
Paper ID #13987

Design, Development, and Implementation of Instructional Module Develop-
ment System (IMODS)

Dr. Srividya Kona Bansal, Arizona State University

Srividya Bansal joined Arizona State University in Fall 2010 as Assistant Professor. Prior to joining
ASU she was a Visiting Assistant Professor at Georgetown University in Washington, D.C. She also
worked in the industry for 5 years as a Software Engineer at SAP Labs India and Tyler Technologies
in Plano, TX. Her primary research focuses on semantics-based approaches for Big Data Integration,
Web service description, discovery & composition, and tools for outcome-based instruction design in
STEM education. She is also interested in Software Engineering Education research that focuses on
experimenting various delivery models in project-centric courses. She designed and developed a Web
service description language called USDL (Universal Service-Semantics Description Language). She is
the principal investigator of the Instructional Module Development System (IMODS) that is currently
under development and funded by National Science Foundation.

Dr. Odesma Onika Dalrymple, University of San Diego

Dr. Odesma Dalrymple is an Assistant Professor in the Shiley Marcos School of Engineering at University
of San Diego. She conducts research on tools and techniques that can be readily applied in real engineer-
ing learning environments to improve student learning and teaching. In this respect her two prominent
research contributions are with: 1) artefact-inspired discovery–based pedagogy, i.e., learning activities
where students’ exploration of STEM knowledge is self-directed and motivated by interactions or manip-
ulations of artefacts; and 2) the development of faculty expertise in outcomes-based course design through
the use of the Instructional Module Development (IMOD) system, a self-guided web-based training tool.

Dr. Ashraf Gaffar, Arizona State University

Ashraf Gaffar received his PhD in computer science with a focus on Human Computer Interaction (HCI),
and works at ASU as Assistant Professor. He comes with rich industrial experience in software design.
Prior to ASU, he worked at SAP as a Senior Design Expert for several years, where he helped design and
develop complex software products using User Center Design- (UCD) and other design methodologies.
He was instrumental in developing new SAP Design Guidelines as well as multiple software design meth-
ods and tools. He received SAP innovation awards for some of his work. Prior to SAP, he worked at other
multinational companies including IBM and Johnson & Johnson.

c©American Society for Engineering Education, 2015

P
age 26.471.1

Design, Development, and Implementation of the Instructional Module
Development System (IMODS)

Division: NSF Grantees Poster Session
	
Abstract

There is a growing demand and interest in faculty professional development in areas such as
outcome-based education (OBE), curriculum design, and pedagogical and assessment strategies.
In response to this demand, a number of universities have established teaching and learning
centers to provide institution-wide, and sometimes program specific support. A team of
researchers is engaged in a User-Centered Design (UCD) approach to develop the Instructional
Module Development System (IMODS), a software program that facilitates course design.
IMODS will be an open-source web-based tool that will guide individual or collaborating STEM
educators, step-by-step, through an outcome-based education process as they define learning
objectives, select content to be covered, develop an instruction and assessment plan, and define
the learning environment and context for their course(s). It will contain a repository of current
best pedagogical and assessment practices, and based on selections the user makes when defining
the learning objectives of the course, IMODS will determine and present options for assessment
and instruction that align with the type/level of student learning desired. To this end, the project
addresses the following two research goals:

1. Develop the instructional module development system (IMODS) using user-centered
design methodology

2. Assess the effectiveness, efficiency, and usability of IMODS in creating outcome-based
course design

This paper describes our efforts in the High-level (Conceptual) Design phase of the UCD
methodology. This phase follows the collection of data from potential users on what they
currently do and will need in the future. The main goal of high-level design is to create an early
blueprint of the system. We have identified 2 tools that will be most suitable for this phase of the
project: Navigation Model and Prototyping. The navigation model will illustrate how all user
interface screens should be connected. Ideally this should reflect the user’s mental model to
facilitate intuitive navigation between screens to accomplish the task of instructional design. A
high-fidelity prototype is currently under development that will provide details of all key screens
and a number of auxiliary screens with appropriate navigation between them. The expected
outcome of the high-level design phase is a validated prototype of IMODS. This poster describes
the design and development of the prototype that will be used in usability testing of the software
to elicit feedback from potential users on the effectiveness, efficiency, and usability of IMODS
for outcome-based course design.	

