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Facilitating Problem-Based Learning with an Inverted Classroom 

 

Abstract 

In 2013, Seattle University was awarded a National Science Foundation (NSF) grant titled 

“Facilitating Problem-Based Learning with an Inverted Classroom.” The objective of this project 

is to develop an instructional framework that promotes self-directed learning and enhances 

problem-solving skills in undergraduate engineering students without sacrificing knowledge of 

fundamental engineering principles. The instructional framework will use an Inverted Classroom 

(IC) to facilitate Problem-Based Learning (PBL).  The instructional framework will be created 

through collaboration between faculty in mechanical engineering and psychology at Seattle 

University, and evaluated by academic partners from other institutions.  To facilitate an IC, 

material traditionally covered in a lecture format will be moved outside of class time, developed 

for an on-line format, and made available in an online repository of learning resources.  PBL will 

use authentic engineering problems co-developed with industrial partners from medical device, 

HVAC and process industries; problems will be evaluated by the academic partners.  A variety 

of resources will be available to address the varied learning styles of the students.   

The framework will be implemented in a Heat Transfer course that will be offered in traditional 

classroom (control) and IC-PBL (treatment) settings.  Student self-directed learning and 

problem-solving skills in the two settings will be compared for their performance on design 

problems, exams, heat and energy concept inventory, and several rubrics.   

This paper describes the process and accomplishments from the first phase of the grant, as well 

as the ongoing process in phase two.   

Introduction 

One of the challenges of modern engineering education is that programs must address not only 

technical topics but also prepare graduates to work on open-ended and ill-defined problems. At 

the pedagogical level these two goals can sometimes be in conflict. Technical education has 

traditionally relied on lecture and textbook type problems whereas teaching student how to 

address open-ended design problems requires an approach with less apparent structure. 

One method for teaching problem solving is Problem Based Learning (PBL). In PBL, students 

are tasked with solving large open-ended problem that have been crafted so that the students 

must address and learn technical content from the course. PBL has been shown to be an effective 

framework for teaching engineering fundamentals within the context of open-ended problems. 

Numerous studies 
1,2

 show improved learning when classroom instruction is problem-based as 

well as an improved ability to solve open-ended problems
3
.   
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PBL has two notable drawbacks. First, PBL students often perform poorer than those taught in a 

traditional class when tested using standardized tests on fundamental engineering principles
4
. 

This is especially true for self-paced and self-directed PBL activities
5
. This problem is usually 

overcome by creating a PBL environment that is structured, assessed, and supported
6
. Second, 

extra class time is necessary for solving open-ended problems, which leads to a reduction in the 

total number of concepts covered in a course
7
. This problem is exacerbated because new 

information and concepts are added to the field of engineering every year. Finding time to cover 

these new topics places increasing demands on class time and instructors are often hesitant to 

relinquish class time. This can limit the effectiveness and adoption of PBL in engineering 

classes.   

An inverted (or flipped) classroom can free class time with minimal effect on content and so 

provides a promising framework for PBL instruction. In an Inverted Classroom (IC), lecture 

material is moved outside of the class, freeing in-class time for learner-centered activities. 

Course content is delivered through a variety of mediums including screen-capture videos, 

simulations, interactive problem solving and other online materials
8,9

.  

The Inverted Classroom approach has been shown to be an effective delivery method in several 

studies
10,11

. The IC does not negatively affect student performance on traditional class and 

standardized tests, as does PBL alone
12

. In addition, an IC can effectively address multiple 

learning styles by delivering the content in different formats
10

. IC can promote self-directed 

learning and help develop professional problem solving skills because the format teaches the 

student to find and interpret the information needed to solve problems
13

.  

Challenges, however, exist with the Inverted Classroom regarding student (a) preparedness for 

class, (b) attention span while watching online videos, and (c) misconceptions of fundamental 

principles [15]. Basic guidelines, by Zappe et al.
, 
and Rais-Rohani et al.

