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Teaching Inelastic Deformation Using Closed-Form 

Reduced Rigidity Equations 

   

Abstract  

When analyzing the deformations of inelastic beams and shafts, current structural analysis 
procedures that account for the reduced rigidity in the elasto-plastic regions have been limited to 
simple, idealized conditions. This paper presents a straight-forward approach for teaching this 
subject to undergraduate students whereby the actual conditions of stress and reduced rigidity in 
the elasto-plastic regions remain apparent throughout and are applicable over a broad-range of 
structural conditions. The structural analysis methods that are commonly taught at the 
undergraduate level to calculate the deflection of beams and the angle of twist of circular shafts 
are extended for the inelastic condition using closed-form expressions for the reduced rigidity. 
To assist with teaching the material, a step-by-step procedure is presented for both the elastic and 
inelastic beam conditions. Several examples illustrate the ease with which the procedure is used, 
and discussion is provided that highlights the learning opportunities offered by each example. 

 

Introduction 

It is now common for Mechanics of Materials textbooks to provide an introduction to inelastic 
material behavior of structures with axial, flexural and torsional loading conditions1-5. Textbook 
presentations on the inelastic deformations that result from axial loads are straight-forward and 
complete over a wide-range of structural conditions, however the methodologies and conditions 
that can be considered for the flexural and torsional loading cases are limited to simple, idealized 
situations. Within the field of civil (structural) engineering, design manuals and specifications 
are moving away from the exclusive use of the allowable stress design method to limit-state 
design methods that require engineers to understand how structures respond under loading 
conditions that produce nonlinear material and geometric responses6-10. With structural design 
philosophies moving in this direction, it is important for educators to develop effective teaching 
tools that help with this transition that are straight-forward to use and are natural extensions of 
existing course material. 

When dealing with this topic for introductory instructional purposes, textbook authors typically 
use elastic perfectly-plastic material behavior and rectangular cross-sections for flexural 
members and solid circular shafts for torsional members1-5. The same approach is taken in this 
paper because they lend themselves to closed-formed expressions and are therefore ideal for 
teaching inelastic deformations in a straight-forward manner. 

The development of the closed-form reduced rigidity equation for elasto-plastic rectangular 
beams is discussed first. Examples are presented to illustrate the ease with which this closed-
form equation can be used to find inelastic beam deflections. When using this equation with the 
Virtual Work Method, simple to use closed-form area and centroid formulas of the curvature 
diagram in the elasto-plastic region are presented for linearly varying moments. Finally, the 
closed-form reduced rigidity equation for solid circular shafts under elasto-plastic torsional 
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response is developed, and examples are used to illustrate the ease with which this relationship 
can be employed to analyze inelastic deformations due to torsion. Simple to use closed-form 
formulas are presented to obtain the angle of twist of shafts with yielding conditions of constant 
and linearly varying torque. 

 

Reduced Rigidity of Rectangular Elasto-Plastic Beams  

A beam will experience a reduction in flexural rigidity when the normal strains due to beam 
bending are greater than the yield strain, y. For a beam that has elastic, perfectly-plastic material 
behavior as shown in Figure 1, the stress distribution in Figure 2 will develop for bending 
moment conditions above the yield moment, My, but less than the plastic moment, Mp. For 
rectangular cross-sections, with a depth, h, and width, b, the plastic moment Mp = 1.5My. The 
yield moment is the condition that just produces yield stress, y, at the top and bottom of the 
beam, and the plastic moment is the condition that produces yield stress over the full depth of the 
beam. A bending moment between these two values is the elasto-plastic moment, Mep. 

 

Figure 1. Normal stress-strain diagram for elastic, perfectly-plastic material. 

 

Figure 2. Normal strain and stress distribution (profile view) due to elasto-plastic moment Mep. 
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For a given beam with a rectangular cross-section, and specified yield moment My and flexural 
rigidity EI, the reduced flexural rigidity EIep at the location of elasto-plastic moment Mep is given 
by the following closed-form expression.11  

௘௣ܫܧ ൌ ቌ
௘௣ܯ

௬ܯ
ඨ3 െ 2

௘௣ܯ

௬ܯ
ቍܫܧ																																																																																			ሺ1ሻ 

Appendix A provides a detailed description of the development of Equation (1). The expression 
in parenthesis varies from 1 to 0 for an elasto-plastic moment Mep that varies between My and Mp. 

 

Inelastic Beam Deflection Using the Virtual Work Method 

There are many structural analysis methods taught at the undergraduate level that are used to find 
the deflection of beams under various types of loads and support conditions. Traditionally these 
methods have been introduced to students primarily using linear, elastic material properties. 
Whereas this is a very appropriate thing to do, the methods themselves do not preclude the 
introduction of flexural rigidities that vary due to yielding over a portion of the beam. Depending 
upon the load and support conditions of the beam, some methods are more straightforward to use 
than others. A method that is consistently direct in its approach, and is easily applied over a 
broad range of beam conditions, is the Virtual Work Method. When introducing the added 
complexity of reduced beam rigidity that varies over a region of the beam, it is best to use a 
method that has these characteristics. There are numerous textbooks where the development of 
the Virtual Work Method is introduced for beams with linear, elastic material behavior, and so it 
will not be necessary to discuss the entire theory of the method here12-15. The virtual work 
expression is given as 

ܹߜ ൌ ௩ܲ∆ൌ න
ሻݔሺܯ

ܫܧ
ݔሻ݀ݔ௩ሺܯߜ

௅

଴

																																																																																ሺ2ሻ 

where W is the virtual work, M(x)/EI is the curvature of the beam, and Mv(x) is the virtual 
moment that is produced by a virtual load Pv applied at the location of the desired deflection . It 
is assumed in Equation (2) that the actual moments M(x) and virtual moments Mv(x) are 
continuous functions over the length L. When this is not the case over the entire length of the 
beam, the beam is divided into regions where this remains true and the contributions of virtual 
work for each region are then summed together. Textbook authors have highlighted a significant 
feature of the method that expedites the calculations and eliminates the need to evaluate the 
integral in Equation (2)13,15. Since Mv(x) is due to a concentrated load and will always be a 
linear moment, Equation (2) can be written in the following form 

ܹߜ ൌ න
ሻݔሺܯ

ܫܧ
ሺܽ ൅ ݔሻ݀ݔܾ

௅

଴

	ൌ ܽන
ሻݔሺܯ

ܫܧ
ݔ݀ ൅ ܾන

ݔሻݔሺܯ

ܫܧ
ݔ݀	

௅

଴

௅

଴

																						ሺ3ሻ 
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Defining A as the area of the curvature diagram over the length L, Equation (3) is written as 

ܹߜ ൌ ܣܽ ൅ ݔ̅ܣܾ 	ൌ ሺܽܣ ൅  ሺ4ሻ																																																																																				ሻݔܾ̅

Recognizing the term in parenthesis is the virtual moment at a specific location of x along the 
beam (at the centroid of the curvature diagram), the virtual work is obtained very simply by 
multiplying the area of the curvature diagram by this value of virtual moment. 