1. Introduction
Most science, technology, engineering, and mathematics (STEM) educators have little training
on developing a course based on factors such as learning objectives of the course, the time frame
in which the objectives are to be met, the content to be covered in the course, instructional and
assessment techniques to be used. There are tools in the market that enable instructors to build
courses based on some of these factors, for example, scheduling classes, managing learning
content, etc. However, there is no tool that takes into consideration the complexity of educating
students effectively based on a set of objectives, corresponding assessment and instructional

P
age 26.471.2

techniques, and given a set of resources. There is a growing demand and interest in faculty
professional development in areas such as outcome-based education [1], curriculum design, and
pedagogical and assessment strategies. IMODS aims to solve this complex problem and provide
instructors an easy-to-use software interface that will allow them to design their courses.
The IMODS is an open-source web-based course design software that:

• Guides individual or collaborating users, step-by-step, through an outcome-based
education process as they define learning objectives, select content to be covered, develop
an instruction and assessment plan, and define the learning environment and context for
their course(s).

• Contains a repository of current best pedagogical and assessment practices, and based on
selections the user makes when defining the learning objectives of the course, the system
will present options for assessment and instruction that align with the type/level of student
learning desired.

• Generates documentation of course designs. In the same manner that an architect's
blueprint articulates the plans for a structure, the IMOD course design documentation will
present an unequivocal statement as to what to expect when the course is delivered.

• Provides just-in-time help to the user. The system will provide explanations to the user on
how to perform course design tasks efficiently and accurately. When the user explores a
given functionality, related explanations will be made available.

• Provides feedback to the user on the fidelity of the course design. This will be assessed in
terms of the cohesiveness of the alignment of the course design components (i.e., content,
assessment, and pedagogy) around the defined course objectives.

IMODS is currently being developed using a user-centered, as opposed to technology focused,
methodology. This approach is well suited for the project given the high cognitive nature of
outcome-based course design tasks, and the high levels of interactions required between the user
and the system to not only facilitate the development of course designs, but to help users build an
enduring foundation of knowledge, skills and habits of mind about curriculum development.

2. User-Centered Design Methodology

User-Centered Design (UCD) methodology is being used for the development of IMODS. UCD
is a systematic approach that is typically divided into 5 main phases.

• Phase 1 – User Research
• Phase 2 – High-level design
• Phase 3 – Detailed design
• Phase 4 – Development and development support
• Phase 5 – Testing and Installation support

User centered design focuses on software development using a top-down holistic approach.
Traditional software design methodologies focus on a typical requirements-design-development
approach in which user interface and user interactions are deferred to later stages and are
typically added near the end or in a parallel track to the development process. While this
approach allows us to tackle large and complex software applications to the completion point,
they often result in less usable applications. One of the main reasons is that the internal structure

P
age 26.471.3

and organization of software features is determined by the developers. While this might not be a
visible problem in simpler software applications with few features – the type of applications we
develop in small class projects, or simple mobile apps-, it becomes a significant concern with
larger, more complex applications that involves hundreds of features and complex tasks to
execute. From a user perspective, an application is only what it offers as its user interface (UI).
Without any prior knowledge of the actual application’s internal structure, the user attempts to
build a mental model of what the application might look like using the available interface. A
perfect user mental model is an accurate representation of what the application actually is; an
ideal, but rare case. In reality, the user mental model has some resemblance of the actual
application model, and it gets better with continuous use, marking the difference between a
beginner and an expert user.
 The build up of experience is gained initially with the user’s initial attempts to interact
with the application. This interaction is typically done by the user trying to execute specific tasks
for their daily work. The execution of those end-to-end tasks can be mathematically represented
using graph theory where the nodes represent task steps extracted from the use cases, and the
edges represent transition between those steps. A complete task will correspond to an end-to-end
path on the graph. The graph is considered to represent a navigation model, and should be easy
to cross, or navigate” by the user without prior knowledge. In traditional software development
approaches, this navigation structure is often ignored or only partially addressed, and ends up as
being a by-product of the application. In this case, the navigation model is “inferred” by the user
upon initial use attempts, and is used as the underlying core component of the user mental model.
 If this inferred navigation structure corresponds to the actual application structure, we
tend to call this application “intuitive to use”. The user ends up liking the application and having
better experience in using it. A “user experience” term is often used to mark this pleasant
interaction. If the user mental model, or the navigation structure of it to be specific, does not
correspond to the actual internal structure of the application, a discrepancy between the user
mental model and the actual application emerges. In this case, the user will have harder time in
attempting to use the application to complete their daily tasks, and will need to go deeper into
understanding the actual internal structure of the application via training sessions, experts- or
help support. This will work as an additional source of information for the user besides their
interaction with the application UI, and will help them improve their mental model to closely
match the actual internal structure of the application. While this will help build a correct mental
model, or remove any discrepancy of an existing one, it could take longer time and requires some
training, adding to the cost of using the software. This is often referred to as a less-intuitive
application, and is marked by a lower user experience.

