
Paper ID #11351

An Advanced Streaming Internet Radio Player with Raspberry Pi

Mr. Jeremy Wayne Gilreath, Guilford College

Jeremy Gilreath earned his B.A. in Sociology from the University of North Carolina at Greensboro, and
his B.S. in Computing Technology and Information Systems from Guilford College, both in Greensboro,
NC.

Dr. Chafic BouSaba, Guilford College

c©American Society for Engineering Education, 2015

P
age 26.170.1

An Advanced Streaming Internet Radio Player
with Raspberry Pi

Abstract

Our paper describes a challenging and enjoyable undergraduate student project that details the
process of configuring a Raspberry Pi into an advanced multimedia player as a headless system
controllable by infrared remote or secure shell (SSH) protocol. This paper provides a
methodological, step-by-step set of specific instructions on how to replicate this project. The
undergraduate student applied concepts from operating systems (OS), networks, and electronics
into practical steps to exploit readily available open-source software packages and highly-
customizable hardware components. Electronic components were soldered to build a modified
printed circuit board (PCB) with a liquid crystal display (LCD) screen and push-buttons, and
were successfully combined with an external sound card, wireless universal serial bus (USB)
card, and an infrared (IR) receiver into a fully assembled, affordable, and reliable device. This
developed device can be controlled using any IR-capable remote, is capable of playing high-
quality audio, and circumvents advertisements on the free audio streaming web service Pandora
Radio using a pre-existing free or paid account. Using this device improves the user's experience
of Pandora Radio in several ways while keeping this device portable and preserving all
functionality of the Raspberry Pi itself. The goal of this project is to use available tools and
integrate various technological fields into a deliverable consumer product. Consumer
electronics continue to place increasing emphasis on supporting open-source hardware and
software, and the Raspberry Pi provides an affordable, flexible, multi-purpose platform for both
beginners and experts to personalize into a wide range of useful and specialized products.

Introduction

The Raspberry Pi, see Figure 1, is an inexpensive and small-sized single-board computer
invented by the Raspberry Pi Foundation,1 a registered charity in the United Kingdom whose
mission is to use the Raspberry Pi in classrooms to promote affordable education in the computer
sciences worldwide. Students of all ages across the world use this open-source device to learn
and experiment in computer science, programming, and electronics.2 A variety of Linux-based
OS's are supported on the device, and many programming languages such as Java, C, Python,
and Scratch lay a foundation for ingenuity and craftsmanship in competitions and events where
groups of like-minded dabblers and inventors gather for mutual co-creation.3

The first section of this paper gives a full description of the Raspberry Pi, an overview of all our
hardware and software modifications, and the order they will be completed in. The second
section walks through all of these steps to successfully complete the project. The final section of
this paper discusses the results of this project, the implications it has for engineering in
education, and concludes with how to move forward with this project for future modifications.
All important files created or modified during this project can be found at a stable location
online4 for users to review at any point in time, and will provide the proper configuration or

P
age 26.170.2

source code for the project step in question. Also included is a detailed 145-step guide for the
completion of all steps in this project, and is more lengthy and explicit than what is covered here.

Being slightly larger than a credit card and armed with an array of ports for input and output, the
Raspberry Pi comes in two models: Revision 1.0 boards (Model A) and Revision 2.0 boards
(Model B). Shared features include a Broadcom BCM2835 system on a chip [a 700MHz ARM11
family central processing unit (CPU) with an ARMv6 instruction set, Broadcom VideoCore IV
1080p30 graphics processing unit (GPU), digital signal processor, 256MB (megabyte) Secure
Digital random access memory (SDRAM) shared with the GPU, and a single USB 2.0 port,] a
camera serial interface (CSI) video input for 14 megapixel camera module, composite RCA
video output, High-Definition Multimedia Interface (HDMI) video output, 3.5mm audio jack,
MultiMediaCard (MMC) / SD / SD Input/Output card (SDIO) slot, several low-level peripherals
[eight general-purpose input/output (GPIO) pins, a universal asynchronous receiver/transmitter
(UART), an Inter-Integrated Circuit (I2C) and Serial Peripheral Interface (SPI) bus, and Inter-IC
Sound (I2S) audio] as well as a MicroUSB power source. The Model B Raspberry Pi has twice
the SDRAM, an additional USB 2.0 port (both of which are moved to an integrated 3-port USB
hub,) and a 10/100 MBit/s Ethernet USB adapter which takes up one of these ports on the hub;
the tradeoff is that the Model B takes 3.5W of power as opposed to the 1.5W required by the
Model A. Both Models run on a variety of Linux distributions such as Raspbian (a Debian
Wheezy port) and Pidora (a Fedora port), in addition to other OS such as OpenElec and RISC
OS. The official distributions are optimized for the CPU's ARMv6 instruction set and are freely
available for download, yet many more are available for download.5 Nearly all distributions are
Linux-based, with the notable exception of Plan 9 developed by Bell Labs. Schematics for Model
A and Model B reveal the different electronic circuitry for both, and these documents should be

