
Paper ID #14139

Analyzing Student Coding Practices using Fine-grained Edits

Dr. Clinton Andrew Staley, California Polytechnic State University

Dr Staley is a professor of Computer Science at California Polytechnic State University in San Luis
Obispo, CA. His research interest is in building novel tools for instruction, particularly of Computer
Science.

Mr. Corey Ford, California Polytechnic State University

Corey Ford is pursuing a blended B.S. and M.S. in Computer Science at California Polytechnic State
University, San Luis Obispo. His research interests include distributed systems and social software. He is
a Junior Software Engineer at Software Inventions.

c©American Society for Engineering Education, 2015

P
age 26.217.1

Analyzing Student Coding Practices Using Fine-grained Edits

Abstract

In this paper, we gather data from three groups of students doing three different assigned
programming labs. For this, we use an online IDE for introductory programming that records
student code editing, compiling, and testing activities down to the individual keystroke. The IDE
also gathers periodic student feedback on frustration levels during the coding process.

We report on patterns of student work, including working sessions, total time spent, how far
ahead of deadline students start, and time of day worked. We compare work patterns between
students who completed the assignments on time, and those who did not. We also compare
statistics such as recent numbers of good and bad test runs and editing activity against reported
student frustration levels. Finally, we review a sample of student compile errors in two different
C language projects, one by beginning programmers, and the other by upperdivision
programmers, and report the types of errors made in each group.

We find several interesting results from these comparisons: students often work in short stints,
they work fewer late hours than might be expected, and early starts on a project, while useful, are
not as critical to success as might be expected. We also find that patterns of compile errors and
bugs do not correlate closely to student frustration—different students have different emotional
responses to the same situations. And we find that even among advanced students, compile errors
are skewed toward simple mistakes, and the majority of errors are of just a few different types.

Introduction

Interesting information regarding the learning experience of introductory Computer Science
students can be obtained by analyzing their coding activity at a fine-grained level, In this paper,
we report results from analyses of student coding patterns using an online IDE for introductory
programming that collects keystroke-level information.

The ultimate goal of our research is to improve online IDEs of this sort by adding means of
detecting student difficulties, improving compile and runtime error reporting, and identifying
successful patterns of code development.

Prior Work

The behavior of student programmers has been the subject of substantial research. An early
instance of such work7 compared successive program submissions in a batch-processing
environment, finding that most changes affected only one or two lines of the source. A later
study9 observed and tracked high-level behaviors of high school students in a Pascal
programming class, and noted that the students spent most of their time editing and running their
program rather than planning or reformulating code.

Most recent work extracts detailed data directly from program editors, and is usually considered
to fall under the umbrella of learning analytics or educational data mining. Berland1 analyzed

P
age 26.217.2

data collected in the IPRO mobile programming environment to describe general programming
processes. Using the BlueJ programming environment, Jadud6 recorded snapshots at each
compilation and analyzed students' process towards creating syntactically correct programs,
finding a correlation between assignment grades and a measure of syntax-error struggles.
Helminen et al.4, 5 studied behavior in solving Parsons problems. One of the most fine-grained
analyses was performed by Blikstein2, who analyzed students' development strategies through
code snapshots and event logs. Blikstein and coworkers3, 8 have also used machine learning
techniques to understand student pathways to completing a program.

Our work adds the elements of requesting live student feedback regarding their level of
frustration during the development process, and an ability to play student work back in time-
lapse form, keystroke by keystroke, at any point in the development process.

Methods

Methods: LearningIDE Tool

We studied student programming assignments conducted using LearningIDE
(www.LearningIDE.com), a web-based integrated development environment (IDE). This IDE,
whose user interface is shown in figure 1, provides typical facilities for editing a set of source
code files, compiling these to executable form, and interactively executing the result or
automatically running it against test cases. All project state is stored, and all code compilation
and execution is performed, on the LearningIDE server. The server keeps detailed records of
individual text edits and document scrolls, compilation events, and execution events, allowing
for realtime or time-lapse playback of a student's work, as well as automated analysis.

For this study, we extended the user interface of LearningIDE to include a small panel (upper
left) for collecting self-reported, qualitative feedback on students' development processes.

In comparison to tools used in prior work, notable features of LearningIDE include recording at
the keystroke level rather than the file-save or compile level, the ability to visually check student
work in time-lapse playback, and the use of a web-based user interface with a centralized
database for easy collection of this data.

Methods: Projects Studied

We arranged for three different groups of students to use LearningIDE for programming
assignments. The first was a section of ACM CS1 students, coding a Python project. The second
was two sections of an introductory C programming course intended for engineering students,
and the third was an upperdivision C systems programming class, from which one large section's
worth of students participated. All programs were reasonably small exercises that might be
completed in one or two hours.

