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Introduction  
 

Information Theory is a field derived from a seminal paper by Shannon[1] discussing the 
uncertainty extant in communication channels. We cover the details in the theory section but this 
paper focuses on a measure known as the mutual information. This measure, derived from 
Shannon’s information entropy - a measure of uncertainty in a random variable - is the 
information gained with respect to one random variable given knowledge of another. In a sense, 
this measures the dependency between two random variables.  
 

We consider this notion of mutual information as a way to measure the dependency 
between variables of interest in the Multiple-Institution Database for Investigating Engineering 
Longitudinal Development (MIDFIELD) educational database among various cohorts of 
students. In particular we focus on how dependent the last term and last GPA are on the number 
of major switches done in an arbitrary pathway through a university. These measures can provide 
a framework to guide MIDFIELD drilldowns and data analytics —e.g. clustering using mutual 
information as a metric and Bayesian network analysis.  
 

To the best of our knowledge information theory has not been fully explored in the 
education pathway space. We focus our literature review on theoretical papers that demonstrate 
the effectiveness of mutual information at supplementing analyses in other fields while drawing 
a bridge to ours. We then provide a theoretical foundation for our analysis before its performance 
and subsequent delineation.  
 
Literature Review  
 

One of the main utilizations of mutual information in data science is in the broad field of 
features selection. This involves selecting a group of the most relevant explanatory features from 
potentially thousands of candidate variables and the myriad combinations thereof; the aim is to 
provide a highly explanatory set of features without risking over-fitting the data. Work done by 
Fleuret[2] demonstrates this technique by using mutual information as a features selection 
criterion in a fast acting algorithm. Using that and a simple naïve Bayes model he is able to attain 
results bordering on state-of-the-art just by pruning the domain space. Given the sheer volume of 
potentially important variables that could describe major progression this technique demonstrates 
value in pruning features on any level of study.  
 

A feature selection optimization paper by Brown and his colleagues[3] further solidifies 
the utility of such a measure. They demonstrate that many of the selection criterion that exist for 
feature selection are in fact derivative of an optimization problem; in particular, this is the 
maximization of the likelihood function which is related to maximizing the mutual information 
between sets of variables. Their paper mainly focused on dealing with this criterion for small 
scale data; for large scale data some of the variability issues do not exist.  
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Moving into some applications, Tourassi and company[4] use mutual information criterion 
for aiding in disease diagnosis via medical image interpretation. Along a similar biological line, 
work done by Steuer and his team[5] demonstrate various approaches to the estimation of mutual 
information. In the latter work they look at both discrete and continuous approximations of 
mutual information, finding that the approximations may lead to discrepancies in the results. We 
will discuss how this affects our study later. The work of Liu[6] applies mutual information to the 
education space, albeit in the sense of developing tutoring programs. Using Bayesian networks 
as a framework and comparing various methods of relevance metrics, he finds that the mutual 
information measure performs best at the task of student classification in his testing simulation.  
 

Though we have not exactly arrived at looking at larger patterns of student movements, a 
clear pattern of application has emerged. A few of the papers[3-5] in the field have shown that 
using mutual information as an underlying measure of variable relevance vastly improves 
classification models. Incorporating such a framework into education analytics would provide a 
solid baseline for any mathematical model being considered. 
 
Theory  
 

Let ܺ, ܻ denote two random variables. A pertinent question regarding said variables is 
measuring their dependence upon each other. One way to describe this measure of dependence is 
by exploiting the concept of information entropy. As defined by Shannon[1] the entropy of a 
random variable can be expressed by the following quantity:  

 
ሺܺሻܪ  ൌ െ logሺሻ



 

 

    (1) 

 
Under this definition we often utilize the base two logarithm in order to provide a 

dimensionless unit of measure—though in the case of communication channels this is often 
prescribed as bits. , then is the probability of event ݅ given that ݅ is located within the event 
space of our random variable. Intuitively, this is a measure of the uncertainty around specifying 
the random variable ܺ.  
 

We may also define a quantity known as the conditional entropy between two random 
variables. Formally this can be denoted as:  
 
ሺܻ|ܺሻܪ  ൌ െሺݔ, ሻݕ log൫ሺݔ|ݕሻ൯

௬∈௫∈

 

 

   (2) 

 
This quantity, much like the regular delineation of entropy, has an intuitive 

understanding: it is the measure of uncertainty of specifying the random variable ܻ given 
knowledge about the random variable ܺ. 
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A reasonable intuition for considering the effect that conditioning on knowledge has on a 

random variable would be to take the difference between the entropy and conditional entropies, 
i.e. ܪሺܺሻ െ  ሺܺ|ܻሻ. This would be a measure of the loss of uncertainty in ܺ given ourܪ
knowledge of ܻ. This is shown to be equivalent to the relative entropy between the joint and 
product distributions of ܺ, ܻ.[7] Hence, we define:  
 
 

;ሺܺܫ ܻሻ ≔ ሺݔ, ሻlogሺݕ
,ݔሺ ሻݕ

ሻݕሺሻݔሺ
ሻ

௬∈

ൌ ሺܺሻܪ െ ሺܺ|ܻሻܪ

௫∈

 

 

(3) 

 
We refer to this quantity as the mutual information between the random variables ܺ, ܻ; if 

this mutual information is zero it effectively means the random variables are independent since 
no amount of uncertainty in one is reduced by knowledge of the other. We can hence use this as 
a surrogate to measure the dependence between sets of random variables, analogous to Pearson’s 
coefficient except generalizable over all probabilistic relationships.  