Figure 1: Diagram of Raspberry Pi Model B

P
age 26.170.3

referenced for correct pin-outs of the GPIO pins to be used in Model B.6 Recently, these two
Raspberry Pi models have been updated to A+ and B+ versions.

After acquiring the necessary hardware and constructing the components, the Raspbian operating
system will be installed and appropriate configuration options will be set for the Raspberry Pi to
run entirely without a desktop environment and eventually without a keyboard or mouse.
Package lists, software versions, system software, and operating system distributions will then be
updated to their most recent versions. The system name and default password will be changed for
security purposes, and wireless Internet will be configured in order to keep the Raspberry Pi
from depending on a wired network cable. Various dependencies, scripts, and open-source
software will be downloaded to allow the Raspberry Pi to stream internet radio from
Pandora.com without the use of a web browser. System files will be edited and configured along
the way, and audio output will be routed from HDMI to USB ports so that headphones or
speakers may be used in conjunction with an external USB 5.1 sound card. SSH will be used to
perform the majority of this so that the Raspberry Pi does not need to be connected to a
keyboard, mouse, or video output, and will be configured to automatically log in as the user
when powered on as a headless system, launch the appropriate software, and connect to Pandora
to begin streaming music. Finally we will install dependencies, scripts, and open-source software
to enable infrared remote control of the streaming software and the Raspberry Pi by configuring
a First-In First-Out (FIFO) file and configuring the IR remote.

Open-source software and hardware benefits consumers and producers by encouraging
competition between and within organizations, fostering growth from volunteer contributors, and
enhancing security by being freely auditable by any sufficiently motivated entity.7 They also
provide a permissive platform for discovery and experimentation on behalf of learners and
innovators from a variety of backgrounds. A key purpose of this project is to provide students
with limited experience the opportunity to implement a hands-on project that requires no prior
experience working with computer programming or open-source hardware and software. The
goal is to present a multidisciplinary approach to design this media tool and encourage more
students and researchers from various fields to publish on the practical and theoretical
applications of the Raspberry Pi. There has been a noticeable lack of scholarly publications on
the Raspberry Pi and its applications in commercial, scientific, and academic settings, despite
having originally been designed to stimulate academic growth in the computer sciences. The
shortage of publications motivated us to document the project in a detailed technical paper.

Some of the more novel products using the Raspberry Pi include a 32-node Beowulf Cluster for a
personal mini-supercomputer,8 as well as the sending of a Raspberry Pi up to nearly 40,000 feet
in Earth's atmosphere for a High-Altitude Ballooning project, resulting in some stunning images
of the Earth in the process.9 Researchers are drawn to the Raspberry Pi as well: one individual
devised a way for real-time conversations in two different languages to be translated on-the-fly
and displayed as subtitles on wearable computing glasses,10 while a scientist used a Raspberry Pi

P
age 26.170.4

to develop open-brainwave technology that allows its users to control nearly any application on
their Raspberry Pi, using Electroencephalography to read their thought patterns as a hotkey.11

Scholarly literature on the Raspberry Pi is sparse, with online documents and printed periodicals
making up the majority of literature. It is safe to assume that a fair number of people have
modified their Raspberry Pi to be a media center, an audio player, a streaming web player, and/or
controllable by remote. In fact, several operating systems focus on distributing the free and open-
source X-Box Media Center software with the very goal of turning the Raspberry Pi into a home
media center that can play audio and video from devices attached either directly to the Raspberry
Pi or to the same network. Additionally, the web browsers that come standard on many operating
systems for the Raspberry Pi are compatible with multiple web streaming services.12