Figure 1: Traditional SE vs UCD

 The main goal of UCD is to start by building a user navigation model first using
multiple UCD tools and techniques. The second major step will be to use this navigation model
to define and design the application structure using multiple prototyping techniques (Figure 1).
As we can see, this explains the main departure from the traditional software development where

P
age 26.471.4

we start with application structure.
The main focus of UCD is on different starting points:

1) Who the users are
2) What the users currently do
3) What the users want from the new application

Several tools have been devised by the UCD methodologists to execute those initial steps. Tools
in general allow us to manage more complex amount of information, giving us leverage over
complexity. The first step of identifying the users start by meeting with different people affiliated
with the education domain. While the initial and main focus is on teachers, two main aspects
need to be considered:

i. Besides teachers, other people could be involved, for example administrative workers,
students, and technical support. Those other types of users are researched and identified
as “User Roles”.

ii. Even the main category of users (teachers) need to be looked at in more details. In a
typical situation, teachers have different backgrounds, different experience, and different
context to teach in. These differences are looked at using “User Personas” as a common
UCD tool that is growing in popularity.

The second part, “what the users currently do” is done via different UCD tools. We followed
“Brainstorming sessions” and met with several users to ask them about their daily work
practices. Besides brainstorming, we also had a series of interviews and questionnaires to
supplement our work. The collected work was categorized and analyzed. The third part, “what
the users want” is being done with deeper analysis on the findings extracted in the previous part.
This is where the navigation modeling is used as an innovative technique to envision the user
needs in terms of a navigation structure that can be translated into an actual application structure.
 After successful completion of the User Research phase, we worked on the high-level
and detailed design phases of the project. We are currently in Phase 4 of the project that involves
software development.	 The following sections describe our efforts in the various phases of UCD.
	
3. Phase 1 – User Research
During the User Research phase of the project we conducted 3 focus groups with 5 engineering
and computing systems faculty members in each session. The aim of these sessions was to
understand the course design process used by the participants. At the beginning of each session
all participants were asked to fill an electronic background survey that collected demographic
information, primary areas of interest in teaching and research, time spent on teaching, number
of courses taught per year (at both undergraduate and graduate levels), and number of new
courses developed (both at undergraduate and graduate levels). Participants were also asked to
fill an electronic questionnaire about curriculum design tools that they currently use to create and
manage their courses (e.g. preparing syllabi; communicating with students; developing teaching
materials; preparing, assigning, and delivering grades, etc.). The results of this phase were
published in ASEE 2014 and FIE 2014 [2], [3]. Based on this research, a list of 10 most
commonly used tools were identified. Data collected from the focus groups about course design
process was categorized into inputs, processing and decision-making, and output artifacts.
Consolidated data from the 3 focus groups that were conducted was presented in ASEE 2014 [2].