9
, to overcome these 

challenges include (1) requiring an online quiz before class to ensure preparedness, (2) keeping 

videos less than 30 minutes, (3) fixing student misconceptions by spending the first 10 minutes 

of class answering questions or holding mini-lectures, and (4) using multi-media for online 

content to engage students. 

The results from IC studies provide evidence that an IC can be used effectively to deliver 

traditional course content, even when class time is used for learner-centered activities. 

Furthermore, existing research points to the benefits of PBL
3,4

. Together, these results suggest 

that an IC and PBL could be successfully integrated to improve student self-directed learning and 

problem-solving skills without sacrificing a strong understanding of fundamental engineering 

principles. 

This paper describes a project to implement PBL in an engineering course that is taught using an 

IC framework. The project, funded by the National Science Foundation, began in 2014 and is 

expected to conclude at the end of 2015. The remainder of this paper describes the project and 

progress to date.  
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Project overview 

The goal of the project is to improve self-directed learning and students’ problem-solving skills 

while maintaining the number of engineering concepts taught in a course and student 

understanding of fundamental engineering principles. This will be accomplished by using an IC 

to facilitate PBL. This instructional framework is being implemented in a Heat Transfer 

mechanical engineering course. Screen-capture video lectures, tutorials, and classic homework-

style example problems will be moved outside of the classroom. In-class time will be used 

primarily to solve authentic engineering problems supplied by industrial partners. The IC will be 

supported by experimental data, engineering reports, worked example problems, and vendor 

specification sheets, which will be available to students in a web-accessible repository of 

resources.  

Specifically stated, the three project goals are to: 

1. Develop and implement an instructional framework using an Inverted Classroom to 

facilitate Problem-Based Learning. 

2. Evaluate the effectiveness of this instructional framework on student performance and 

attitudes. 

3. Disseminate the new framework and teaching resources through publications, presentations, 

workshops, collaborations, and online portals. 

Implementation 

The instructional framework will be developed and then tested in a Heat Transfer course. The 

framework will be loosely based on Bloom’s Taxonomy. By inverting the classroom, knowledge 

and comprehension will be attained through videos and other on-line resources outside of the 

classroom; application, analysis and synthesis will be attained through PBL using authentic, 

open-ended engineering problems. The project is being implemented in two phases over a two-

year period. 

Phase I: Establishing a control for the study and developing curricula 

During the first phase of the project, resources needed to support the proposed instructional 

framework will be developed and a baseline for testing the framework will be established.  

The PBL activities will be developed with input from partners from various industries including 

an HVAC consulting firm, process engineering consulting company, and a medical device 

company.  PBL activities will then be vetted by academic partners at Bucknell University  and 

the University of Washington’s Center for Engineering Learning and Teaching (CELT).   

Learning resources, used by students as they solve the PBL activities, will include short screen-

capture videos of the instructor explaining heat transfer topics. The videos will be created using 

PowerPoint with a Microsoft Surface tablet and Camtasia software. Additional resources will 

include vendor specification for heat transfer equipment used in the authentic problems, fluid and 
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material properties, CFD tutorials, peer-reviewed research articles, example problems and lab 

reports, on-line quizzes, and homework. Resources will be posted on the university’s learning 

management system (LMS), which provides support for rich content, such as videos, and is an 

ideal system for hosting the repository of learning resources and tracking usage. These resources 

will be designed with the input from our academic partners so that they can be directly used by 

other institutions. 

In the first year of the study, the heat transfer will be taught as a traditional course. This will 

serve as the control for the study and provide a reference for comparison with an IC course 

taught in the second year. The heat transfer course provides students theoretical knowledge of 

conduction, convection, and radiation and practical skills necessary to design and analyze heat 

transfer systems, using a classical textbook
14

. Heat Transfer is taught in the junior year over a 10-

week quarter. The course is taught in three 65-minute classes per week with a 90-minute 

laboratory session once per week. Table 2 lists the course topics covered in the course.  