There is clearly a demand for multimedia entertainment using the Raspberry Pi. Focusing on its
audio capabilities while restricting the system to only a command-line interface keeps system
overhead to a minimum, instead using the scrolling multicolor LCD screen to provide visual
feedback to the user while allocating as much RAM to the CPU as possible. Use of an IR remote
and a minimum of tethered peripherals was integral to keeping the Raspberry Pi portable. The
device could also be powered by a single portable battery pack, such as the low-cost PowerAdd
Pilot S, making our system completely portable. The device operates continuously for 11 hours
using this 12000mAh (milliamp hours) battery pack, which has two USB outputs that provide
1.5V/1A and 2.5V/2.1A respectively, enough to fully power the Raspberry Pi and speakers.

Methods

The 16x2 Character LCD and Keypad Kit should be constructed first, since the Raspberry Pi
itself requires no physical setup. A very thorough step-by-step tutorial for assembling this Kit
already exists from the vendor Adafruit13, which is a company that offers tools and online
resources for learning electronics. Table 1 lists the necessary hardware and Table 2 lists the
temporary hardware and tools needed for setup and construction. Figure 2 shows a flowchart for
all major hardware assembly and software configuration steps in this project, while figure 3
depicts a comprehensive system diagram for all hardware components.

Table 1: Required Hardware

Required hardware:

(1) MicroUSB Cable
(1) PiBow case mod14

(1) Model B Raspberry Pi
(1) TSOP38238 IR Receiver Module
(1) 16x2 Character LCD + Keypad Kit
(1) Extra-tall and extra-long 2x13 female stacking header15

P
age 26.170.5

(1) 90-264VAC in, 5V@1A VDC out wall plug USB Power Supply
(1) PiBow Raspberry Pi case compatible with a Model B Raspberry Pi
(1) SD / MicroSD + Adapter Card w/ minimum 4GB (gigabyte) storage capacity
(3) 28 AWG (7 strands @ 36 American Wire Gauge) Female/Female Jumper Wires
(1) C-Media Electronics, Inc. CM108/CM109 chipset compatible USB audio adapter
(1) 38KHz NEC code output, 940nm IR Light-Emitting Diode (LED) Remote Control
(1) 802.11b/g/n Edimax EW-7811Un WiFi Module or equivalent with RTl8192cu Chipset
(1) Set of headphones or 5VDC 3W 1A peak 4 Ohm impedance USB powered 3.5mm speakers
(1) Poweradd Pilot S 12000mAh Dual USB Portable Charger External Battery Power Pack

 Table 2: Temporary Hardware and Tools

Temporary hardware (needed for setup): Required tools (needed for construction):

HDMI cable
Ethernet cable
Corded mouse
Corded keyboard
HDMI compatible monitor / TV

Soldering iron, solder
Electric drill, 1/16 drill bit
Hot glue gun, hot glue sticks
Wire cutters, needle-nose pliers
Razor blade, rectangular rubber eraser

Figure 2: Flowchart for all major project steps

P
age 26.170.6

 Figure 3: System diagram for all hardware components

P
age 26.170.7

Immediately after construction, the PCB should be turned over so that pieces of eraser carefully
cut with the razor blade can be hot-glued to its underside in several key areas, as depicted in
Figure 4. The single black rubber bumper provided by Adafruit is not enough to stabilize the
PCB on the Raspberry Pi and it will move in undesirable ways, bending the GPIO pins and
possibly damaging the board itself. The extra effort is worthwhile, as the PCB and Raspberry Pi
are much more stable after this modification, as shown in Figure 5. Next, the Raspberry Pi
should be enclosed in the PiBow case and case modification using the extra-long screws
provided in place of the shorter PiBow ones. Many tutorials exist on online for step-by-step
construction of the case.

When the last layer of the case modification is ready to be put into place, the pins of the extra-tall
stacking header will contact the underside of the ceramic plate. Holes must be drilled in order to
allow all pins to pass through, as this is where the female jumper wires for the IR module will
connect to the GPIO pins through the ceramic layer. Without this modification, the case cannot

Figure 4: Rubber erasers hot-glued to key stability areas

Figure 5: Raspberry Pi and PCB connected with added stability

P
age 26.170.8

be securely closed. Extraneous plastic around the contacts of the female/female jumper wires
should be removed, as they must be as small and cylindrical as possible in order to fit snugly into
the drilled holes. These wires will be connecting to pins 1, 6, and 12 (3V3, GND, GPIO18) as
shown on the pin-out diagram. The wires should be just big enough to push down and secure
onto their respective GPIO pins, and will look like Figure 6. This concludes the hardware
construction portion of the project.