ܹߜ ൌ  ሺ5ሻ																																																																																																																						ഥ௩ܯߜܣ

As required by Equation (2), this expression is valid only when both the function for M(x) and 
the function for Mv(x) are continuous over a particular region of the beam. For typical loading 
and support conditions, there will likely be several functions for M(x) over the length of the 
beam. Since the virtual moments are produced from a single virtual force, there will likely be 
only one or two linear functions for Mv(x). The number of regions and the length over which 
each region extends can be determined directly and easily from the M(x) and Mv(x) moment 
diagrams. Referring to Equations (2) and (5), and considering all the regions over the length of 
the beam, the general expression for the Virtual Work Method is	

௩ܲ∆ൌ෍ ഥ௩௜ܯߜ௜ܣ

௡

௜ୀଵ
																																																																																																								ሺ6ሻ 

When initially introducing the use of Equation (6), textbook authors typically limit the loading 
condition to concentrated and distributed loads such that only linear functions for moment exist. 
Over each region a constant rigidity EI is used which results in area and centroid formulas for 
M(x)/EI that are simple triangles and trapezoids. The area A and centroid ̅ݔ	expressions for these 
two cases are given in Table 1. 

 

 

Table 1. Area and centroid formulas for M/EI curvature diagrams with linear moment variation. 
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Table 2 provides an outline of the Virtual Work Method that is commonly used to determine the 
deflection at any point along the length of a linear elastic beam. It provides the details on 
implementing Equation (6) to find the deflection and is given here as a point of reference to later 
illustrate how the elasto-plastic beam deflection method is incorporated within this procedure. 

 

Table 2. Analysis procedure to determine the deflection of a linear elastic beam. 

 

Depending upon the students’ prior knowledge and experience with the Virtual Work Method, it 
may be required to go over all the steps in Table 2 and first illustrate the analysis method with  
linear elastic beams. Students in their first Mechanics of Materials course need to be comfortable 

Procedure of Analysis 

Deflection of a Linear Elastic Beam Using the Virtual Work Method 

1. Draw a bending moment diagram for the applied loading condition. 

2. Draw a curvature diagram by dividing the moments in step 1 by the 

beam rigidity EI. 

3. Apply a virtual force (Pv = 1) at the location of the desired deflection and 

draw the bending moment diagram for this loading condition. 

4. Using the curvature diagram and the virtual moment diagram as guides, 

divide the beam into regions where the two equations are continuous 

over each region. 

5. Using the curvature diagram and the formulas in Table 1, calculate the 

area and centroid of each region. 

6. Using the virtual moment diagram, for each region calculate the virtual 

moment at the location of the curvature diagram’s centroid. 

7. For each region, multiply the area obtained in step 5 by the virtual 

moment obtained in step 6 and sum the results. 

8. The magnitude of the desired deflection is the result obtained in step 7 

for Pv = 1. (If the magnitude of virtual force is not equal to one, divide 

the result in step 7 by the magnitude of force used.) 

9. If the result obtained in step 8 is a positive number, the direction of the 

deflection is the same as that of the virtual force. If the result is a 

negative number, the direction of the deflection is opposite to that of 

the virtual force. 
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with the procedure in Table 2 before attempting to teach the subsequent material. Students who 
are already familiar with the Virtual Work Method, and are perhaps in a more advanced course, 
will find the outline in Table 2 to be a good review of the procedure. An illustrative case is given 
in Example 1 of a linear elastic beam with two distinct area regions over its length. The steps in 
Table 2 are easily identifiable with this example, and it serves as a good basis for introducing the 
elasto-plastic beam analysis procedure later. 

______________________________________________________________________________ 

Example 1 The cantilevered beam has the following properties: E = 29,000 ksi and I = 150 in4. 
Determine the vertical deflection at the end of the beam using the Virtual Work Method.                            

It is recognized from the M/EI diagram below that the given loading condition produces two 
distinct regions with associated areas A1 and A2. Below the curvature diagram is the virtual 
moment Mv diagram which is developed by placing a virtual force Pv = 1 kip at the location of 
the desired deflection. 

 

The area and centroid of each region are determined using the following formulas for the triangle 
and trapezoid in Table 1. 	

ଵܣ		 ൌ 	
ሺെ48	݇݅݌ ∙ ଶሻݐ݂/݅݊ଶ	ሻሺ144ݐ݂	ሻሺ6ݐ݂

2ሺ29,000	݇݅ݏሻሺ150	݅݊ସሻ
ൌ െ4.767 ൈ 10ିଷ																 
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ଵݔ̅		 ൌ
2

3
ሺ6	݂ݐሻ ൌ  ݐ݂	4

ଶܣ		 ൌ 	
ሺെ48 െ 132ሻሺ݇݅݌ ∙ ଶሻݐ݂/݅݊ଶ	ሻሺ144ݐ݂	ሻሺ3	ݐ݂

2ሺ29,000	݇݅ݏሻሺ150	݅݊ସሻ
ൌ െ8.938 ൈ 10ିଷ					 

ଶݔ̅					 ൌ
ሺ48 ൅ 2 ∙ 132ሻሺ݇݅݌ ∙ ሻݐ݂

3ሺ48 ൅ 132ሻሺ݇݅݌ ∙ ሻݐ݂
ሺ3	݂ݐሻ ൌ 1.73ത	݂ݐ 

For a virtual force Pv = 1 kip acting downward at the end of the beam, the following virtual 
moments are obtained at the two centroid locations.	

