components in helping them to learn.  With the course being run at scale these questionnaires are 
being developed to be administered on-line.   The difficult thing here will be to engage enough 
students in the evaluation of course material to provide meaningful and useful data, To this end 
the formative evaluation data collection instruments are being informed by the work of others 
and by a process of design, evaluate and re-design intended to facilitate student engagement in 
providing feedback useful to course development.  We also intend to analyze the autograding 
scores and interaction data to gain formative evaluation measures based on actual student work.

Conclusions

Our course attempts to provide first-year students with an experience that combines learning 
programming with using it for problem-solving and design in engineering, differing in emphasis 
and in problem selection from a generic CS1-style <<ref>> course.    It uses autograding for a 
combination of proficiency-building, skill-assessment, and problem-based active learning.  
Autograding has become an important feature of the course, shifting use of human resources to 
face-to-face tutoring and higher-level formative and summative evaluation.  We continue to 
explore the curriculum design space investigating the effects of additional time and staffing 
resources, additional varieties of computational engineering activities, project-based learning, 
and badge certification.
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