The project did not require any programming when moving to the software configuration after
assembling the hardware parts. Rather, a beginner's level understanding of how to use the Linux
command-line interface was regularly used and could be very helpful. The SD card should now
be formatted for the FAT32 (File Allocation Table) file system in preparation of the software
configuration. The image for the latest distribution of the New Out Of Box Software (NOOBS)16

should be burned onto it using the command line on Linux-based systems, or the SD
Association's Formatting Tool for Windows and Mac on either of those two systems. NOOBS
allows for the convenient installation, reinstallation, and recovery from several OS distributions,
including Raspbian Wheezy. Many of the steps in the following overview are covered in the
WiFi Radio guide17 and the IR Remote guide18 by Adafruit. However, these guides have fewer
details, are missing interim steps to combine these projects with our OS, and contain several
pieces of inaccurate information.

The Raspberry Pi does not ship with a power switch, so the cables for HDMI out, mouse,
keyboard, and network should now all be connected before lastly connecting the MicroUSB
power cable. Raspbian Wheezy should be chosen from the NOOBS prompt for the OS. The

Figure 6: Fully-assembled device in modified PiBow case

P
age 26.170.9

Raspberry Pi will automatically restart afterward, and bring up the Raspi-Config tool which
should then be updated to the latest version. The file system should then be expanded past 2GB
(gigabytes) to make sure all of the SD card is available to the system, and the user password
should be changed from the default password of 'raspberry' for security purposes. An appropriate
locale, time zone, and keyboard layout should also be chosen, and overscanning should be
enabled for HDMI-enabled TVs. It is advisable to change the hostname from 'raspberrypi' to
something that is more descriptive, and does not identify the system. Memory split to the GPU
should also be changed from the default of 64MB to 16MB, as this is the absolute minimum
required for this headless system to display a command prompt. Finally, SSH should be enabled
on startup and the Raspberry Pi should be rebooted.

Package lists, installed software, and the OS distribution should all be updated, and then 'ntpdate'
should be installed since the Raspberry Pi does not come with a built-in system clock, setting it
to an unprivileged port to contact the Ubuntu Network Time Protocol (NTP) server. In case it
didn't come loaded with the OS, 'git-core' should be installed and then 'Hexxeh's Raspberry Pi-
Update Script'19 should be downloaded using 'wget' in the command line. The Raspberry Pi
should have its firmware updated using this script and then rebooted. Upon returning to the
terminal, the 'i2c-bcm2708' and 'i2c-dev' kernel modules should be set to load at boot time by
editing the '/etc/modules' file appropriately, before rebooting once more. The 'python-smbus'
package should be installed to add System Management Bus (SMBus) support to Python, and the
'i2c-tools' package should be installed to detect the presence of devices attached to GPIO pins.
The 'snd-bcm2835' kernel module should be set to load at boot time. After rebooting the
connectivity of the LCD screen and IR module can now be tested by using 'i2c-tools' to detect
their presence on the system bus. If done correctly, the i2c output should show '20' for the LCD
module and 'UU' for the IR module, with all other values being empty or double hyphens.

Python Developer and GPIO tools should now be installed with 'python-dev' and 'python-
Raspberry Pi.gpio'. Next, clone into Adafruit's Python code repository and test the python script
for the LCD to make sure it is functioning properly by adjusting the potentiometer and testing all
the buttons. Wireless networking is then ready to be configured. Only one network connection is
needed, but it is possible to connect to multiple networks using Wi-Fi Protected Access (WPA)
Supplicant20 to manage the connections. The '/etc/network/interfaces' file should be edited to
contain the appropriate information for configuring a secured or unsecured wireless network. A
good tutorial on network setup21 is provided by Adafruit that can be referred to for a more
detailed description of some aspects of this process. Reference this file from the repository for
the proper configuration format.