Methods: Data Studied

P
age 26.217.3

Once student work was done, we cleaned the data, dropping students who had not agreed to
participate in the study, removing minor "test runs" that were clearly not full efforts, and
discluding from the frustration-level studies certain students (see Frustration Level Analysis
section).

After this, we had 145 participating students, who collectively performed about 190 hours of
work using the IDE, in 1053 separate working sessions, averaging approximately 10.7 minutes
each. Deciding what constitutes a "working session" based on student activity is a judgment call
—we assumed that a student who had shown no activity (not even scrolling, which the IDE
records) for 5 minutes had ended a working session. This working time included 5800 attempts
to compile, of which about 4200 were successful and 1600 had errors. It also included 5700 tests
of a program, either hand-runs or automated test runs.

Figure 1: Screenshot of Learning IDE

P
age 26.217.4

Results

Results: Working Behavior
We ran several statistical studies on students' work patterns, to determine whether students
worked in long or short stints, whether they started early or near the deadline, and what times of
day they typically worked. We were also interested in whether student success, as measured by
completion of the projects by deadline (as occurred for 82% of projects, excluding entirely
projects from one of the groups of students for which we had no measure of completion),
correlated with any of these.

Even for these relatively short projects, students put in remarkably short working stints, as shown
below (mean ± standard deviation, all time units in minutes). Playback of a few samples of very
short sessions showed that some comprised only one brief edit.

Student Success Session Length Min Max Number of Sessions

Successful 9.3 ± 15.0 0 101 576

Unsuccessful 7.0 ± 14.3 0 75 100

The average session length of unsuccessful projects was modestly shorter than that of successful
ones. Taking an average and total session length for each project, and aggregating these per-
project statistics, shows the following (mean ± standard deviation, all time units in minutes):

Student Success Session Length Total Length

Successful 10.9 ± 7.0 59.5 ± 32.0

Unsuccessful 6.3 ± 5.3 35.2 ± 34.6

We had expected to find a number of late night working sessions, and to compare relative
success rates of projects completed in daylight vs those done in the wee morning hours. The
reputation of CS students notwithstanding, we found that there were so few late working sessions
that no statistical analysis was worthwhile. In all, only 8 students in the study put in any work
between midnight and 6am. Three night owls were at work steadily between 3a and 6a, but the
others worked only until 1a or so. One student, somewhat mysteriously, put in just a single edit
at 1a, evidently a quick thought before bed. Further statistical study would of course be needed,
but our modest data suggest that perhaps the sleepless reputation of students in coding classes is
exaggerated.

We were interested in whether early starts on a project correlated with success, so we computed,
for each student, the average distance between starting time of each working session and the
project deadline, weighted by length of working session, dubbing this "lead time". We also
wanted to know how much working time students put in before doing their first compile (dubbed
Time To Compile) and before doing their first run (dubbed Time To Run). For successful and
unsuccessful student work, these results are (mean ± standard deviation): P

age 26.217.5

Student Success Lead Time (hours) Time To Compile (min) Time To Run (min)

Successful 56.3 ± 37.2 8.8 ± 9.7 9.7 ± 12.3

Unsuccessful 46.8 ± 38.4 14.0 ± 16.7 20.7 ± 23.7

These data support the usual teaching advice to start early on assignments and to practice
incremental development, though it's worth noting that the difference is well under a standard
deviation, and four students succeeded with a lead time of under 3 hours—one student with a
lead time of 100 minutes. Starting early is not necessarily essential, if these data are to be
believed.

Results: Frustration Level Analysis

One of our research goals was to measure student frustration levels during the programming
process, and explore ways of automatically identifying "pain points" where the help of a TA or
instructor might be of value. Importantly, our intent was to measure not merely student
difficulty, as would be reasonably evident, e.g. from a series of failed tests, or repeated attempts
to resolve the same compile error. We were interested in the students' affective experience, since
a student who is challenged and frustrated is the one in most need of help.

To this end, we augmented the LearningIDE interface with a frustration-level slider, and a text
field for free comments (see earlier screenshot). We explained the use of this to the participating
students, and urged them to adjust the slider periodically to indicate how they were feeling about
the work. We also programmed the slider to pulse red every five minutes as a reminder to do
this. Students were generally willing and helpful about offering this response, giving us over
1600 individual data points, around 11 per student, by adjusting the slider.

We removed any student with average frustration level below 20% (against a frustration-level
scale of 0-100%) and with no response above 50% (the initial default value), because such
students may have lowered the frustration threshold initially, and then just perfunctorily tweaked
it to silence the red pulse reminder. We also dropped students who offered no feedback at all,
and those whose feedback had a standard deviation of under 10%, for the same reason. This
dropped 33 "low responders", leaving a pool of 112 responding students.

