
Paper ID #12360

Effect of extended use of an executable flowchart for teaching C language

Prof. Cho Sehyeong, MyongJi University

Professor, Department of Computer Engineering, MyongJi University

c©American Society for Engineering Education, 2015

P
age 26.576.1

This work was supported by 2014 Research Fund of Myongji University.

Effect of extended use of an executable flowchart for teaching C language

Teaching computer programming to students is a daunting task, especially to those without any
background or experience in computer programming. Even simple assignment statements or
arithmetic operations can be difficult for them to understand. In our experience, roughly 25% of
students fail the course and get frustrated that they are not fit for programming after all.

There are many reasons why programming can be so difficult for beginners. First, there are
linguistic issues. The syntax of a programming language is very different from that of a natural
language. Trivial grammatical errors can result in cryptic error messages that are hard to
interpret. The students also encounter semantic difficulties. It is a challenge to get an accurate
understanding of the operational semantics (i.e., effects) of the programming language
constructs, which makes it difficult to predict the accurate result of a program code. This, in
turn, makes it not so easy to write a program. Second, regardless of the difficulty of
programming language at hand, the problem-solving process itself is inherently complicated.

In this paper, we hypothesize that the use of proper visual aid can improve students’
learning speed and programming competence. One of the most popular visual aids for learning
programming is a flowchart. In introductory programming courses, it is very common to explain
the meaning of control structures, such as ‘if-then-else’ or ‘do-while’, by means of flowcharts.
We propose to use an extended flowchart as an actual visual programming language, which is
designed to enable smooth transition to commercial programming languages such as C, C++, or
Java.

We developed a flowcharting tool that can be used for actual programming, as well as for
executing, debugging, and visualizing. Thus, our specific aim was two-fold: first, help learn
programming/problem solving and, second, facilitate the learning of a textual programming
language – the C language. The actual hypothesis tested in the present study was X. The results
of the experiment that was designed to test our expectation fully support our hypothesis. In what
follows, we will briefly introduce the tool used and proceed with the discussion of the
experiment and the results.

Related Work

There are many different approaches to facilitating the acquisition of programming language(s).
For instance, in order to avoid the complexity of full-fledged programming languages, one can
use simplified programming languages, such as Mini-Java1. In fact, mini-languages have been
used for quite a long time2. However, this approach does not meet our requirements, since we

P
age 26.576.2

This wo

need to
G3 or A
to comp
program
improve
teaching
languag

A Brief

CFL, w
program
well as
prospec
the nod
types of
simple n
give str
naturall

CF
one acc
changed
buttons
inner w
values b
integrat
and gra

t

ty
exam

n

rk was supp

teach a full
Alice4, can be
puter progra
mming has b
e their prob
g the concep
ge such as C

f Introductio

which stands
mming langu
to understan

ctive C-lang
des. Currentl
f basic node
node types.

ructures, suc
ly enforced

FL is executa
cumulator re
d to float va
– for single

workings of t
by flashing
ted into a w

ading7.

type

ypical
mple(s)

note

orted by 20

l language a
e another po
amming and
been used el
lem-solving
pt and probl

C is time-con

on to CFL

 for “C-like
uage and sy
nd the mech

guage learne
ly, CFL vers
es: processin
Composite

ch as “if-the
by composi
able, and, th
egister, one
ariables, two
e stepping a
the program
colors, and
eb-based in

processing

+, -, *, /,
function c

return

14 Research

after all. Icon
ossibility. Ic
d it has been
lsewhere as
g skills5. Rap
lem-solving
nsuming and

e Flowchart
ystem. CFL i
hanism of pr
ers. A CFL p
sion 2.0 has
ng, I/O, dec
 nodes are u

en-else”, “fo
ite nodes.
herefore, has
floating poi
o arrays, the
and running/
m: the contro

the function
struction sy

Table 1.

node

 %
call,

n

pu

h Fund of My

nic program
conic progra
n reported to

an aid to he
ptor6 is a flo

g skills, but
d requires e

Language,”
is developed
rogram exec

program con
s basic node
ision, and fu

used to grou
or”, “while”

s features re
int accumula
e input buffe
/stopping. D
ol flow by a
n call stack

ystem for eff

CFL basic n

I/O node

utchar, scanf
printf

yongji Unive

mming langu
amming is s
o help keep
elp students
owchart pro
transition fr

extra effort.