4. Phase 2 – High-level Design
After the user research provided a relatively clear idea and understanding of domain- and user

P
age 26.471.5

needs, this initial design phase provides a high-level design with concepts identification,
conceptual modeling and early prototyping. The main goal of high-level design is to plot down
schematic ideas and steps into visual graphs and models; an early blueprint. We started by
investigating different options and provide design alternatives to make sure we have a broad
view before identifying a good design. Doing this early on, at high-level, sketchy, paper-based
only, and without going into details help provide several solution alternatives at a very low cost.
We then chose between multiple good ideas instead of focusing on only one early on. The high-
level design sketches were discussed with the users to make sure what they said in unstructured
dialogs and vague ideas and imaginations can now be concretely captured in design artifacts for
further validation and clarifications [4, p. 220]. We have identified 2 tools that are most suitable
for this project in this phase.
Tools:

a) Navigation Model is one of the essential methods of design that we used. A significant
challenge in complex software is not the contents of each screen, but how the user mentally
build a mental view of how all screens are connected (like a city road map), and how to
navigate between hundreds of screens to accomplish their task. In this regard, we have
developed an effective technique, elastic prototyping, an implementation of a participatory
design to help designers and users build a navigation model together, greatly reducing time
and effort needed. Figure 2 shows the navigation model for the primary application.
b) Prototyping (PT) is extensively used in UCD to visualize and validate all otherwise vague
ideas and unclear expectations at low cost and high effectiveness. We focused on three main
categories of prototyping: Paper (low-level) PT, low-fidelity electronic (medium level) PT,
and high-fidelity, detailed PT [5, p. 188]. Paper prototypes are very inexpensive and help us
capture several initial ideas and concepts, and validate them. After explaining their needs,
users often change their minds when they see them on paper. Therefore multiple paper PT
sessions gives a head start in validating what users actually mean and need. After initial
concepts, design ideas and directions were identified, we moved into a medium fidelity
prototyping stage where we provided a sketchy visualization of key screens without contents
and gradually validated them and added initial contents.

	

Figure 2: Primary Application Navigation Model P
age 26.471.6

5. Phase 3 – Detailed Design
At this stage, we focused on the main high level solution, and started looking into details from
different perspectives including main application features, auxiliary features, concrete navigation
models, detailed screens (all screens, with all contents), menu options, visual and interaction
consistency across all screens, exceptions and error massages and recovery, reliability assurances
and, help. This phase goes in parallel with development phase as more details are uncovered and
technical problems arise. The design was based on the theoretical model for outcome-based
course design called the PC3 model [6]. User interface mockups were created with details of
various user inputs that will be solicited through the course design process. Figure 3 shows
sample user interface mockups of the course overview page and the learning objectives page.

	
Figure 3a: Course Overview Page mockup

	
Figure 3b: Learning Objectives page

mockup

6. Phase 4 – Development and Development Support
At this stage, we considered different technology options, and started experimenting with
platforms and initial software architecture. As implementation of essential features started, close
collaboration between designers and software engineers (software architects and developers) was
essential to ensure the consistency of design and to prevent any deviations. Several technical
problems require careful reconsideration of detailed design and even high-level design options.
Iteration is a fundamental design approach that is extensively being used across the UCD
process. Therefore, UCD is highly iterative and most of its phases are heavily overlapping to
ensure design and development decisions are aligned at all times with the actual user needs.
 This phase of the project included identifying appropriate technologies to be used for
the development of the IMODS semantic web application, design of the back-end database
schema, installation and configuration of the server-side and client-side technologies, and
development of the user interface screens for login, registration, index, and creation of an
instructional module and the connectivity of these web pages with the backend database. An
Agile software development methodology called Scrum is being used for the development of this
project. Scrum is an iterative and incremental framework for managing product development. A
sprint (or iteration) is the basic unit of development in Scrum. The sprint is restricted to a
specific duration, two weeks in case of the IMODS project. Each sprint is started with a planning

P
age 26.471.7

meeting. The aim is to define a sprint backlog where the tasks for the sprint are identified and an
estimated commitment for the sprint goal is made. Each sprint ends with a sprint review-and-
retrospective meeting, where the progress is reviewed and shown to stakeholders and
improvements for the next sprints are identified.
6.1 Analysis of Technologies
The purpose of analyzing various technologies during this phase of the project was to ensure
rapid development with the latest technologies in the field of software development and use open
source technologies wherever feasible. Towards this end, an analysis of web application
frameworks, version control systems, server side technologies and client side technologies was
performed. Table 1 shows all of the technologies considered and the analysis that informed the
final selection.