We then identified the most dramatic indications of frustration—those where the slider was
adjusted upward by at least 40% in a single input. In all, these comprised 107 "frustration points"
of special interest. We performed a visual inspection on approximately half of these, spending
several minutes using LearningIDE to play back the student's editing, compiling, and execution
activities surrounding the frustration point.

Various patterns seemed evident, some expected, others perhaps less so. Frustration points were
often preceded by 5 or more compilations, or more often, execution failures, within the past 5
minutes. But they were also often surrounded, both before and after, by a period of scrolling up
and down, or simple inactivity, perhaps indicating student puzzlement over the code. We had
thought that a combination of repeated, recent, failures, with only minor edits (e.g. to insert a P

age 26.217.6

print statement or to try a fix) between them would indicate student frustration, but the visual
analysis did not often show this pattern.

Based on our informal inspection, we then performed a number of small statistical studies. In
each, we computed some statistic combining such factors as the number of failed recent
compilation attempts, the number of failed recent compilation attempts with no progress on
errors (similar to a previously proposed metric6), the number of recent execution attempts, the
number of failed recent execution attempts, or the number of editing actions both before and
after a given point. For each, we computed an average and standard deviation value for the
statistic across a large randomly-selected set of points from the entire body of working sessions,
and for our identified frustration points (with a level above 70%).

Only one or two showed even a slightly useful "signal". Periods of baffled-looking light editing,
for instance, proved to be about as common when students weren't frustrated as when they were.
The same went for blocks of unsuccessful execution or compilation attempts. Averages for these
statistics were almost always modestly higher for the frustration points, to be sure, but never
more so than a fraction of a standard deviation. Some examples follow, giving (mean ± standard
deviation):

Statistic High Frustration Random Time

run attempts, prior 5 min 2.84 ± 4.05 1.86 ± 2.91

failed run attempts, prior 5 min 1.90 ± 3.09 0.95 ± 1.98

% failed run attempts, prior 5 min 66.7% ± 39.4% 49.1% ± 42.5%

(# run attempts + 2(# failed run attempts)), prior 5 min 6.65 ± 9.98 3.75 ± 6.55

text edits, prior 5 min 33.4 ± 38.3 42.4 ± 41.7

text edits, following 5 min 29.3 ± 36.3 41.7 ± 41.8

After viewing scatter plot after scatter plot that resembled white noise with perhaps a vague
central line, we decided that the best statistical proxy we had seen for frustration was a weighted
combination of the number of recent execution attempts, and the number of recent failed
execution attempts, with the latter weighed twice as much as the former. We adjusted this
statistic to a sensitivity threshold that would reject 90% of the random points, leaving only 10%
false positives. Under these conditions, 75% of the frustration points were rejected, leaving only
25% correct positives. Clearly not a useful result.

So, even with a prefiltering process on low-responding students that could arguably be said to
spin for better results in automatically identifying student frustration, we did not discover a good
statistic for doing so.

We emphasize that this was one small study, and we hope that others may try similar work and
find better outcomes. But, we do offer two pieces of advice drawn from this experience. First, it
is our informal impression, and one that agrees with most teaching experience, that student
frustration level is very individual, even given the same intellectual challenge. One student's
infuriating blind alley is another's fascinating puzzle, and this works against deriving a general

P
age 26.217.7

statistic for student frustration. In future work, we plan to look at automated identification of
frustration points using statistics and patterns customized per student.

Second, to that end, an easy and even attractive way for students to indicate frustration in the UI
is essential. A periodically pulsing slider is workable only for a short study with cooperative
students. Our future work will incorporate a better UI to allow long-term gathering of frustration
data in sufficient volume for statistics to be customized per student (e.g a big red "Dammit!"
button is likely to get more attention than an awkward slider.)

Results: Analysis and Improvement of Compilation Errors

LearningIDE tracks every compilation error each student encounters. We are interested in
improving compiler error messages for beginning and more advanced students, so we conducted
a survey of errors, for C code, encountered by the beginning C engineering students and the
upper division C systems programming students. We used only first errors per compile, to avoid
the effect of "ripple errors".

65% of beginning student errors were one of missing variable declaration, missing semicolon,
and errors in user-declared function prototype. 15% were also pretty routine: expression syntax,
missing brace/paren, etc. 20% were rarer, e.g. missing opening paren (scanf"xx")), missing a
variable name in a declaration (double = 2.3;), using an int as a pointer (myexp(*x)), etc.