ഥ௩ଵܯߜ					 ൌ ሺെ1	݇݅݌ሻሺ4	݂ݐሻ ൌ െ4	݇ ∙  ݐ݂

ഥ௩ଶܯߜ					 ൌ ሺെ1	݇݅݌ሻሺ6 ൅ 1.73തሻሺ݂ݐሻ ൌ െ7.73ത	݇ ∙  ݐ݂

Using Equation (6) with these results, the vertical deflection is found to be	
					 ௩ܲ	∆	ൌ ഥ௩ଵܯߜଵܣ ൅  ഥ௩ଶܯߜଶܣ

ሺ1	݇݅݌ሻ∆	ൌ ሺെ4.767 ൈ 10ିଷሻሺെ4	݇ ∙ ሻݐ݂/݊݅	ሻሺ12ݐ݂ ൅ ሺെ8.938 ൈ 10ିଷሻሺെ7.73ത	݇ ∙  ሻݐ݂/݊݅	ሻሺ12ݐ݂

∆	ൌ 1.06	݅݊.		 ↓ 

_____________________________________________________________________________________ 

 

For an elasto-plastic beam that has one or more yielded regions over its length, additional 
formulas are needed to evaluate the area Ai and virtual moment	ܯഥ௩௜ in Equation (6). Just as 
Equation (1) was found to be in closed-form for a rectangular beam with the material properties 
as described in Figure 1, the area and centroid expressions are also found to be in closed-form.11 
For a yield condition that varies over a length Lep due to a linear distribution of moment between 
the yield moment My and maximum moment Mm (for Mm < Mp), the expression for the area Aep is 
 

௘௣ܣ ൌ
௬ܯ
ଶ൫1 െ ඥ3 െ ௠ܯ2 ⁄௬ܯ ൯

൫ܯ௠ െܯ௬൯

௘௣ܮ

ܫܧ
																																																																									ሺ7ሻ 

 The centroid of this area is given as 

௘௣ݔ̅ ൌ
൫ܯ௬ െܯ௠ඥ3 െ ௠ܯ2 ⁄௬ܯ ൯

3൫ܯ௠ െܯ௬൯൫1 െ ඥ3 െ ௠ܯ2 ⁄௬ܯ ൯
 ሺ8ሻ																																																							௘௣ܮ	

Appendix B provides a detailed description of the development of Equations (7) and (8).  
 

Since these two equations are functions of just Lep, My, Mm and EI, calculating Aep and ̅ݔ௘௣	is 
accomplished in a very straightforward manner for determinate beams with concentrated loads. 
(For indeterminate beams, moments redistribute after yielding of the cross-section initiates, thus 
Lep and Mm cannot be determined directly and require an iterative approach to obtain the moment 
diagram.) The area Aep and centroid ̅ݔ௘௣	expressions from Equations (7) and (8) are given in 
Table 3.  
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Table 3. Area and centroid formulas for M/EIep diagrams with linear moment variation.  

 

Table 4 provides an outline of the Virtual Work Method that is proposed by this paper to 
determine the deflection at any point along the length of a rectangular, elasto-plastic determinate 
beam with linear varying moments. The parts of the procedure in red font in Table 4 indicate the 
only additional steps that are necessary to conduct the nonlinear analysis. Students find these 
additional steps to be very straightforward, and the calculations necessary to obtain the area and 
centroid in Table 3 are only slightly more complicated than those from Table 1. 

Two illustrative cases for determining the deflection of a rectangular, elasto-plastic beam are 
given in Examples 2 and 3. In Example 2, the beam is loaded in such a way that yielding occurs 
over a region of the beam adjacent to the fixed end. This example considers two separate regions 
in a manner that is similar to Example 1, and it highlights for the students the similarities and 
differences between the two procedures outlined in Tables 2 and 4. Besides having to calculate 
the length of the yielded region, and having to contend with slightly more complex area and 
centroid formulas, the methodology employed in Examples 1 and 2 are almost identical. 

In Example 3, the beam is loaded in such a way that yielding occurs on both sides of the left 
support. By considering deflection at the center of the beam, two important features of the 
method are illustrated. Since the virtual moments only occur over the interior span, the areas and 
centroids of the curvature diagram for the right and left overhangs do not need to be calculated 
since they would be multiplied by a zero virtual moment in Equation (6). It is apparent from the 
bending moment diagram that the moment equation is continuous between the supports, however 
due to the yielding adjacent to the support and the change in the virtual moment equation at mid-
span, the interior span must be divided into three regions. This example involves a good deal of 
complexity, especially for an inelastic beam bending problem, however it successfully illustrates 
the method’s versatility and the robustness with which it can accommodate a broad range of 
concentrated load and support conditions. 
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Table 4. Analysis procedure to determine the deflection of a rectangular, elasto-plastic beam. 

 

Procedure of Analysis 

Deflection of an Elasto‐Plastic Beam Using the Virtual Work Method 

1. Draw a bending moment diagram for the applied loading condition. 

2. Draw a horizontal line on the moment diagram at the location of the 

yield moment My and plastic moment Mp. The sign to use for My and Mp 

depends upon the sign of the moments in the diagram. Verify Mm < Mp. 

3. For each region with bending moments between My and Mm, determine 

the yielded region distance Lep. 

4. For bending moments that are less than My, draw the curvature diagram 

by dividing the moments in step 1 by the beam rigidity EI. For bending 

moments between My and Mm, qualitatively draw the nonlinear 

curvature diagram of each yielded region using the Lep distance in step 3. 

5. Apply a virtual force (Pv = 1) at the location of the desired deflection and 

draw the bending moment diagram for this loading condition. 

6. Using the curvature diagram and the virtual moment diagram as guides, 

divide the beam into regions where the two equations are continuous 

over each region. 

7. Using the curvature diagram and the formulas in Table 1 and Table 3, 

calculate the area and centroid of each region. 

8. Using the virtual moment diagram, for each region calculate the virtual 

moment at the location of the curvature diagram’s centroid. 

9. For each region, multiply the area obtained in step 7 by the virtual 

moment obtained in step 8 and sum the results. 

10. The magnitude of the desired deflection is the result obtained in step 9 

for Pv = 1. (If the magnitude of virtual force is not equal to one, divide 

the result from step 9 by the magnitude of force used.) 

11. If the result obtained in step 10 is a positive number, the direction of the 

deflection is the same as that of the virtual force. If the result is a 

negative number, the direction of the deflection is opposite to that of 

the virtual force. 
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______________________________________________________________________________ 

Example 2 The cantilevered beam has the following properties: E = 29,000 ksi, b = 3 in, h = 8 in 
and y = 36 ksi. Determine the vertical deflection at the end of the beam using the Virtual Work 
Method. 