Table 1: Analysis of Technologies for IMODS development

Key
Architecture
Functions

Possible
Solutions

Analysis Comments Final
Solutions

Framework Django, Grails,
WebApp2

• Django and WebApp2 are written in Python and have
Google App Engine support

• Django has request handler, template engine and form
processor

• WebAp 2 has request handler

Grails

Version
Control

Bitbucket,
Github, Gitlab,
Gitlolite, SVN

• Bitbucket - free private repositories
• Github - free public repos + paid private repos
• SVN is centralized, Git is decentralized
• All work with Unix, Linux and Windows systems

Github

Server-side
technologies

Java based
technology

• As it is compatible with semantic web technologies

Groovy

Databases
SQL, NoSQL,
JSON, Google
Datastore,
MySQL,
PostGreSQL

• CouchDB stores data as "documents", as one or more
field/value pairs expressed as JSON

• App Engine Datastore provides a NoSQL schema-less
object datastore, with a query engine and atomic
transactions

• IMODS data is expected to have numerous relations and
hence schema-less store is not being chosen

PostgreSQL

Client side
scripting ExtJS, jQuery,

JavaScript,
CoffeeScript,
AngularJS,
BackboneJS,
HTML5, CSS3,
Twitter
Bootstrap

• Backbone.js requires more Boilerplate code, but is
smaller

 than Angular.js
• ExtJS does not provide good support

jQuery,
HTML5,
CSS3,
possibly
Bootstrap

Semantic
Web
Technologies

OWLite,
Protege,
Apache Jena

Apache Jena
• API for reading, processing and writing RDF data in

XML, N-triples and Turtle formats
• Rule-based inference engine for reasoning with RDF and

OWL data sources
• Stores to allow large numbers of RDF triples to be

efficiently stored on disk
• Query engine compliant with the latest SPARQL

OWLite,
Protege,
Apache Jena

P
age 26.471.8

specification

Licensing

• GPL, MIT, BSD - It is not permissible under the GPL to
use GPL in proprietary software while keeping that
software closed source

• MIT and BSD: Because you cannot restrict others from
simply obtaining the source code, selling open source
licensed software as is makes for a difficult proposition

TBD

Cloud/web
technologies

Google App
Engine,
Amazon Web
Services (AWS)

• Google App Engine: Free within quota, help and tutorial
• AWS: Free usage for a year

None for
now

Login CAS

The following subsections provide a detailed description of the selected technologies.
A. Groovy on Grails:
Groovy on Grails is an open source, full stack, web application framework for the Java Virtual
Machine. It takes advantage of the Groovy programming language and convention over
configuration to provide a productive and streamlined development experience. The main
features of this framework are as follows:

• Rapid: The Grails framework is one the fastest ways to get a web application up and running.
• Robust, proven technologies: Grails is based on Spring and Java – technologies that are tried

and tested by millions.
• Interoperability with Semantic Web technologies: One of the major requirements of this

project was having the ability to use the Apache Jena API in the future. Groovy runs on
JVM, hence, it is compatible with Apache Jena API that is written in Java.

• Simplicity: Groovy has a clean and simple syntax, and is easy to learn and understand.
• Easily defined relationships: In Grails, it is easy to define relationships between classes using

Grails Object Relational Mapping (GORM). These relationships could be one-to-one, one-to-
many or many-to-many, and may be unidirectional or bidirectional.

• Scaffolding: Relationships specified in the domain classes can be used to create, read, update
and delete database entries.

• Model, View, Controller Architecture: Once domain classes are generated, controllers and
views can be generated using grails commands.

• Plugins are available for most things any web application would need, for example, the
SpringSecurity plugins for login.

• Support is available on all modern browsers automatically.
• Groovy on Grails has a very active development community, with ample documentation and

other resources.

B. Groovy/Grails Tool Suite:
The Groovy/Grails Tool Suite™ (GGTS) provides the best Eclipse-powered development
environment for building Groovy and Grails applications. GGTS provides support for the latest
versions of Groovy and Grails, and comes on top of the latest Eclipse releases.
• Included with GGTS is the developer edition of vFabric tc Server, the drop-in replacement

for Apache Tomcat.