 
Data and Design 
 
 As aforementioned, we employ the MIDFIELD database for our analysis. MIDFIELD 
The data contain 871,741 records of first time in college (FTIC) students at eleven partner 
institutions, covering over 13% of the United States’ engineering students. We clean the data by 
removing institutions that operate on a trimester schedule and excise transfer students. We cap 
the number of major changes in a path at 8 and the last term in the system at 23 to remove 
outliers. This leaves us with ܰ ൌ 499,188	student records to analyze.  
 
 From this data we select three cohorts to analyze: the full set of students; the subset of 
students who were only engineering students through their time in university ( ாܰ ൌ 123,101); 
and the students whose final group designation through their time in university was engineering 
( ܰ ൌ 103,148ሻ.	 
 
 For each cohort we consider three subsets of interest: the entire space; the space of those 
students who graduated; and the space of those students who failed to graduate. Let ܵ denote the 
number of major switches in a single observation. For each cohort and each subset of interest we 
compute the mutual information using equation (3) between ܵ and the following two variables: 
the final GPA of the student (denoted ܩ); and the final term of the student (denoted ܶ). This will 
allow us to compare, for each subset, how knowledge of major switching affects the uncertainty 
we have in assessing the final GPA and final term of a given student. As the database has been 
presented such that there are equal rates of graduated and failed to graduate students in each 
cohort the data are comparable.  
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 All computations were performed in the R programming environment[8]. The package 
“entropy”[9] was loaded for convenience in calculating the mutual information as delineated by 
equation (3).  
 
Caveats  
  
 An issue that arises in computational studies using mutual information is in the 
estimation of the quantity itself. Since we limited the number of major switches to 8 through the 
data cleaning we may treat ܵ as a categorical variable. In a similar light we may also treat ܶ as a 
categorical variable. We may hence exactly compute the mutual information between the two 
variables using equation (3) directly. Tourassi[4] refers to this as the “histogram” method since 
the data may be directly binned and the random variable naturally split. An illustrative 
computation will be provided in the analysis section.  
 

An issue arises when considering the continuous variable ܩ. Steuer[5] notes that the 
histogram method is still often used in this setup for some selected split on the continuous 
variable in question but that this may encounter systematic errors in estimation, proposing the 
use of kernel density estimators to correct for this issue. Kraskov[10] also identifies this issue in 
mutual information estimation, noting that the optimal binning size for convergence is difficult. 
His paper suggests a correction using k-nearest neighbors to compute mutual information, noting 
its use in information theoretic computation before.  

 
When considering these issues we note that, in the above papers, much of these 

considerations were made when the data were unbalanced and, in particular, small. As we have 
at least 50,000 observations in each of our sets of study we eschew utilizing a nearest neighbor or 
kernel density method and instead bin the last GPA until any further binning produces empty 
bins.  

 
To further justify this while addressing another concern of Tourassi[4], we check the 

proportion of students in each cohort who switched majors a given number of times. If they are 
similar then the discrete approximation of the continuous grade variable is more likely to 
converge. Moreover we will demonstrate that our data cohort have similar proportions and are 
hence comparable. The results are provided in Table 1.  

 
 We note in the table that the data are somewhat balanced with respect to the number of 
major switches. Only engineers may have a different distribution as opposed to the other two 
cohorts. The zero proportions come from throwing out outlier values for major switches: these 
values caused errors in mutual information computation and were hence excised. As our data are 
large this will stabilize any discrete approximation of mutual information. We proceed to 
compute and compare the values noting there could be some discrepancies resulting from the 
only engineering cohort. 
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Major Switches  Full Cohort 
Only 
Engineers  Ended as Engineers 

0  5.69E‐01 6.30E‐01 6.88E‐01 

1  3.06E‐01 3.08E‐01 2.42E‐01 

2  9.44E‐02 5.52E‐02 5.66E‐02 

3  2.40E‐02 6.53E‐03 1.09E‐02 

4  5.40E‐03 5.36E‐04 1.82E‐03 

5  1.05E‐03 5.69E‐05 3.59E‐04 

6  1.74E‐04 0.00E+00 6.79E‐05 

7  4.21E‐05 0.00E+00 9.69E‐06 

8  1.20E‐05 0.00E+00 0.00E+00 

Table 1: Proportion of observations in a cohort broken up by major switches  
 
Analysis 
  
 Let’s consider a sample computation of the mutual information between ܵ and ܶ for the 
full cohort of students. We opt for our analysis to use the natural logarithm for computation; 
hence our information entropy units will be “nats”. The choice of units is arbitrary as the mutual 
information is scale invariant.  
 