Compiler error messages (LearningIDE uses GCC as the serverside compiler) ranged,
predictably, from acceptable to utterly baffling to a beginner. Missing semicolon messages of
course fell on the line after the error, never on it. Missing closing braces result in Expected
declaration or statement at end of input. Even missed variable declaration errors (x undefined,
first use this function) could have been better.

One would hope that upper division students would have learned where to put semicolons, but
even their errors, while much less numerous than the beginners', were 50% missing variables or
semicolons. Rather more of their errors had to do with brace and parentheses matching, missing
subexpressions, and use of rvalues to the left of assignments. These collectively comprised 30%
of errors. This may have been partly due to the fact that their assignment involved complex
expressions, however.

Remarkably, a very large majority of error messages that students typically encounter could be
made friendlier with modest regular-expression based postprocessing of the compiler's output,
either rephrasing or augmenting it. Some examples:

GCC error message Friendlier error message

<varname> undefined, first use this function You forgot to declare <varname>

Expected declaration or statement at end of input Did you miss a closing bracket?

Line <x> semicolon expected after <whatever> Missing semicolon near line <x-1>

lvalue required before assignment operator You are trying to assign into an expression

P
age 26.217.8

LearningIDE already filters compiler output, and we will consider adding such error message
rewrite rules as future work. The next version of the LearningIDE will also change from gcc to
clang, which offers superior error messages.

Further Work

Planned further work includes, as indicated above, incorporation of better UI for student
frustration feedback, efforts to customize automated frustration identification per student,
incorporation of more programming languages and a simple debugging interface into the
LearningIDE, and possibly a study on the impact of improved compile error messages. We also
hope to use LearningIDE in a wider range of classes and possibly institutions to gather a broader
statistical base of student performance.

Summary

We used an online, keystroke-recording, IDE to study various aspects of student programming
behavior and frustration levels in several different small programming projects, with varying
levels of students.

We discovered some interesting data regarding work patterns, including the fact that students
often work in short stints, and that fewer work late hours than might be expected. We also found
a modest correlation between longer stints and student success. And we found that while starting
a project early is useful, it's not as closely correlated with success as might be expected.

We gathered direct data on student frustration points, and attempted to find statistics that would
automatically identify such points, but finding a general such statistic was difficult, probably due
to varying student affective responses to programming challenges. We suggest that it may be
more constructive to customize such statistics per-student, and to present an easy and attractive
UI for students to express their frustration levels.

We reviewed typical compilation errors for beginning and experienced students, and found that a
relatively small set accounted for a large majority of errors. The number of errors dropped
significantly for more advanced students, but the distribution of errors remained skewed toward
simple mistakes, with somewhat more errors in expression and statement structure due to more
complex code. We also found that almost all of the most common error messages could be
improved by simple regular-expression style substitutions.

P
age 26.217.9

Bibliography

1. Berland, M., & Martin, T. (2011). Clusters and patterns of novice programmers. In The meeting of the American
Educational Research Association. New Orleans, LA.

2. Blikstein, P. (2011, February). Using learning analytics to assess students' behavior in open-ended programming
tasks. In Proceedings of the 1st international conference on learning analytics and knowledge (pp. 110-116).
ACM.

3. Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. (2014). Programming pluralism:
Using learning analytics to detect patterns in the learning of computer programming. Journal of the Learning
Sciences, 23(4), 561-599.

4. Helminen, J., Ihantola, P., Karavirta, V., & Malmi, L. (2012, September). How do students solve parsons
programming problems?: an analysis of interaction traces. In Proceedings of the ninth annual international
conference on International computing education research (pp. 119-126). ACM.

5. Helminen, J., Ihantola, P., Karavirta, V., & Alaoutinen, S. (2013). How do students solve parsons programming
problems?--execution-based vs. line-based feedback. Learning and Teaching in Computing and Engineering
(LaTiCE), 2013, 55-61.

6. Jadud, M. C. (2006, September). Methods and tools for exploring novice compilation behaviour. In Proceedings
of the second international workshop on Computing education research (pp. 73-84). ACM.

7. Nagy, G., & Pennebaker, M. C. (1974). A step toward automatic analysis of student programming errors in a
batch environment. International Journal of Man-Machine Studies, 6(5), 563-578.

8. Piech, C., Sahami, M., Koller, D., Cooper, S., & Blikstein, P. (2012, February). Modeling how students learn to
program. In Proceedings of the 43rd ACM technical symposium on Computer Science Education (pp. 153-
160). ACM.

9. Pintrich, P. R., Berger, C. F., & Stemmer, P. M. (1987). Students' programming behavior in a Pascal course.
Journal of Research in Science Teaching, 24(5), 451-466.

P
age 26.217.10