P
age 26.471.9

• GGTS is freely available for development and internal business operations use.
C. PostgreSQL database management system:
PostgreSQL is a powerful, open source object-relational database system. It has more than 15
years of active development and a proven architecture that has earned it a strong reputation for
reliability, data integrity, and correctness. Following are some features of PostGreSQL:
• It runs on all major operating systems, including Linux, UNIX (AIX, BSD, HP-UX, SGI

IRIX, Mac OS X, Solaris, Tru64), and Windows.
• Its closest competitor, MySQL, is now owned by Oracle, making its future uncertain.

D. Git for version control:
Git is a distributed revision control and source code management (SCM) system with an
emphasis on speed. The advantages of using Git for source code management are as follows:

• Git is decentralized. The local copy is a repository with ability to commit to it and get all
benefits of source control on the local system. This is useful when there might be
connectivity issues. Local commits can be pushed to remote repositories any time the
connectivity is reestablished. This makes it better than centralized version control systems
like SVN.

• Git is well suited for open source projects – a project can be forked and changes can be made
in the forked project, one can then ask the original project maintainer to pull code from one’s
fork.

• Github is free and allows developers to connect and review code.
• Git is now supported on Windows as well – initially it was only supported on *nix platforms

6.2 System Architecture
Grails uses Spring Model–View–Controller (MVC) architecture as the underlying web
application framework. MVC is a software architecture pattern which separates the
representation of information from the user's interaction with it. The Grails architecture can be
described as follows:
• The foundation of Grails is the Java Virtual Machine (JVM).
• There is a separation between the Java language and the JVM. This is important in Grails

because in the next level up from the JVM, both the Java and Groovy languages are used.
• The final layer of the architecture is the application layer. This layer follows the Model-

View-Controller (MVC) pattern.
• Grails uses Spring MVC as the underlying web application framework.
• A controller handles requests and creates or prepares the response. A controller can generate

the response directly or delegate to a view.
• A controller can have multiple public action methods, each of which maps to a URI.
• A model is a Map that the view uses when rendering information on the web page. The keys

within that Map correspond to variable names accessible by the view.

7. Future Work

The development of IMODS prototype is still ongoing, and will be further described in future
publications. The next steps will include completing development and testing of the key features

P
age 26.471.10

of the IMODS system. Usability testing of this prototype will be conducted at the Co-PI’s
institution followed by testing at a leading Engineering Education conference to get user feedback
that will be incorporated into the design and development of the IMODS system. The scope of
this project will also include the evaluation of its novel approach to self-guided web-based
professional training in terms of: 1) user satisfaction with the documentation of course designs
generated; and 2) impact on users’ knowledge of the outcome-based course design process.

Acknowledgments
The authors gratefully acknowledge the support for this project under the National Science
Foundation's Transforming Undergraduate Education in Science, Technology, Engineering and
Mathematics (TUES) program Award No. DUE-1246139.

REFERENCES

[1] G. C. Furman, “Outcome-Based Education and Accountability.,” Education and Urban
Society, vol. 26, no. 4, pp. 417–437, 1994.

[2] S. Bansal, O. Dalrymple, A. Gaffar, and R. Taylor, “User Research for the Instructional
Module Development (IMOD) System,” in American Society for Engineering Education
Annual Conference (ASEE), Indianapolis, IN, 2014.

[3] O. Dalrymple, S. Bansal, A. Gaffar, and R. Taylor, “Instructional Module Development
(IMOD) System: A User Study on Curriculum Design Process,” in Frontiers in Education
(FIE), Madrid, Spain, 2014.

[4] J. Lazar, J. H. Feng, and H. Hochheiser, Research methods in human-computer interaction.
John Wiley & Sons Inc, 2009.

[5] W. Lidwell, K. Holden, and J. Butler, Universal principles of design: 125 ways to enhance
usability, influence perception, increase appeal, make better design decisions, and teach
through design. Rockport Pub, 2010.

[6] K. Andhare, O. Dalrymple, and S. Bansal, “Learning Objectives Feature for Instructional
Module Development System,” presented at the PSW American Society for Engineering
Education Conference, San Luis Obispo, California, 2012.

P
age 26.471.11