 

The moment of inertia for the beam is 

ܫ		 ൌ 	
3	݅݊ሺ8	݅݊ሻଷ

12
ൌ 128	݅݊ସ 

Given the beam dimensions and yield stress, the yield moment and plastic moment are found to 
be 

௬ܯ ൌ
௬ߪܫ

݄/2
	ൌ 		

ሺ128	݅݊ସሻሺ36	݇݅ݏሻ

ሺ4	݅݊ሻሺ12	݅݊/݂ݐሻ
ൌ 96	݇ ∙ ௣ܯ												ݐ݂ ൌ 	1.5ሺ96	݂݇ݐሻ ൌ 144	݇ ∙  ݐ݂

It is recognized from the moment diagram that a portion of the beam yields, and at the fixed-end 
the maximum moment Mm of -128 k-ft is between My and Mp. The length of the yielded region 
Lep is determined from the moment diagram using the following relationship. 

௘௣ܮ		 ൌ 	
൫െ128 െ ሺെ96ሻ൯݇ ∙ ݐ݂

െ128	݇ ∙ ݐ݂
ሺ10݂ݐሻ ൌ  ݐ݂	2.5
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The curvature diagram for the given loading condition produces two distinct regions with 
associated areas A1 and A2. The area of the triangular region A1 and its associated centroid ̅ݔଵ	are 
determined in the same manner as given in Example 1.   

	

ଵܣ		 ൌ 	
ሺ7.5	݂ݐሻሺെ96	݇݅݌ ∙ ଶሻݐ݂/݅݊ଶ	ሻሺ144ݐ݂

2ሺ29,000	݇݅ݏሻሺ128	݅݊ସሻ
ൌ െ1.397 ൈ 10ିଶ																 

ଵݔ̅		 ൌ
2

3
ሺ7.5	݂ݐሻ ൌ  ݐ݂	5

The area of the yielded region A2 and its associated centroid ̅ݔଶ	are determined using the 
formulas in Table 3. 

ଶܣ ൌ
ሺെ96	݇ ∙ ሻଶ൫1ݐ݂ െ ඥ3 െ 2 ሺെ128ሻ ሺെ96ሻ⁄ ൯

ሺെ128 െ ሺെ96ሻ	݇ ∙ ݐ݂

ሺ2.5	݂ݐሻሺ144	݅݊ଶ/݂ݐଶሻ

ሺ29,000	݇݅ݏሻሺ128	݅݊ସሻ
ൌ െ1.181 ൈ 10ିଶ 

ଶݔ̅ ൌ
ቀെ96 െ ሺെ128ሻඥ3 െ 2 ሺെ128ሻ ሺെ96ሻ⁄ ቁ ሺ݇ ∙ ሻݐ݂

3ሺെ128 െ ሺെ96ሻሻ ቀ1 െ ඥ3 െ 2 ሺെ128ሻ ሺെ96ሻ⁄ ቁ ሺ݇ ∙ ሻݐ݂
	ሺ2.5	݂ݐሻ ൌ  									ݐ݂	1.36

For a virtual force Pv = 1 kip acting downward at the end of the beam, the following virtual 
moments are obtained at the two centroid locations.	

ഥ௩ଵܯߜ					 ൌ ሺെ1	݇݅݌ሻሺ5	݂ݐሻ ൌ െ5	݇ ∙  ݐ݂

ഥ௩ଶܯߜ					 ൌ ሺെ1	݇݅݌ሻሺ7.5 ൅ 1.36ሻሺ݂ݐሻ ൌ െ8.86	݇ ∙  ݐ݂

Using Equation (6) with these results, the vertical deflection is found to be	
					 ௩ܲ	∆	ൌ ഥ௩ଵܯߜଵܣ ൅  ഥ௩ଶܯߜଶܣ

ሺ1	݇݅݌ሻ∆	ൌ ሺെ1.397 ൈ 10ିଶሻሺെ5	݇ ∙ ሻݐ݂/݊݅	ሻሺ12ݐ݂ ൅ ሺെ1.181 ൈ 10ିଶሻሺെ8.86	݇ ∙  ሻݐ݂/݊݅	ሻሺ12ݐ݂

∆	ൌ 2.09	݅݊.		 ↓ 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

Example 3 The beam has the following properties: E = 200 GPa, b = 70 mm, h = 140 mm and  
y = 210 MPa. Using the Virtual Work Method, determine the vertical deflection at the mid-
point between the two supports. 

The moment of inertia for the beam is 

ܫ		 ൌ 	
0.070	݉ሺ0.140	݉ሻଷ

12
ൌ 16.0 ൈ 10ି଺	݉ସ 

Given the beam dimensions and yield stress, the yield moment and plastic moment are 

௬ܯ ൌ
௬ߪܫ

݄/2
	ൌ 		

ሺ16.0 ൈ 10ି଺	݉ସሻሺ210	 ൈ 10ଷ	݇ܰ/݉ଶሻ

ሺ0.070	݉ሻ
ൌ 48	݇ܰ ∙ ݉										 

௣ܯ		 ൌ 	1.5ሺ48	݇ܰ ∙ ݉ሻ ൌ 72	݇ܰ ∙ ݉ 
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It is recognized from the moment diagram that yielding occurs at the left support, and the 
maximum moment at this location is below the plastic moment capacity of the section. Referring 
to the virtual moment diagram and Equation (6), it is noticed that since Mv(x) = 0 over the left 
and right overhangs, it is not necessary to calculate the areas and centroids for regions 1, 2 and 6.  

The length of the yielded region Lep on the right side of the left support is determined from the 
moment diagram.  

௘௣ܮ		 ൌ 	
൫െ60 െ ሺെ48ሻ൯݇ܰ ∙ ݉

൫െ60 െ ሺെ24ሻ൯݇ܰ ∙ ݉
ሺ5݉ሻ ൌ 1. 6ത	݉ 
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The area of the yielded region A3 and its associated centroid ̅ݔଷ	are determined using the 
formulas in Table 3. 