At this point the USB sound card with headphones/speakers should be plugged in, and the
Raspberry Pi rebooted. To redirect sound from HDMI to USB as the default, audio options for
the system sound should be updated in '/etc/modprobe.d/alsa-base.conf.' Reference this file from
the repository for the changes. After plugging in the WiFi adapter and unplugging the ethernet

P
age 26.170.10

cord, the Raspberry Pi should be rebooted and a speaker test performed to test the sound
configuration. To test the wireless connection, 'ping' google.com with a single packet to make
sure the device is working properly. The Raspberry Pi now comes pre-loaded with drivers for the
adapter being used. If desired, a different adapter can be picked from a list of compatible
devices22 granted that additional steps may be required. From here, record the Raspberry Pi's IP
address with 'iwconfig' before shutting it down. It may now be controlled entirely via SSH.

Use another computer to create an account on Pandora.com with a few stations to test on the
Raspberry Pi, as this is much simpler than using a command-line only web browser from the
Raspberry Pi itself. Boot up the Raspberry Pi and install 'pianobar,'23 the command-line tool we
will use to interface with our LCD and IR module and play audio from Pandora Radio without
commercial breaks. Clone into the GitHub repository for Python's 'pexpect' library and install it.
Next, clone into Adafruit's Python WiFi Radio Repository, navigate to this directory and make
symbolic links to all python files in the 'CharLCDPlate' folder from earlier, then reboot.

To update the username and password for the Pandora account, make a symbolic link between
the Pianobar configuration file and the 'WiFi Radio' folder's configuration file, and then edit the
Pianobar configuration file appropriately. In order to authenticate your login, copy the Transport
Layer Security (TLS) fingerprint24 from Pandora's tuner server to the bottom of the Pianobar
configuration file. Pianobar is now ready to be tested using the appropriate commands. Pandora
occasionally updates their TLS fingerprint,25 and having a TLS fingerprint mismatch in
Pianobar's configuration file will give you a 'Network Error: TLS Handshake Failed' error. The
first potential solution to this issue is to clone into Pianobar's Git repository26 and install all
required dependencies for compilation. Next, edit the 'Makefile' in the Pianobar directory by
choosing the appropriate 'libav' implementation, as documented by the developers. At this time
of writing, 'libav10' seems to work best. Pianobar can now be compiled, but may result in a “fatal
error: libavfilter/buffersink.h: No such file or directory,” in which case the 'sources.list' file must
be edited to add support for Wheezy Backports from Debian Squeeze27 so that the correct version
of 'libav' may be installed. In order for this to take effect, reboot the Raspberry Pi.

After rebooting, update the software packages so that 'libavfilter-dev' will be reinstalled from this
new repository, and then perform a clean make and install of Pianobar. However, yet another
issue is likely to occur: a “W: GPG error” stating that “The following signatures couldn't be
verified because the public key is not available:” referencing the backports release we just added
support for. Get the public key from the PGP (Pretty Good Privacy) keys server at the Michigan
Institute of Technology and add it to 'apt' to solve this error, so that 'libavfilter' can be
successfully installed. After performing another clean make and install, Pianobar should pull the
correct TLS fingerprint. Occasionally the TLS handshake error will persist despite a clean install
from the source code. This is a problem with how Pianobar handles early termination of the TLS
fingerprint validation from Pandora's servers. To solve this, reboot and then clone into a patch
for better termination handling28 for Pianobar. This modifies the source code to correctly perform

P
age 26.170.11

TLS handshakes, and requires another clean make and install to work. Pianobar should now
execute without error, and may be tested using command line arguments.

A Python script by Adafruit should now be used to successfully integrate Pianobar with the PCB
for a visual scrolling display of the artist, song, and album name as they transfer from Pandora to
Pianobar. A good tutorial on this is already provided17 and is largely complete and correct. First,
navigate to the WiFi Radio directory containing Adafruit's Python radio script in order to test its
functionality with the PCB. Testing all the buttons should reveal they function properly. In order
to provide a clean method to shut down to the system, edit the PiPhy script to allow system halt
on exit and enable the color on the LCD. Editing the 'rc.local' file on your system allows this
script to execute on system startup, and can be referenced in the repository for the necessary
changes. Finally, reboot the Raspberry Pi so that Linux IR Remote Control (LIRC) software can
be integrated in order to interface with the IR receiver module.

