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Retina Identification Based on Moment

Invariant

Abstract

This paper demonstrates the importance of topics in physics
and mathematics courses such as matrix, eigenvectors, centroid,
and moment of inertia in the pattern recognition applications.

Teaching advance topics in physics and mathematics is not an
easy task. Students always ask this question: What is the use?
The best practice for teaching these topics is to combine them
with a real industry application. For example, computer hard disk
reading is based on the concept of derivatives and the change in the
magnetic fields. To demonstrate this type of teaching, the use of
three dimensional moments in the pattern recognition is explained.

The three-dimensional moments may be used to detect differ-
ent patterns in a digitally represented image. The combination
of several moments for an object has an invariant property. The
mathematical foundation of an invariant feature is related to the
theory that images taken from different angles from the same ob-
ject have the same set of moment invariants. Moments contain
information of an image which can be used in calculating the lo-
cation and orientation of an object. An algorithm for recognition
of an individual identity based on a digitally represented image of
the scanned retina is presented. The technology is based upon the
fact that no two retinal patterns are alike.

In this paper, the nine parameters of an ellipsoidal shape fit-
ted into a retinal image such as coordinates of the center of the
ellipsoid, the length of major, minor, intermediate axes, and the
direction of three axes will be calculated. For each individual, these
parameters are unique.

Key Words: Ellipsoid, image processing, pattern recognition,
parallel algorithm, retina, three-dimensional moments .
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1 Introduction

Retina is a light-sensitive layer of tissue (Figure 1), located at the inner surface
of the eye. The optics of the eye creates an image on the retina, similar to
the film in a camera. Light striking the retina activates nerve impulses. These
pulses are sent to various parts of the brain through the optic nerve. Retina
scans require that the person removes their glasses, place their eye close to
the scanner. A retinal scan involves the use of a low-intensity coherent light
source, which is projected onto the retina . A retina scan cannot be faked and
it is impossible to forge a human retina. Furthermore, the retina of a deceased
person decays too rapidly to be used to deceive a retinal scan [17, 18]. The
recognition of a three-dimensional retinal image and determining its position
and orientation in three-space is an important problem in identity detection. In
this paper, three-dimensional moment has been used as a feature in detecting
individuals identity based on a digitally represented image of the scanned
retina. In this paper Retinal is modeled as an ellipsoid. Ellipsoidal shapes
are found in many environments. Many objects have ellipsoidal form which
when viewed in two-dimensional appears to be elliptical. Most of the existing
techniques for pattern recognition consider two-dimensional images [13, 14].
In order to detect a pattern in an image i.e., circle, line, or an ellipsoid, a
feature from the image is selected. This feature must be independent of the
size, position, and orientation of the image-also called the invariant feature [1,
2, 3, 5, 6, 9, 11, 12].

In this paper three-dimensional moment of an image has been used as a
feature for identity detection. Moments contain information about an image
which is uique and can be used in calculating the location and orientation of
that image.

The mathematical foundation of an invariant feature is based on the theory
that deals with the calculus of algebraic invariant [10]. This theory deals with
algebraic functions of a certain class which remain unchanged under some
specific coordinate transformations. Hu [1] has derived results showing the
algebraic invariant of two-dimensional moments. Alt [4] applied Hu’s results
for the recognition of letters and numerals. Dudani et al. have applied moment
invariants to identify an aircraft [2]. Reddi [8] proposed a simpler construction
method using radial and angular moments. Teague [3] extended Hu’s idea
by introducing the orthogonal moment set to recover images from moments.
This idea is based on the theory of orthogonal polynomials. Teague introduced
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Figure 1: Retina

Zernike moments which allow for easy construction of independent moment
invariants for high order. Abu-Mostafa and Psaltis [7] introduced the notion
of complex moments and derived moment invariants. From the point of view of
pattern recognition, moment invariants are considered reliable features if their
values are insensitive to the presence of image noise. Sajadi and Hall [11],
Lo and Don [6] have considered the extension of two-dimensional to three-
dimensional moment invariants.

This paper considers an implementation of a parallel algorithm on a pyra-
mid architecture (Figure 3) for identity detection based on the three-dimensional
moments. Section 2, summarizes three-dimensional moment calculation. In
Section 3, moments for ellipsoid (Figure 2) and their properties are described.
Section 4, describes an algorithm for ellipsoid detection using pyramid ar-
chitecture Section 5 presents simulation program, and Section 6 presents the
conclusion.
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2 Three-Dimensional Moments

Given a three-dimensional density distribution function f(x, y, z), the (p+q+r)
order moments are defined in terms of the Riemann integral as:

mpqr =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
rpxr

q
yr

r
zf(x, y, z)dxdydz

where ri is the normal distance to axis i, i = x, y, z, and p, q, r = 0, 1, 2, ...