ଷܣ ൌ
ሺെ48	݇ܰ ∙ ݉ሻଶ൫1 െ ඥ3 െ 2 ሺെ60ሻ ሺെ48ሻ⁄ ൯ሺ1. 6ത	݉ሻ

൫െ60 െ ሺെ48ሻ൯ሺ݇ܰ ∙ ݉ሻሺ200 ൈ 10଺	݇ܰ/݉ଶሻሺ16.0 ൈ 10ି଺	݉ସሻ
ൌ െ2.929 ൈ 10ିଶ 

ଷݔ̅ ൌ
ቀെ48 െ ሺെ60ሻඥ3 െ 2 ሺെ60ሻ ሺെ48ሻ⁄ ቁ ሺ݇ܰ ∙ ݉ሻሺ1. 6ത	݉ሻ

3ሺെ60 െ ሺെ48ሻሻ ቀ1 െ ඥ3 െ 2 ሺെ60ሻ ሺെ48ሻ⁄ ቁ ݇ܰ ∙ ݉
	ൌ 0.8810	݉									 

Since there are two separate functions for Mv(x) in the interior span, it is necessary to use two 
regions instead of only one over the elastic portion of the moment diagram. The areas and 
centroids of regions 4 and 5 are determined in the same manner as given in Example 1. 

ସܣ ൌ
ሺെ48 ൅ ሺെ42ሻሻ	ሺ݇ܰ ∙ ݉ሻሺ0.83ത	݉ሻ

2ሺ200 ൈ 10଺	݇ܰ/݉ଶሻሺ16.0 ൈ 10ି଺	݉ସሻ
ൌ െ1.172 ൈ 10ିଶ 

ସݔ̅ ൌ 	
ሺെ48 ൅ 2ሺെ42ሻሻሺ݇ܰ ∙ ݉ሻሺ0.83ത	݉ሻ

3ሺെ48 ൅ ሺെ42ሻሻሺ݇ܰ ∙ ݉ሻ
ൌ 0. 407തതതതത	݉									 

ହܣ ൌ
ሺെ42 ൅ ሺെ24ሻሻ	ሺ݇ܰ ∙ ݉ሻሺ2.5	݉ሻ

2ሺ200 ൈ 10଺	݇ܰ/݉ଶሻሺ16.0 ൈ 10ି଺	݉ସሻ
ൌ െ2.578 ൈ 10ିଶ 

ହݔ̅ ൌ 	
ሺെ24 ൅ 2ሺെ42ሻሻሺ݇ܰ ∙ ݉ሻሺ2.5	݉ሻ

3ሺെ24 ൅ ሺെ42ሻሻሺ݇ܰ ∙ ݉ሻ
ൌ 1. 36തതതത	݉									 

For a virtual force Pv = 1 kN acting upward at the mid-point between the supports, the following 
virtual moments are obtained at the two centroid locations.	

ഥ௩ଷܯߜ					 ൌ ሺ0.7857	݉ሻሺെ1.25	݇ܰ ∙ ݉ሻ/ሺ2.5	݉ሻ ൌ െ0.3928	݇ܰ ∙ ݉ 

ഥ௩ସܯߜ					 ൌ ሺ2.093	݉ሻሺെ1.25	݇ܰ ∙ ݉ሻ/ሺ2.5	݉ሻ ൌ െ1.046	݇ܰ ∙ ݉ 

ഥ௩ହܯߜ					 ൌ ሺ1. 36തതതത	݉ሻሺെ1.25	݇ܰ ∙ ݉ሻ/ሺ2.5	݉ሻ ൌ െ0.6818	݇ܰ ∙ ݉ 

Using Equation (6) with these results, the vertical deflection is found to be	
					 ௩ܲ	∆	ൌ ഥ௩ଷܯߜଷܣ ൅ ഥ௩ସܯߜସܣ ൅  ഥ௩ହܯߜହܣ

ሺ1	݇ܰሻ∆	ൌ ሾሺെ2.929ሻሺെ0.3928	ሻ ൅ ሺെ1.172ሻሺെ1.046ሻ ൅ ሺെ2.578ሻሺെ0.6818ሻሿሺ10ିଶሻ݇ܰ ∙ ݉ 

∆	ൌ ሺ0.0413	݉ሻሺ1000	݉݉/݉ሻ ൌ 41.3	݉݉	 ↑ 

_____________________________________________________________________________________ 

 

Reduced Rigidity of Elasto-Plastic Solid Circular Shafts  

A shaft loaded in torsion will experience a reduction in torsional rigidity when the shear strains 
due to applied torque are greater than the maximum elastic shear strain, y. If a shaft has elastic, 
perfectly-plastic material behavior as shown in Figure 3, the shear stress distribution in Figure 4 
will develop for torque conditions above the yield torque, Ty, but less than the plastic torque, Tp. 
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For a solid circular shaft, Tp = 4Ty/3. The yield torque is the torque condition that just produces 
yield shear stress, y, at outer boundary of the shaft, and the plastic torque is the torque condition 
that produces yield shear stress over the full cross-section of the shaft. A torque between these 
two values is the elasto-plastic torque, Tep. 

 

Figure 3. Shear stress-strain diagram for elastic, perfectly-plastic material. 

 

Figure 4. Shear strain and stress distribution due to elasto-plastic torque Tep. 

As with the case for inelastic beam bending, in order to investigate the inelastic deformation of 
circular shafts, the torsional rigidity at any location along the yielded region of the shaft must be 
known explicitly. The closed-form equation for the reduced torsional rigidity JGep is given as 

௘௣ܩܬ ൌ ቌ
௘ܶ௣

௬ܶ
ඨ4 െ 3

௘ܶ௣

௬ܶ

య

ቍ  ሺ9ሻ																																																																																								ܩܬ

Appendix C provides a detailed description of the development of Equation (9). For a given shaft 
with a solid circular cross-section, and specified yield torque Ty and torsional rigidity JG, the 
expression in parenthesis varies from 1 to 0 for an elasto-plastic torque Tep that varies between Ty 
and Tp.  
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Two illustrative cases for determining the inelastic angle of twist of a solid circular shaft are 
given in Examples 4 and 5. In Example 4, the yield torque Ty and elastic torsional rigidity JG are 
specified constants. The shaft is loaded with different concentrated torques such that yielding 
occurs across the entire length and each region experiences a unique reduction in torsional 
rigidity. This example illustrates for the students the ease with which the rigidity reduction of 
Equation (9) can be used in the angle of twist expression 

߶ ൌ	෍ 	
௜ܶܮ௜

௘௣೔ܩܬ

௡

௜ୀଵ
																																																																																																																							ሺ10ሻ 

Since the internal torque over each region is constant, the only additional step required before 
implementing Equation (10) is for the students to use Equation (9) to calculate the elasto-plastic 
rigidity JGep of each yielded region based on its corresponding torque Tep. 