 

Table 2: Heat Transfer Topics 

Conduction Convection Radiation 

Conservation of energy Newton’s law of cooling Planck’s law 

Conduction rate equation Convective heat transfer 

coefficient 

Wein’s displacement law 

Heat diffusion equation Boundary layers Blackbody radiation 

Boundary and initial conditions External flow Radiation geometry 

1-D, steady-state conduction Internal flow Surface properties 

Conduction with thermal generation Natural (free) convection Radiation exchange 

Extended surfaces: fins and pins Heat exchangers: Basic design  

2-D conduction Heat exchangers: LMTD method  

Transient conduction Heat exchangers: 

Effectiveness/NTU method 
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Phase II: Implementing the Treatment and Evaluation  

In the second year of the project, the heat transfer course will be taught again by the same 

instructor. This time the course will be taught with an IC and PBL using the resources developed 

in Phase I. The course will be implemented in the following way: 

1. Open-ended, authentic engineering problems, designed by faculty and industrial partners, 

and evaluated by academic partners, will be introduced in class to provide motivation and 

context for self-directed learning assignments. See Table 3 for an example of an authentic 

engineering problem. 

2. Students will begin to solve the problems individually or in teams. The course instructor 

will facilitate a discussion among students and guide them to determine the knowledge they 

must gain and information they must gather to solve each problem.  

3. Students will learn the needed fundamental engineering principles outside of class time 

through the Inverted Classroom by identifying and watching 8-12 minute videos and 

studying other materials in the learning resource repository. Initially, students will be guided 

on which on-line resources to use to master a particular topic. Eventually, they will be 

expected to search this repository to identify resources without guidance from the instructor. 

This scaffold approach will help to develop students’ ability to self-direct their learning. An 

online quiz associated with each topic will encourage students to watch the videos and study 

other database materials in preparation for PBL sessions and quizzes and exams in class.  

4. The open-ended authentic problems will be designed to build on and reinforce student 

knowledge acquired from the Inverted Classroom. The problems will be of incremental 

difficulty and scheduled to give students time to learn required theories and techniques 

outside of class time.  

5. In-class activities will also include occasional mini-lectures, demonstrations, and 

questions/answer sessions to correct student misconceptions and build upon knowledge 

acquired from self-directed learning. In class quizzes/exams will be given periodically to 

assess the engineering fundamentals. 
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Table 3: An authentic problem with learning objectives and on-line resources 

 

Assessment goals 

A key component of this project is the research measuring the effect of the teaching framework 

on student self-directed learning and problem solving, understanding of fundamental engineering 

principles, and knowledge of and attitudes towards the engineering profession. Research 

questions (goals), through the perspective of the Inverted Classroom and Problem-Based 

Learning, are: 

1. Do students complete the same amount of material as in a traditional class? 

2. Is student performance on traditional quizzes and exams the same or better? Additionally, 

do women and minorities perform as well or better? 

3. Do students learn enough information outside of class to enable the IC? 

4. Do students "invest in" (i.e., spend time on) the right information? 

5. Do students generate solutions that are more workable and less error-filled? 

6. Do students improve their problem-solving approach? 
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Cells and tissue are sensitive to heat and will die if they become too hot. The time for 90% of 
cells to die at 46degC is approximately 10 hours while at 70degC is approximately 1 minute. 
The time temperature curve for cell death has been researched and follows an Arrhenius 
equation. Some medical devices capitalize upon this fact and attempt to selectively heat tumor 
tissue to inactivate the malignant cancer cells. If a tumor that is 2 cm in diameter is heated with 
electrical energy, emanating from a probe in the center of the tumor that is 2 mm in diameter, 
how much electrical power is needed to inactivate (90% cell death) the tumor?  