” is an execu
d to help stu
cution. In p
nsists of nod
s and comp

function nod
up particular
, and functio

elated to exe
ator, 12 inte
er, the outpu
During the ex

red dot and
by a stack o
ficient assig

node types

Dec

f !=, ==
>=, <=

ersity.

uages, such
suitable for a
students int

s understand
ogramming t
rom it to act

utable flowc
udents learn
articular, it

des and dire
osite nodes.

des. Table 1
r combinatio
ons. Structu

ecution. The
eger variable
ut window, a
xecution, st

d red-border
of parameter
gning of exe

cision

=, > ,<,
= , &&, ||

as Mindstor
a gentle intr
terested4. Flo
d the concep
tool used fo
tual program

chart-based
n programmi
is designed
cted arcs co
. There are f
summarizes
on of basic n
ured program

ese features
es that can b
and two exe
tudents can w
red node, ch
rs. CFL is ti

ercises, subm

Functio
start

only one m
functio

rm NXT-
roduction
owchart

pt and to
or
mming

ing, as
to help

onnecting
four
s CFL
nodes to
mming is

include:
be
ecution
watch the

hanging
ightly
mitting,

on

main
on

P
age 26.576.3

This wo

For

with C
function
and “if”

The Exp

It has el

rk was supp

r easier tran
language sy
ns such as “
” are transla

periment

lsewhere be
orted by 20

nsition from
yntax. These
“scanf” or “g
ated into intu

Figure

Figure

een observed
14 Research

CFL to C la
e include ari
getchar.” Co
uitive graph

e 1. Composite

2. Snapshot o

d that learni
h Fund of My

anguage, the
ithmetic exp
ontrol struct
hical structur

e Nodes: if, w

of CFL editor/e

ing CFL con
yongji Unive

e syntax of
pressions, ar
tures in C la
res, as show

while, for, and

execution env

ntrol structu
ersity.

CFL is inten
rray notatio
anguage suc
wn in Figure

function

vironment

ures before l

ntionally ali
n, and input

ch as “for,” “
e 1.

learning C la

igned
t/output
“while,”

anguage

P
age 26.576.4

This work was supported by 2014 Research Fund of Myongji University.

control structures helps the C language learners learn faster and better7. The previous
experiment was limited to a rather short time scale of a few hours. This time, we conducted an
experiment to see if learning CFL has longer-term benefits in terms of weeks.

The preparation

We had two classes of the C programming courses with similar class sizes. Both classes started
the semester with 35 students, i.e. the maximum number of students allowed in that semester.
The students were taught by the same instructor on the same weekdays, but on different hours.
The course was a 4 credit-hour course. The class met twice a week, each consisting of two
consecutive class hours. One class - the control group - was taught by the regular C language
syllabus. The other group – the treatment group – was first taught CFL programming for four
weeks, before they started learning C language. Table 2 summarizes the semester schedule of
the two classes. Although the course is intended for freshmen, there were quite a few students
who were not freshmen. Since they were likely to have some experience in C programming, we
excluded them from the analysis. This resulted in a total of 29 freshmen in the control group and
22 students in the test group.

Table 2. Summary of schedules

Week Control group (C only) Treatment group (CFL + C)
1 Intro to Computers, Prep for laboratory

(incl. Linux and vim)
Intro to Computers, CFL basics,
operations, I/O

2 Beginning C programming CFL conditional, for loop
3 Integers and I/O CFL arrays, functions and recursion

4 conditionals CFL graphics and game project
5 while/for loops Linux and vim, Integers and I/O,

6 Functions conditionals, while/for loop

7 Arrays and applications Functions, arrays
8 Handling strings, mid-term arrays, mid-term

9 2-dim arrays strings, 2-dim arrays
19 files files
11 structures structures

12 bit handling bit handling
13 recursion recursion

14 pointers and dynamic allocation pointers and dynamic allocation
15 linked lists linked lists
16 Final Exam Final Exam

P
age 26.576.5

This work was supported by 2014 Research Fund of Myongji University.

To explore if learning CFL has any effects, either positive or negative, on learning C
language programming, we tested the students with three identical tasks in the final exam, as
well as observed their overall performance throughout the semester. The students were not
informed about the ongoing experiment.

Task A
Problem description:
Let X be a sequence of integers starting with 1, 2, 4, … and the differences between
consecutive terms make an arithmetic progression of 1, 2, 3, ….

Let Y be a sequence of integers that starts with 1, 2, 4, 8, … and each pair of consecutive
numbers in the sequence has a difference defined by sequence X.

Write a program to generate sequence Y less than 100.

Task A requires the understanding of how to write a loop. In the control group, 12 of 29
freshmen passed the test, compared to 15 of 22 in the treatment group. Thus, the performance in
the treatment group was significantly higher than that of the control group (68.2% vs. 41.4%).

Figure 3.Performance of the two groups on task A

Task B

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Control group Test group

Task A

P
age 26.576.6

This work was supported by 2014 Research Fund of Myongji University.

Problem description:
Given an array of integers already in ascending order, write a program to insert an arbitrary new
number into an existing set of numbers, such that the result is in an ascending order. However,
you should follow the order given as follows: 1) determine what position the new number
should go in; 2) shift all numbers greater than the new number; and 3) actually insert the new
number.

The second task is a part of a sorting program that requires knowledge of and competence
in handling 1-dimensional arrays. Both groups experienced ‘bubble sort’ during the semester.
Sorting program is so simple that it is quite possible to memorize the code. In order to prevent
“memorizing the solution”, we provided specific constraints for sorting algorithm. In this test,
the treatment group again outperformed the control group. Only27.6% of the freshmen in the
control group solved the problem, while 45.5% in the treatment group solved it. Figure 4
compares the pass ratios for the second test.