_____________________________________________________________________________________ 

Example 4 The solid circular shaft has the following properties: G = 80 GPa, y = 149 MPa and 
Diameter = 16 mm. Determine the angle of twist of A relative to D. 

 

The polar moment of inertia and full torsional rigidity of the shaft are 

ܬ ൌ
ߨ

2
ܿସ ൌ

ߨ

2
ሺ0.008	݉ሻସ ൌ 6.434 ൈ 10ିଽ݉ସ 

ܩܬ ൌ ሺ6.434 ൈ 10ିଽ݉ସሻሺ80 ൈ 10ଽܰ/݉ଶሻ ൌ 514.7	ܰ ∙ ݉ଶ 

Given the diameter and shear stress at the yield point, the maximum elastic torque and plastic 
torque are  

௬ܶ ൌ
߬௬ܬ

ܿ
ൌ
ሺ149 ൈ 10଺ሻሺܰ/݉ଶሻሺ6.434 ൈ 10ିଽ݉ସሻ

0.008	݉
ൌ 120	ܰ ∙ ݉ P
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௣ܶ ൌ
4

3 ௬ܶ ൌ
4

3
ሺ120	ܰ ∙ ݉ሻ ൌ 160	ܰ ∙ ݉ 

It is recognized from the torsion diagram that all three regions have torque values between Ty and 
Tp. It is therefore necessary to determine the reduced torsional rigidity of each region using 
Equation (9). 

஺஻ܩܬ ൌ ቌ
െ140

െ120
ඨ4 െ 3 ൬

െ140

െ120
൰

య

ቍ ሺ514.7	ܰ ∙ ݉ଶሻ ൌ 476.6	ܰ ∙ ݉ଶ 

஻஼ܩܬ ൌ ቌ
125

120
ඨ4 െ 3 ൬

125

120
൰

య

ቍ ሺ514.7	ܰ ∙ ݉ଶሻ ൌ 512.8	ܰ ∙ ݉ଶ 

஼஽ܩܬ ൌ ቌ
155

120
ඨ4 െ 3 ൬

155

120
൰

య

ቍ ሺ514.7	ܰ ∙ ݉ଶሻ ൌ 332.4	ܰ ∙ ݉ଶ 

Using the appropriate reduced rigidity for each region, the angle of twist is determined in the 
usual manner. 

		߶஺/஽ ൌ
஺ܶ஻ܮ஺஻
஺஻ܩܬ

൅
஻ܶ஼ܮ஻஼
஻஼ܩܬ

൅
஼ܶ஽ܮ஼஽
஼஽ܩܬ

 

		߶஺/஽ ൌ
ሺെ140	ܰ ∙ ݉ሻሺ0.54	݉ሻ

476.6	ܰ ∙ ݉ଶ
൅
ሺ125	ܰ ∙ ݉ሻሺ0.39	݉ሻ

512.8	ܰ ∙ ݉ଶ
൅
ሺ155	ܰ ∙ ݉ሻሺ0.63	݉ሻ

332.4	ܰ ∙ ݉ଶ
 

		߶஺/஽ ൌ  ݀ܽݎ	0.230

_____________________________________________________________________________________ 

 
In Example 5, the shaft is loaded in such a way that yielding occurs over a region of a uniformly 
applied external torque. For this condition of reduced rigidity JGep, it is necessary to evaluate the 
area of the elasto-plastic region Aep using the following expression. 

௘௣ܣ ൌ න
௘ܶ௣ሺݔሻ

ሻݔ௘௣ሺܩܬ
ݔ݀

௅೐೛

଴

																																																																																																		ሺ11ሻ 

For an internal torque that varies linearly from Ty to Tm, and a shaft with a constant torsional 
rigidity JG over the length Lep, the following closed-form expression for the area Aep is given as 

௘௣ܣ ൌ
௬ܶ
ଶ ൤1 െ ൫4 െ 3 ௠ܶ ௬ܶ⁄ ൯

ଶ
ଷൗ ൨

2൫ ௠ܶ െ ௬ܶ൯

௘௣ܮ

ܩܬ
																																																																						ሺ12ሻ 

Appendix C provides a detailed description of the development of Equation (12). Students learn 
from Example 5 two important concepts. First, that even for this more complex yielding 
condition, a relatively simple closed-form expression is available for this nonlinear analysis 
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condition, and second that the concept of the area A used in the Virtual Work Method for beam 
bending has an application for this type of problem as well. For beam bending, the area of the 
curvature diagram Mep/EIep is evaluated over the length Lep in Equation (7); it is noticed in 
Equation (12) that for torsion, the area of Tep/JGep is evaluated over the length Lep in a very 
similar manner. Indeed, both equations are dealing with the same concept with regard to Virtual 
Work. For the case of torsional loading with these two examples, the virtual torque Tv(x) = 1 
and the sum of the areas simply equals to the angle of twist. This concept is also easy to 
demonstrate to students using Equation (10) where the internal torque is constant over each 
region. Using Example 4 as an illustration, the virtual torque Tv(x) = 1 over the entire length and 
the sum of the rectangular areas equals to the angle of twist. 

_____________________________________________________________________________________ 

Example 5 The solid circular shaft has the following properties: G = 11,000 ksi,y = 4,095 ksi 
and Diameter = 1 in. Determine the angle of twist of A relative to C. 
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The polar moment of inertia and full torsional rigidity of the shaft are 

ܬ ൌ
ߨ

2
ܿସ ൌ

ߨ

2
ሺ0.5	݅݊ሻସ ൌ 9.817 ൈ 10ିଶ݅݊ସ 

ܩܬ ൌ ሺ9.817 ൈ 10ିଶ݅݊ସሻሺ11 ൈ 10଺ ݈ܾଶ ݅݊⁄ ሻ ൌ 1.08 ൈ 10଺	݈ܾ ∙ ݅݊ଶ 

Given the diameter and shear stress at the yield point, the maximum elastic torque and plastic 
torque are  

௬ܶ ൌ
߬௬ܬ

ܿ
ൌ
ሺ4.095 ൈ 10ଷሻሺ݈ܾ/݅݊ଶሻሺ9.817 ൈ 10ିଶ݅݊ସሻ

0.5	݅݊
ൌ 804	݈ܾ ∙ ݅݊ 

௣ܶ ൌ
4

3 ௬ܶ ൌ
4

3
ሺ804	݈ܾ ∙ ݅݊ሻ ൌ 1,072	݈ܾ ∙ ݅݊ 

The length of the yielded region Lep is determined from the torsion diagram using the following 
ratio between the maximum torque and the yield torque. 