Industrial Partner: Spiration Inc. (d.b.a. Olympus) 
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Student will be able to:  

1. Identify necessary inputs to the systems  

2. Research and understand appropriate Arrhenius curve for the system 

3. Research thermal properties for cells  

4. Conduct an energy balance on the system 

5. Determine power needed to inactivate the cells 

6. Compare times to inactivate the cells for different inputs 

7. Calculate heat transfer to surrounding tissue 

8. Compare calculated results to experimental data supplied by industrial partner 
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Video Topics: 

1. Conservation of energy  

2. Conduction with thermal generation 

3. Transient heat transfer 

Support Information: 

1. Example problems 

2. Peer-reviewed research article 
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7. Do students feel more confident and efficacious in their engineering skills? 

8. Do students believe that they have a better understanding of what working engineers do? 

9. Are students more interested in, committed to, and positive about their studies and/or their 

future careers? 

Assessment instruments to address each question are being developed during both phases of the 

project. 

Project status 

The project is currently in Phase I. A summary of project accomplishments to date follows. 

1. The heat transfer course was taught in spring 2014 using a traditional format. This will 

provide the control for the study.  

2. During the spring 2014 offering, detailed assessment data was collected on student 

performance and on what and when topics were covered. Student performance data includes 

student scores on all individual test and homework problem.  These will be mapped to 

specific course topics, see Table 2, and used as a baseline for comparing student learning in 

the traditional course versus the IC-PBL framework. 

3. Students’ ability to solve open-ended problems, when taught using a traditional method, was 

evaluated using design problems and student interviews.  This assessment tools was 

developed specifically for this projects.  For this assessment, students were assigned an 

open-ended design problem.  They were given a week to solve the problem.  The instructor 

acted as the client for the problem and so did not provide any technical assistance.  At the 

end of the project each student gave a five minute presentation to a panel of three faculty 

members. They were graded, using a rubric developed specifically for this assessment. This 

assessment was implemented twice in the traditional course – at week three and at week 

eight (in a 10 week quarter).  In phase II this assessment will be repeated in the IC-PBL 

course. Data will be used to determine differences in students’ ability to solve opened-ended 

problem. 

4. Students in the traditional course completed the Heat and Energy Concept Inventory (HECI) 

test
15

. This test is designed to evaluate the following four concepts: a) temperature vs. 

energy, b) temperature vs. perceptions of hot and cold; c) factors that affect the rate vs. 

amount of heat transfer; d) thermal radiation. Data from this assessment will be compared 

with test results from students in the IC-PBL course and used to determine differences in 

student’s understanding of basic heat and energy concepts. 

5. Three original assessment tools were developed and applied end-of-term to: a) discern 

students’ understanding of real-world engineering activities. b) measure students’ interest in, 

commitment to, liking in, and identification with engineering programs and careers, and c) P
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measure students’ confidence and efficacy in their engineering skills. Data from this 

assessment will be compared with test results from students in the IC-PBL course. 

6. Learning resources, PBL activities and additional assessment instruments are in 

development.   

Plans for Phase II  

Phase II of the project will begin with implementation of the IC-PBL in the heat transfer course 

in spring 2015.  Following the  implementation and evaluation (described above) the faculty will 

disseminate learning resources, authentic problems, design problems, in-class demo’s, as well as 

assessment tools through workshop(s), conference and journal publications.   

Summary 

The goal of this project is to develop an instructional framework that addresses students’ ability 

to solve open-ended design problems and their knowledge of fundamental heat transfer topics. 

The framework will use an Inverted Classroom format to disseminate fundamental course 

concepts, freeing class time for Problem Based Learning activities. The project will study this 

new framework in the context of a junior level heat transfer course. Currently the project is in the 

first phase. The heat transfer course has been taught using a traditional format.  This will serve as 

a baseline for the study.  Learning resources, a description of PBL activities and assessment tools 

will be completed by June 2015. At that time initial results from the second phase of the project 

may also be available.  The anticipated completion date for the project is the fourth quarter of 

2015. 
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