Figure 4. Performance of the two groups on task B

Task C
Problem description:
Given a representation of Omok (a.k.a., Gomoku) game in a 2-dimensional array, write a
function to determine if a player has a winning configuration, i.e., 5 in a row.

Task C is to fill in some missing part of Omok game. For those who are not familiar with
this game, omok is played by two players, black and white, taking turns to put a white or black

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Control group Test group

Task B

P
age 26.576.7

This wo

stone un
Thi

perform
group a

Thi
homew
similar.

The ove

The trea
More im
course.
C langu
Grading

rk was supp

ntil one of t
is problem r

mance in the
and 13 out o
is task diffe
ork assignm

erall perform

atment grou
mportantly,
Specifically

uage) passed
g is based on

0

20

40

60

80

100

orted by 20

he player ha
requires kno

e two groups
of 22 student
red from tas

ment before,

Figu

mance

up outperfor
in the end o
y, 90.9% of
d the course
n 15 problem

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

C

14 Research

as 5 in a row
owing how t
s was almos
ts (59.1%) c
sks A and B
 which migh

Figur

ure 6. Perform

rmed the con
of the semes
f the treatme
e. By contras
ms in quizz

ontrol gro

h Fund of My

w, either stra
to deal with
st identical:
coped with t

B in that the
ht explain w

re 5. An Omok

mance of the tw

ntrol group
ster, far mor
ent group (i.
st, only 72.4

zes, midterm

oup Te

yongji Unive

aight or diag
h 2-dimensio
17 out of 29
the task.
students we

why the perf

k game

wo groups on

on two out
re students in
e., those wh
4% of the co

m, and final e

est group

ersity.

gonally(see
onal arrays.
9 students (5

ere given the
formance of

 task C

of three pro
n the treatm
ho learned C
ontrol group
exam, as we

Ta

Figure 5).
On this task

58.6%) in th

e same prob
f the two gro

oblems in th
ment group p
CFL before l
p passed the
ell as homew

sk C

k, the
he control

blem as
oups was

he exam.
passed the
learning

e course.
work

P
age 26.576.8

This work was supported by 2014 Research Fund of Myongji University.

assignments. The average scores of exams are 28.0 for control group and 40.9 for test group in a
100 scale. The pass ratio of the course in recent 3 years amounts to 74%. Therefore, 72.4% can
be considered quite normal, while 90.9% can be considered exceptional.

Figure 7. Course pass ratios of the two groups

Figure 8. Average scores of the two groups

Conclusion and Future Work

To further previous research on short-term effect of using CFL for learning C language
programming, the present study focused on corresponding long-term effects. Our results

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Control group Test group

Course

0

10

20

30

40

50

60

70

Control group Test group

Average score

P
age 26.576.9

This work was supported by 2014 Research Fund of Myongji University.

convincingly show that the students who are taught CFL before learning C language eventually
outperform those who learned C programming in the first place. In view of the fact that both
groups spent almost the same time learning, the results are even more encouraging.

We believe that the reason why we benefit from CFL is because CFL is in fact a C
language in (graphical) disguise. We experienced that the students who learn CFL have more fun
and do better in terms of “thinking” of the solution, because of the graphical nature of the
language and the execution environment. Furthermore, the competence acquired with CFL does
not seem to be diminished later by the complexity of the C language syntax, for once one
understands how to do something in CFL, it is easy to translate that into C language syntax.
However, we cannot completely rule out the possibility that the seemingly encouraging result
has been obtained purely by chance. Therefore, another experiment is planned for the coming
semester.

References

1. Roberts, E. “An Overview of MiniJava”, ACM SIGCSE Bulletin 33 (1), 2001, pp. 1-5.
2. Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., and Miller, P. “Mini-languages: A Way to

Learn Programming Principles”, Education and Information Technologies 2 (1), 1997, pp. 65-83.
3. Swan, D. “Programming Solutions for the LEGO Mindstorms NXT,” Robot magazine, 2010, p. 8.
4. Sattar A., Lorenzen T. “Teach Alice programming to non-majors”, ACM SIGCSE Bulletin 41(2), pp. 118-121.
5. Crews, T. “Using a Flowchart Simulator in a Introductory Programming Course”,

http://www.citidel.org/bitstream/10117/119/2/visual.pdf Last accessed Dec.30, 2013.
6. Martin C., Carlisle et al. “RAPTOR: introducing programming to non-majors with flowcharts”, Journal of

Computing Sciences in Colleges 19(4), 2004, pp. 52-60.
7. Sehyeong Cho, Ryu, Y. S., and Kim, S. “Learning C language programming with executable flowchart

language”, Proceedings of ASEE annual conference, 2014, paper ID#8872.

P
age 26.576.10