After installing 'lirc,' the '/etc/modules' file must be edited in order to make this module load on
boot. Adafruit's tutorial states that the “GPIO in” pin is 23 and the “GPIO out” pin is 22, while in
actuality the “GPIO in” pin for the IR module is pin 18, and there is no out pin since it will not
be transmitting. The '/etc/lirc/hardware.conf' file must now be edited to load the correct
arguments, driver, device, and modules,29 and the '/etc/lirc/lircd.conf' file must be edited to
recognize the IR remote's device-specific signal attributes and assign them to specific key
variables for the remote. These three files can all be referenced in the repository for the proper
configuration formats.

Use 'mkfifo' in Pianobar's '.config' directory to create a FIFO file for receiving key presses from
the IR remote, so that Pianobar interprets them as command-line arguments in the order received.
To install 'htop' from another host, use SSH since Pianobar and the PiPhy script are loading on
boot. Use 'htop' to terminate their processes temporarily. Test the FIFO file by starting up
Pianobar by itself and then sending a valid command-line argument to your FIFO file using
'echo' once it begins playing a station. The letter 'p' serves as a good test because this is used to
pause and play the current stream. Upon a successful test, terminate Pianobar once more and
create a new '/etc/lirc/lircrc' file for the IR remote. This will send the converted remote key
presses to Pianobar as command-line arguments using 'echo.' This file may be referenced in the
repository.

An arbitrary number of lines for buttons may be added for the same command so that they may
be pressed in quick succession to form a single chained command (e.g. button '1' and '0' for
station 10), but regardless of the buttons used they must all be assigned a valid variable as
defined in the remote configuration file. After this, update the package lists, installed software,
and firmware again in the event an update has taken place or there are issues with LIRC, as
software and firmware updates have been released in the past specifically to address timing
issues with certain remotes between the Raspberry Pi and LIRC. The Raspberry Pi should be

P
age 26.170.12

rebooted and the system should be tested for full Pandora and IR functionality. The final step is
to edit the '/etc/inittab' file to automatically log the user on to the system on startup.30 This file
may be referenced in the repository for this step.

An optional last step is to back up the SD card for future imaging or recovery. While there are a
variety of tools to do this on Windows and Mac systems, the most efficient method is to use a
combination of two command-line tools in Linux-based systems: 'gparted' for manipulating the
partitions on the SD card to shift all empty space to the end of the partition table, and the 'dd' tool
to specify a specific number of megabytes to image from that SD card. The difference in this
approach is dramatic, and lets you re-image a much smaller SD card than the original, as this
image will only contain the data you need and a minimum of empty space. This can make the
difference between a 7.9GB image file and a 16GB image file at the end of this project,
assuming you are using a 16GB SD card. This can be further compressed to roughly 2.4GB using
a good compression tool such as 7zip.

Results and Discussion

This end-of-semester project was done as a requirement for the computer hardware construction
class. The computer hardware construction class is a sophomore/junior level course, and the
project is worth 20% of the total grade. This project could possibly be a group project for three to
four students, where they will not only learn technical skills but also soft and management skills.
Each student could be responsible for one aspect of the project, whether it is software, hardware,
or integration. The student(s) had to work independently on the project during their own time,
outside of class, where the professor was only overseeing the progress of the project and
providing help when necessary. The construction and configuration of this device will be user-
specific, assuming the undergraduate student has no prior experience with the device or any of
the components involved. Complete prior experience and flawless execution of all project steps,
without unforeseen obstacles or bugs, takes approximately 12 hours. For a first-time student
completing the project and with proper guidance and instruction, this project should be expected
to take between 15 to 25 hours. The total cost for all required hardware is approximately $145
USD excluding shipping, handling, and applicable local taxes, assuming no prior ownership of
the Raspberry Pi or other components.

The completed device, depicted in Figure 7, will automatically log the user into the system, test
the configured network connections for the first one available, and attempt logging into the
configured Pandora account. It will then play uninterrupted, commercial-free internet radio
streams from Pandora at a 44.1kHz sampling rate, and could also be configured to play files
stored on the SD card itself using the pre-installed 'omxplayer' software with a simple command-
line argument. Artist, song and album information as provided by Pandora will be scrolled across
the LCD screen and can be viewed all at once in the console along with the time remaining for
the current song, updated at one-second intervals. The device is also controllable by IR remote

P
age 26.170.13

from a distance of roughly fifteen feet, and an arbitrary number of commands can be configured
in the appropriate files to control not only Pianobar, but any program on the Raspberry Pi that
accepts command-line arguments. Additionally, the device can be safely powered off using this
remote in lieu of the button on the device for this purpose.