௘௣ܮ		 ൌ 	
൫െ1,056 െ ሺെ804ሻ൯݈ܾ ∙ ݅݊

൫െ1,056 െ ሺെ720ሻ൯݈ܾ ∙ ݅݊
ሺ48	݅݊ሻ ൌ 36	݅݊ 

Referring to the figure, the angle of twist is determined by summing the three areas A1, A2 and 
A3. 

		߶஺/஼ ൌ ଵܣ ൅ ଶܣ ൅  ଷܣ

ଵܣ ൌ
ሺെ720ሻሺ24ሻ

1.08 ൈ 10଺
ൌ െ0.0160	݀ܽݎ 

ଶܣ ൌ
ሺെ720 െ 804ሻሺ12ሻ

2ሺ1.08 ൈ 10଺ሻ
ൌ െ0.0085	݀ܽݎ 

It is recognized from the torsion diagram that region 3 has torque values between Ty and Tp. It is 
therefore necessary to determine the area of this region using Equation (10). 

ଷܣ ൌ

ሺെ804ሻଶ ቎1 െ ቆ4 െ 3 ቀ
െ1,056
െ804

ቁቇ

ଶ
ଷൗ

቏ ሺ36ሻ

2ሺെ1,056 ൅ 804ሻሺ1.08 ൈ 10଺ሻ	
ൌ െ0.0362	݀ܽݎ 

		߶஺/஼ ൌ െ0.0160 െ 0.0085 െ  ݀ܽݎ	0.0362

		߶஺/஼ ൌ െ0.0607	݀ܽݎ 

_____________________________________________________________________________________ 
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Appendix A 

Recognizing that plane sections remain plane after bending, even after a portion of the beam’s 
cross-section has yielded, the following relationship for the curvature of the beam is given as 

 	

߶ ൌ
௘௣ܯ

௘௣ܫܧ
ൌ
ଵܯ

ܫܧ
																																																																																																														ሺA. 1ሻ 

For a given magnitude of moment Mep, the beam’s cross-section has a specific value of reduced 
flexural rigidity, EIep. The bending moment, M1, is the moment that would exist if the beam had 
not yielded and maintained its full rigidity, EI. Although the moment M1 with full rigidity EI 
does not exist, the strain distribution over the depth of the beam is the same as the actual 
condition of moment Mep with reduced rigidity EIep. Equation (A.1) is written in the following 
form in order to solve for EIep explicitly.   

௘௣ܫܧ ൌ ൬
௘௣ܯ

ଵܯ
൰ܫܧ																																																																																																												ሺA. 2ሻ 

Of the two moments and two rigidities given above, only EI is known for a given material and 
cross-section, and only Mep is known for a given moment condition. For beams with a 
rectangular cross-section, it will be shown that a closed-form equation for M1 can be written in 
terms of only Mep and My. Substituting this result for M1 into Equation (A.2), the reduced rigidity 
EIep is also found to be a simple closed-form expression that can be used effectively to determine 
inelastic beam deflections. 

Referring to the stress condition in Figure 2, the M1 moment is found considering equilibrium of 
moments about the centroidal axis. In the figure it is recognized that M1 is comprised of two 
portions – the Mep moment with stresses at or below y, and the moment due to the two triangular 
portions with stresses between y and 1. The M1 equation is given as  

ଵܯ ൌ ௘௣ܯ ൅ 2 ൤
ଵܾݕ

2
൫ߪଵ െ ௬൯ߪ ൬

݄

2
െ
ଵݕ
3
൰൨																																																																ሺA. 3ሻ 

The stresses y and 1 are related to one another by the following linear relationship. 

௬ߪ
݄
2ൗ െ ଵݕ

ൌ
ଵߪ
݄
2ൗ
																																																																																																														ሺA. 4ሻ 

	

௬ߪ ൌ ൬
݄ െ ଵݕ2

݄
൰ .ሺA																																																																																																								ଵߪ 5ሻ 

With y = Myh/2I and 1 = M1h/2I, Equation (A.5) can be written in terms of the two moments 
My and M1. 

௬ܯ ൌ ൬
݄ െ ଵݕ2

݄
൰ܯଵ																																																																																																						ሺA. 6ሻ 
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Solving for y1, the depth of the yielded portion is 

ଵݕ ൌ
݄

2
൬1 െ

௬ܯ

ଵܯ
൰																																																																																																											ሺA. 7ሻ 

Substituting these expressions for y, 1 and y1 into Equation (A.3), the equation for M1 after 
simplifying becomes a closed-form expression in terms of only Mep and My.  

ଵܯ ൌ
௬ܯ

ඨ3 െ 2
௘௣ܯ

௬ܯ

																																																																																																									ሺA. 8ሻ 

This relationship for M1 is substituted into Equation (A.2) to give the closed-form equation for 
the reduced flexural rigidity EIep.

11 

௘௣ܫܧ ൌ ቌ
௘௣ܯ

௬ܯ
ඨ3 െ 2

௘௣ܯ

௬ܯ
ቍܫܧ																																																																																			ሺA. 9ሻ 
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Appendix B 

For the condition of reduced rigidity EIep that varies over a yielded region of the beam, it is 
necessary to evaluate the area of the elasto-plastic region Aep using the following expression. 

௘௣ܣ ൌ න
ሻݔ௘௣ሺܯ

ሻݔ௘௣ሺܫܧ
ݔ݀

௅೐೛

଴

																																																																																																		ሺB. 1ሻ 

Considering a linear moment variation over the yielded region with length Lep, the moments vary 
between the yield moment My and the maximum moment Mm (for Mm < Mp) according to the 
following relationship. 

ሻݔ௘௣ሺܯ ൌ ௬ܯ ൅
൫ܯ௠ െܯ௬൯ݔ

௘௣ܮ
																																																																																					ሺB. 2ሻ 

The denominator of Equation (B.1) is written in terms of the elasto-plastic moments that vary 
over the length of the yielded region.  