The integration extends over the domain of f . For an object with limited
volume in the x, y, z space, the integration extends over the volume of the
object. The second order moments about x,y, and z axes, i.e., p = 2, q = 0,
r = 0 or p = 0, q = 2, r = 0 or p = 0, q = 0, r = 2 are called moment of
inertia and are defined as follows:

m200 =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(y2 + z2)f(x, y, z)dxdydz

m020 =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(x2 + z2)f(x, y, z)dxdydz

m002 =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(x2 + y2)f(x, y, z)dxdydz

for p = 1,q = 1, and r = 1 the moment is called product of moment of
inertia and the distances rx, ry, and rz are measured with respect to y − z,
x− z, and x− y planes respectively. This moment is calculated as follows:

m111 =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
xyzf(x, y, z)dxdydz

Definition 1: The center of gravity, centroid, of an object has coordinates
x, y, and z that are calculated as follows:

x = m100/m000, y = m010/m000, and z = m001/m000. m000 is the volume of
the object.

Central moments are given as:

µpqr =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(x− x)p(y − y)q(z − z)rf(x, y, z)dxdydz
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A uniqueness theorem states that if f(x, y, z) is piecewise continuous and
has nonzero values only in a finite section of the x, y, z coordinates, then
the moments of all orders exist and the moment mpqr uniquely determines
f(x, y, z). This theorem states the detection power of moments in pattern
recognition. Only a small set of low-order moments is used to distinguish
between different patterns.

One representation of a digital image is the collection of pixels and the
intensity of each pixel in that image . In industrial applications, images are in
general transformed to their binary representation by preprocessing techniques
such as: region segmentation or edge detection. For a binary image where each
pixel can be represented by 0 or 1, the triple integral for moment calculation
is approximated by a summation. Therefore, the (p+ q+ r) order moments is
approximated as:

mpqr =
n∑

i=1

m∑
j=1

o∑
k=1

xpijky
q
ijkz

r
ijk

xijk, yijk, and zijk are the coordinates, and m ∗ n ∗ o is the total number of
pixels.

Central moments are approximated as:

µpqr =
n∑

i=1

m∑
j=1

o∑
k=1

(xijk − x)p(yijk − y)q(zijk − z)r

When summation is used to compute moment invariants, certain varia-
tions are expected because of discreteness of the input data. The amount of
variations depends on the size of the rotation, translation, and scale change.

3 Moments Calculation for Ellipsoid

In this section, we consider some of the properties of moments in an ellipsoidal
object. Figure 2 shows an ellipsoid with major, minor, and intermediate axes
of length 2a, 2b, and 2c respectively. Volume V of an ellipsoid is given by
3
4
πabc. An important property of an ellipsoid is described in Lemma 1.

Lemma 1: In an ellipsoid the second moment is minimum along the ma-
jor axis and maximum along the minor axis; these moments are given by
4
15
πabc(b2 + c2), and 4

15
πabc(a2 + c2) respectively.
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Proof: An ellipsoid is represented by x2

a2
+ y2

b2
+ z2

c2
= 1. This formula can

be rewritten as follows:
x2

a2
+ z2

c2
= 1

b2
(b2 − y2)

x2

(a
b

√
b2−y2)

2 + y2

( c
b

√
b2−y2)

2 = 1

x2

A2 + y2

B2 = 1 where

A = a
b

√
b2 − y2, B = c

b

√
b2 − y2

The elliptic disk x2

A2 + y2

B2 = 1 has the area of πAB. Thus the second
moment with respect x− z plane, mxz, can be calculated as follows:

mxz =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
y2dxdydz =

∫ +b

−b
πABy2dy =

2acπ

b2

∫ +b

−b
(b2 − y2)y2dy =

4ab3cπ

15
= V

b2

5

V is the volume of an ellipsoid. Similarly moments with respect to y − z
and x− z planes are:

myz = V a2

5

mxy = V c2

5

The second moment m200 for an ellipsoidal object about x axis is the sum
of moments about x− z and x− y planes and are calculated as follows:

m200 =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(y2 + z2)dxdydz = mxz +mxy

m200 = 4
15
abcπ(b2 + c2) = V (b2 + c2)

By interchanging a with b, m020 is given by 4
15
abcπ(a2 + c2) = V (a2 + c2).

Since b < a, then m200 < m020.