Challenges, Conclusion, and Future Work

While building this project, a lot of references were missing configuration steps, and thus slowed
the process down. Troubleshooting these problems was not very easy for the student(s), because
of lack of experience and incomplete documentation. Furthermore, coordinating these steps to
make a complete project also proved difficult, first because the references used by the student(s)
were published online in many unrelated places such as forums and wikis, and second because
many of the resources were not originally intended to be used in the context of a comprehensive
project. The errors encountered during the configuration were a network error due to a failed
TLS Handshake from Pandora, a failure to compile Pianobar because of dependency packages,
and a missing GPG (GNU Privacy Guard) encryption key. Resolving these errors also took some
additional time.

Figure 7: Complete battery-powered project with IR remote, streaming from Pandora

P
age 26.170.14

In addition to being practically useful as a streaming media player, this device can be applied
either as an end-of-semester project or for an educational setting to teach students a variety of
soft and technical learning skills regarding group management, project documentation, hardware
construction, software configuration, Linux OS installation and configuration, kernel
modification, synaptic package modification, source compilation, troubleshooting processes, and
human-computer interface design. Our experiences with the Raspberry Pi and its online
community have underscored the approachability of the platform as well as the support and
enthusiasm that exists within the community presence built around it. Because of this, no prior
experience with the device or any of the components involved was necessary for implementing
this project, enabling students with little or no computer science background to dive in head-first
with a knowledgeable support base at their fingertips. Such a project could empower the creative
minds of students for further exploration and learning. Raspberry Pi projects in general could be
used to attract students to STEM (Science, Technology, Engineering, and Mathematics) learning.

Future work to contribute to this area of research could investigate the use of open-source DJ
(Disc Jockey) software for creating custom mixes of audio files and internet radio streams;
modifying a long strip of LED lighting into a custom multi-bar equalizer and attaching it to the
GPIO pins to brighten and dim the equalizer along with the music; turning the Raspberry Pi into
a portable radio receiver/transmitter of analog signals with an additional hardware module, or of
digital signals over the internet using a program such as a High Definition Software Defined
Radio (HDSDR); and the attachment of a portable solar panel in addition to the battery pack for
using the device on camping or educational trips where electrical outlets are unavailable.

Bibliography

[1] Raspberry Pi home. (n.d.). Raspberry Pi Foundation. [Online]. Available: http://www.raspberrypi.org/. Accessed
Jan. 6, 2015.
[2] L. Upton. (2013 Apr. 3). Raspberry Pi bringing computing to rural Cameroon. [Online]. Available:
http://www.raspberrypi.org/bringing-computing-to-rural-cameroon/
[3] Raspberry Pi Jam. (n.d.). Raspberry Pi Foundation. [Online]. Available: http://www.raspberrypi.org/jam/.
Accessed Jan. 6, 2015.
[4] J. Gilreath. (2014, Dec. 19). Reference files for “An Advanced Streaming Internet Radio Player with Raspberry
Pi.” [Online]. Available: https://github.com/elauzel/RPi
[5] RPi Distributions. (n.d.). eLinux.org. [Online]. Available: http://elinux.org/RPi_Distributions. Accessed Jan. 6,
2015.
[6] Raspberry Pi – Revision 2.0 build options/PCB layout instructions. (2012, Oct. 18). Raspberry Pi Foundation.
[Online]. Available: http://www.raspberrypi.org/wp-content/uploads/2012/10/Raspberry-Pi-R2.0-Schematics-
Issue2.2_027.pdf
[7] Open source case for business:advocacy. (n.d.). Opensource.org. [Online]. Available:
http://opensource.org/advocacy/case_for_business.php. Accessed Jan. 6, 2015.