ሻݔ௘௣ሺܫܧ ൌ ቌ
ሻݔ௘௣ሺܯ

௬ܯ
ඨ3 െ 2

ሻݔ௘௣ሺܯ

௬ܯ
ቍܫܧ																																																																			ሺB. 3ሻ 

Substituting Equations (B.2) and (B.3) into (B.1) yields the following closed-form expression for 
the area Aep after evaluating the integral and simplifying. 

௘௣ܣ ൌ
௬ܯ
ଶ൫1 െ ඥ3 െ ௠ܯ2 ⁄௬ܯ ൯

൫ܯ௠ െܯ௬൯

௘௣ܮ

ܫܧ
																																																																									ሺB. 4ሻ 

 The centroid of this area is evaluated using the following expression 

௘௣ݔ̅ ൌ
1

௘௣ܣ
න

ݔሻݔ௘௣ሺܯ

ሻݔ௘௣ሺܫܧ
ݔ݀

௅೐೛

଴

																																																																																									ሺB. 5ሻ 

Substituting Equations (B.2), (B.3) and (B.4) into (B.5) yields the following closed-form 
expression for the centroid ̅ݔ௘௣ after evaluating the integral and simplifying. 

௘௣ݔ̅ ൌ
൫ܯ௬ െܯ௠ඥ3 െ ௠ܯ2 ⁄௬ܯ ൯

3൫ܯ௠ െܯ௬൯൫1 െ ඥ3 െ ௠ܯ2 ⁄௬ܯ ൯
.ሺB																																																							௘௣ܮ	 6ሻ 
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Appendix C 

Recognizing that plane sections remain plane after twisting, even after a portion of the shaft’s 
cross-section has yielded, the following relationship for the angle of twist of a circular shaft is 
given as 	

߶ ൌ
௘ܶ௣

௘௣ܩܬ
ൌ

ଵܶ

ܩܬ
																																																																																																																	ሺܥ. 1ሻ 

For a given magnitude of elasto-plastic torque Tep, the shaft’s cross-section has a specific value 
of reduced torsional rigidity, JGep. The torque, T1, is the torque that would exist if the shaft had 
not yielded and maintained its full rigidity, JG. Although the torque T1 with full rigidity JG does 
not exist, the shear strain distribution over the cross-section of the shaft is the same as the actual 
condition of torque Tep with reduced rigidity JGep. Equation (C.1) is written in the following form 
in order to solve for JGep explicitly.   

௘௣ܩܬ ൌ ൬
௘ܶ௣

ଵܶ
൰ .ሺC																																																																																																																ܩܬ 2ሻ 

Of the two torques and two rigidities given above, only JG is known for a given material and 
cross-section, and only Tep is known for a given torque condition. It will be shown that a closed-
form equation for T1 can be written in terms of only Tep and Ty. Substituting this result for T1 in 
Equation (C.2), the reduced rigidity JGep is found to be a simple closed-form expression that can 
be used effectively to determine the inelastic angle of twist. 

Referring to the stress condition in Figure 4, the T1 torque is found considering equilibrium of 
torques about the longitudinal axis. In the figure it is recognized that T1 is comprised of two 
portions – the Tep torque with shear stresses at or below y, and the torque due to the triangular 
portion with shear stresses between y and 1. The equation for T1 is given as  

ଵܶ ൌ ௘ܶ௣ ൅ න ቆ
߬௬

௬ߩ
ߩ െ ߬௬ቇߩሺ2ߩߨሻ݀ߩ

௖

ఘ೤

																																																																						ሺC. 3ሻ 
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൅
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ଷ

6
െ
௬ܿ߬ߨ2
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The shear stresses y and 1 are related to one another by the following linear relationship. 

߬௬

௬ߩ
ൌ
߬ଵ
ܿ
																																																																																																																															ሺC. 5ሻ 

With y = 2Ty/c3and 1 = 2T1/c3, Equation (C.5) can be written in terms of the two torques Ty 
and T1. 

௬ܶ ൌ ቀ
௬ߩ

ܿ
ቁ ଵܶ																																																																																																																						ሺC. 6ሻ 

Substituting these expressions for y, 1, Ty and T1 into Equation (C.4), the solution to the integral 
becomes 
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නߨ2 ቆ
߬௬

௬ߩ
ߩ െ ߬௬ቇ ߩ

ଶ݀ߩ ൌ ଵܶ

௖
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൅
௬ܶ
ସ

3 ଵܶ
ଷ െ

4 ௬ܶ
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																																																										ሺC. 7ሻ 

Substituting this expression into Equation (C.3), the equation for T1 after simplifying becomes a 
closed-form expression in terms of only Tep and Ty.  	

ଵܶ ൌ
௬ܶ

ඨ4 െ 3
௘ܶ௣

௬ܶ

య
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This relationship for T1 is substituted into Equation (C.2) to give the closed-form equation for the 
reduced torsional rigidity JGep.  

௘௣ܩܬ ൌ ቌ
௘ܶ௣

௬ܶ
ඨ4 െ 3

௘ܶ௣

௬ܶ

య

ቍ .ሺC																																																																																								ܩܬ 9ሻ 

For the condition of reduced rigidity JGep that varies over a yielded region of the shaft, it is 
necessary to evaluate the area of the elasto-plastic region Aep using the following expression. 

௘௣ܣ ൌ න
௘ܶ௣ሺݔሻ

ሻݔ௘௣ሺܩܬ
ݔ݀

௅೐೛

଴
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Considering a linear variation of torque over the yielded region with length Lep, the torques vary 
between the yield torque Ty and the maximum torque Tm (for Tm < Tp) according to the following 
relationship. 

௘ܶ௣ሺݔሻ ൌ ௬ܶ ൅
൫ ௠ܶ െ ௬ܶ൯ݔ

௘௣ܮ
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The denominator of Equation (C.10) is written in terms of the elasto-plastic torques that vary 
over the length of the yielded region.  

ሻݔ௘௣ሺܩܬ ൌ ቌ
௘ܶ௣ሺݔሻ

௬ܶ
ඨ4 െ 3

௘ܶ௣ሺݔሻ

௬ܶ

య

ቍ .ሺC																																																																					ܩܬ 12ሻ 

Substituting Equations (C.11) and (C.12) into (C.10) yields the following closed-form expression 
for the area Aep after evaluating the integral and simplifying. 

௘௣ܣ ൌ
௬ܶ
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