Definition 2: The angles between major, minor, and intermediate axes
of an ellipsoid and positive direction of the x, y, and z axes, α, β, and γ, are
defined as the orientation of an ellipsoid with respect to a given coordinate
system.

3.1 Parameters of Ellipsoid

In this section, nine parameters of an ellipsoid in terms of different order
moments are calculated. We assume that, the origin of coordinate system is
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Figure 2: An Ellipsoid

located at the centroid of an ellipsoid (see Figure 2).

The following three-dimensional second order moments J1, J2, and J3,
proved to be invariants [11].

J1 = µ200 + µ020 + µ002

J2 = µ020µ002 − µ2
011 + µ200µ002 − µ2

101 + µ200µ020 − µ2
110

J3 =

 µ200 µ110 µ101

µ110 µ020 µ011

µ101 µ011 µ002


The second moment J3 is invariant under rotation. That is:

J ′3 = RTJ3R

Where J ′3 is the rotated second moment J3 when coordinates rotate with
direction cosines cosα, cos β, and cos γ. R is given as follows:

R =

 r1
r2
r3

 =

 cosα
cos β
cos γ


From Lemma 1, we infer that the second moments are minimum along
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major axis and maximum along the minor axis. The minimum value of J ′3 is
the smallest eigenvalue of matrix J3. The value of R for which J ′3 assumes its
minimum can be found by determining the eigenvector corresponding to this
eigenvalue.

To find the direction vector that minimizes J ′3, first, the eigenvalues will
be calculated as follows:

J3 − λI =

 µ200 − λ µ110 µ101

µ110 µ020 − λ µ011

µ101 µ011 µ002 − λ


Where I is a diagonal unit matrix. The characteristic equation is as follows:

f(λ) = λ3 − J1λ2 + J2λ− J3
If λ1, λ2, and λ3 are three eigenvalues of J3 then we have:

λ1 = b2+c2

5

λ2 = a2+c2

5

λ3 = a2+b2

5

Solving for a, b, and c, we have the following:

a =
√

5
2
(λ2 + λ3 − λ1)

b =
√

5
2
(λ1 + λ3 − λ2)

c =
√

5
2
(λ1 + λ2 − λ3)

The eigenvector R gives the orientation of ellipsoid. To determined the
eigenvector corresponding to an eigenvalue, i.e., λ1, we must solve a set of
homogeneous linear equations:

 µ200 − λ1 µ110 µ101

µ110 µ020 − λ1 µ011

µ101 µ011 µ002 − λ1


 r1
r2
r3

 = 0

r1 = (µ020−λ1)(µ002−λ1)−µ101(µ020−λ1)−µ110(µ002−λ1) +µ011(µ101 +
µ110 − µ011)

r2 = (µ002−λ1)(µ200−λ1)−µ110(µ002−λ1)−µ011(µ200−λ1) +µ101(µ110 +
µ011 − µ101)

r3 = (µ200−λ1)(µ020−λ1)−µ011(µ200−λ1)−µ101(µ020−λ1) +µ110(µ011 +
µ101 − µ110)
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4 Moments Calculation on a Pyramid Archi-

tecture

In this section an algorithm for parallel calculation of three-dimensional mo-
ments implemented on pyramid architecture are considered. In this algorithm
a continuous image is approximated by a digital image, and moments cal-
culations are approximated by summations. Following is the description of
pyramid architecture.

4.1 Pyramid Architecture

A pyramid computer with the base size of n is an SIMD machine that is
constructed from (1/2) log n + 1 levels of a two-dimensional mesh connected
processor array, where the Lth level, 0 ≤ L ≤ (1/2) log n, is a two-dimensional
mesh connected processor array of size n

4L
. A mesh connected computer of

size n is a collection of n processing elements arranged in a
√
n ∗
√
n grid,

where each processing element except for those along the border, is connected
to its four neighbors. Each processing element at level L is connected to its
neighbors at level L and four children at level L− 1 (L > 0) and a parent at
level (L+1), (L < (1/2) log n). Thus, each internal processing element has nine
connections. Figure 3 illustrates a pyramid with a 4-by-4 base configuration.
Circles represent processing elements and lines represent communication paths.
All of the processing elements in the pyramid operate in a strict SIMD mode
under the direct control of a single node. Each processing element has its
own memory and all of the communication links are bidirectional. The total
number of processing elements is given by:

(1/2) logn∑
L=0

n

4L
=

4n

3
− 1

3

The pyramid topology has been proposed as an architecture for high-speed
image processing where its simple geometry adapts naturally to many types
of problems [15, 16]. The pyramid architecture can be projected down onto a
plane with a simple configuration providing a regular geometrical characteristic
ideal for VLSI design. Pyramids are more attractive than meshes because they
provide the potential for solving problems with logarithmic time complexity.
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Figure 3: A 4 by 4 base Pyramid Architecture

4.2 Three-Dimensional Moments Algorithm

In the following algorithm we assume number of pixels in an image is equal to
the number of processors at the base of the pyramid (i.e., n). Each processor
at level zero (base) stores the following information in its local memory:

xijk: represents the x coordinate of the pixel pijk.

yijk: represents the y coordinate of the pixel pijk.

zijk: represents the z coordinate of the pixel pijk.

The three-dimensional Moments Algorithm (TDMA) uses both mesh and
tree connections of pyramid and has four phases. During the first two phases
moments, m100, m010, m001, m110, m101, m011 will be calculated.

mpqr =

3√n∑
i=1

3√n∑
j=1

3√n∑
k=1

xpijky
q
ijkz

r
ijk

where p, q, r ∈ {0, 1}
In the phase three m200, m020, and m002 will be calculated:
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m200 =

3√n∑
i=1

3√n∑
j=1

3√n∑
k=1

(y2ijk + z2ijk) m020 =

3√n∑
i=1

3√n∑
j=1

3√n∑
k=1

(x2ijk + z2ijk)

m002 =

3√n∑
i=1

3√n∑
j=1

3√n∑
k=1

(x2ijk + y2ijk)

The method of calculation is similar to phases one and two, that is proces-
sors at the base calculate x2ijk, y2ijk, and z2ijk and send the results to the next
level for addition and this process is repeated for higher levels in a pipeline
fashion.

In Phase four nine parameters of an ellipsoid will be calculate. In this
phase, apex processor will find the center of the image by calculating x, y,
and z. Using the equations derived in Section 3, direction of the axes and the
length of the major, minor, and intermediate axes (i.e., 2a, 2b, and 2c) are
calculated next.

4.3 Algorithm

A program written in C language finds the best fit of an ellipsoid in a retina.
The algorithm implemented on a pyramid architecture. The bitmap file of the
image is called portable bitmap(pbm). Figure 4 illustrates a 16 by 16 image
created by bitmap editor. In this pbm file 1 means black and 0 means white.
The simulation program consists of two major parts: Simulation Controller
and Algorithm Controller. The Simulation Controller is used for scheduling.
It offers a menu to the user to select the size of a pyramid. The program has a
global clock called Simulation Clock and incremented whenever the processors
at the same level terminate execution. Therefore, at the end of the program,
Simulation Clock denotes the number of times that processors activated during
execution of the program. Table 1 illustrates the computer simulation results
for different size binary images.

5 Steps for the identification method

Step 1- Retina is scanned.
Step 2- Scanned image is converted to the bitmap.
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Figure 4: A 16 by 16 image created by bitmap editor

Image size No. of Processors No. of Levels Simulation Clock in TDMA

8 by 8 85 4 968

16 by 16 341 5 7, 808

32 by 32 1365 6 84, 432

64 by 64 5461 7 522, 176

128 by 128 21845 8 3, 428, 800

256 by 256 87381 9 14, 759, 488

512 by 512 349525 10 99, 300, 288

Table 1: Image size, Pyramid size, and Simulation clock for ellipsoid detection
algorithm
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Step 3-The best fit ellipsoid will be detected.
Step 4- Moment invariants J1, J2, J3 are calculated.
Step 5- Lengths of the major, minor, and intermediate axes are calculated.
Step 6- Coordinates of the center of the best fit ellipsoid are calculated.
Step 7- Angles between major, minor, and intermediate axes of the best fit
ellipsoid and positive direction of the x, y, and z axes, (i.e. α, β, and γ) are
calculated.
Step 8- For each individual, these nine parameters are unique.

6 Conclusion

The best practice for teaching advance topics in physics and mathematics
courses is to combine them with a real industry application. This paper em-
phasizes the importance of the topics in physics and mathematics courses in
the real world applications. To demonstrate this assertion we presented a
procedure for retina detection through the moment invariant concept. Retina
biometrics systems are suited for environments requiring maximum security
including, but not limited to the military and banking sectors. The unique
features of a retina are derived by the principal of moment invariant in this
paper. Retinal scans require that the individual to remove his/her glasses
and place their eyes close to the scanner. A retinal scan involves the use of a
low-intensity coherent light source, which is then projected onto the retina. A
retinal scan is secure and cannot be altered.
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