P
age 26.170.15

[8] Raspberry Pi at Southampton. (2013, Oct.). University of Southampton. [Online]. Available:
http://www.southampton.ac.uk/~sjc/raspberrypi/
[9] D. Akerman. (2012, Jul. 16). PIE1 – Raspberry Pi sends live images from near space. [Online]. Available:
http://www.daveakerman.com/?p=592
[10] W. Powell. (2012, Jul. 22). Project Glass: real time translation … inspired. [Online]. Available:
http://www.willpowell.co.uk/blog/2012/07/22/project-glass-real-time-translation-inspired/
[11] M. Kahata. Open brain wave interface hardware. (2014, Jun. 16). [Online]. Available:
http://www.instructables.com/id/open-brain-wave-interface-hardware-1/?ALLSTEPS
[12] NetFlix Hulu and other external media sources. (2013, Oct. 14). Raspberry Pi Foundation. [Online]. Available:
http://www.raspberrypi.org/forums/viewtopic.php?f=35&t=58224
[13] L. Ada. (2012, Nov. 21). Adafruit 16x2 Character LCD + Keypad for Raspberry Pi. [Online]. Available:
https://learn.adafruit.com/adafruit-16x2-character-lcd-plus-keypad-for-raspberry-pi/overview
[14] Pibow case mod for AdaFruit LCD. (2014, Feb. 7). Raspberry Pi Foundation. [Online]. Available:
http://www.raspberrypi.org/forums/viewtopic.php?t=68892&p=502066
[15] Stacking header for Raspberry Pi – 2x13 extra tall. (n.d.). Adafruit. [Online]. Available:
http://www.adafruit.com/product/1112. Accessed Jan. 6, 2015.
[16] Downloads. (n.d.). Raspberry Pi Foundation. [Online]. Available: http://www.raspberrypi.org/downloads/.
Accessed Jan. 6, 2015.
[17] P. Burgess. (2013, Apr. 12). Raspberry Pi WiFi radio. [Online]. Available: https://learn.adafruit.com/pi-wifi-
radio/overview
[18] S. Monk. (2013, Mar. 15). Using an IR remote with a Raspberry Pi media center. [Online]. Available:
https://learn.adafruit.com/using-an-ir-remote-with-a-raspberry-pi-media-center/overview
[19] A. Bain. (2013, Jan. 3). RaspberryPi Quickstart. [Online]. Available:
http://alexba.in/blog/2013/01/04/raspberrypi-quickstart/
[20] RPi edimax EW-7811Un. (n.d.). eLinux.org. [Online]. Available: http://elinux.org/RPi_edimax_EW-7811Un.
Accessed Jan. 6, 2015.
[21] S. Monk. (2012, Dec. 10). Adafruit's Raspberry Pi Lesson 3. Network Setup. [Online]. Available:
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-3-network-setup/overview
[22] RPi USB Wi-Fi adapters. (n.d.). eLinux.org. [Online]. Available: http://elinux.org/RPi_USB_Wi-Fi_Adapters.
Accessed Jan. 6, 2015.
[23] Pianobar. (2009, Apr. 13). 6xq.net. [Online]. Available: http://6xq.net/projects/pianobar/
[24] B. Saska. (2012, Nov. 29). Get Pandora TLS Fingerprint. [Online]. Available:
https://gist.github.com/r35krag0th/4173333
[25] T. May. (2013, Sep. 12). Pianobar TLS Handshake woes on Raspberry Pi. [Online]. Available:
http://technicaltom.wordpress.com/2013/09/12/pianobar_tls_handshake_fix/
[26] PromyLOPh. (2008, Jun. 10). Console-based pandora.com player. [Online]. Available:
https://github.com/PromyLOPh/pianobar
[27] Rachael. (2014, May 2). Fun with Debian: adding wheezy-backports to /etc/apt/sources.list. [Online].
Available: http://funwithdebian.blogspot.com/2014/05/adding-wheezy-backports-to.html
[28] P. Stodghill. (2012, Nov. 15). Patch for pianobar to better handle premature termination. [Online]. Available:
https://gist.github.com/pvstodghill/4078695
[29] A. Bain. (2013, Jan. 6). Setting up LIRC on the RaspberryPi. [Online]. Available:
http://alexba.in/blog/2013/01/06/setting-up-lirc-on-the-raspberrypi/
[30] Raspbian users policy. (2013, May 17). Raspberry Pi Foundation. [Online]. Available:
http://www.raspberrypi.org/forums/viewtopic.php?f=29&t=44082

P
age 26.170.16