 Our first task is to create the bins. Since major changes and last term are both discrete the 
bin sizes are natural. We then construct a frequency of table giving us the number of 
observations that occur for a given major switch given it was their last term in the university 
system. Table 2 shows the discovered contingency table for this example.  
 

 
 

 
Table 2: Frequency Table for Major Switches vs Last Term in the Full Cohort of Study 

Major Switches x Last Term 1 2 3 4 5 6 7 8 9

0 0.057187 0.096106 0.045452 0.043827 2.69E‐02 2.59E‐02 2.31E‐02 6.52E‐02 5.01E‐02

1 0 0.00997 0.010914 0.020119 1.43E‐02 1.64E‐02 1.50E‐02 3.37E‐02 3.84E‐02

2 0 0 0.000777 0.003089 3.17E‐03 4.40E‐03 4.32E‐03 1.00E‐02 1.16E‐02

3 0 0 0 0.000196 4.41E‐04 7.69E‐04 1.09E‐03 1.98E‐03 2.76E‐03

4 0 0 0 0 5.21E‐05 6.81E‐05 1.70E‐04 4.01E‐04 5.87E‐04

5 0 0 0 0 0.00E+00 8.01E‐06 2.20E‐05 6.81E‐05 8.41E‐05

6 0 0 0 0 0.00E+00 0.00E+00 0.00E+00 4.01E‐06 8.01E‐06

7 0 0 0 0 0.00E+00 0.00E+00 0.00E+00 2.00E‐06 0.00E+00

8 0 0 0 0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

10 11 12 13 14 15 16 17 18 19 20 21 22 23

4.62E‐02 2.74E‐02 1.90E‐02 1.30E‐02 8.76E‐03 6.07E‐03 4.55E‐03 2.96E‐03 2.48E‐03 2.06E‐03 1.28E‐03 7.81E‐04 5.45E‐04 3.29E‐04

4.17E‐02 3.07E‐02 2.33E‐02 1.61E‐02 1.15E‐02 7.56E‐03 4.96E‐03 3.42E‐03 2.87E‐03 2.05E‐03 1.22E‐03 8.71E‐04 5.19E‐04 3.47E‐04

1.41E‐02 1.17E‐02 9.30E‐03 6.80E‐03 4.59E‐03 3.27E‐03 2.34E‐03 1.62E‐03 1.15E‐03 7.79E‐04 5.15E‐04 3.31E‐04 2.68E‐04 1.54E‐04

3.57E‐03 3.30E‐03 2.90E‐03 2.05E‐03 1.57E‐03 1.03E‐03 7.69E‐04 5.35E‐04 4.01E‐04 2.08E‐04 2.00E‐04 1.08E‐04 9.82E‐05 6.01E‐05

8.17E‐04 7.93E‐04 6.49E‐04 5.87E‐04 3.71E‐04 2.56E‐04 2.04E‐04 1.38E‐04 1.00E‐04 7.41E‐05 5.01E‐05 3.00E‐05 3.00E‐05 2.40E‐05

1.18E‐04 1.34E‐04 1.54E‐04 1.06E‐04 1.06E‐04 8.01E‐05 3.61E‐05 3.41E‐05 3.21E‐05 1.80E‐05 1.60E‐05 2.20E‐05 4.01E‐06 4.01E‐06

1.20E‐05 2.40E‐05 2.80E‐05 2.80E‐05 1.20E‐05 1.40E‐05 1.40E‐05 1.00E‐05 4.01E‐06 2.00E‐06 6.01E‐06 4.01E‐06 2.00E‐06 2.00E‐06

2.00E‐06 8.01E‐06 4.01E‐06 4.01E‐06 4.01E‐06 4.01E‐06 2.00E‐06 2.00E‐06 2.00E‐06 2.00E‐06 2.00E‐06 0.00E+00 2.00E‐06 2.00E‐06

4.01E‐06 0.00E+00 2.00E‐06 2.00E‐06 0.00E+00 0.00E+00 0.00E+00 2.00E‐06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.00E‐06
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 Once we have these tables we may compute the mutual information. Using equation (3) 
we have a natural binning for the computation of the value ܫሺܶ; ܵሻ, the relative change in 
uncertainty of last term given knowledge about major switches. We find for our example that 
;ሺܶܫ ܵሻ ൌ 0.111103, suggesting that knowledge of the student’s history of switching majors 
reduces the uncertainty in determining the last term.  
 
 We proceed in this way to find mutual information values for the cohorts and subsets 
described in the Data and Design section. The results are presented in Table 3.  
 

 MI  Full Cohort  Only Engineers 
Last Group 
Engineering 

Whole Space  I(T;S)  0.111103 0.083926 0.087116

  I(G;S)  0.031648 0.031923 0.031516

Did Not 
Graduate  I(T;S)  0.14089 0.113506 0.102177

  I(G;S)  0.031166 0.035844 0.035115

Graduated  I(T;S)  0.028349 0.03692 0.040165

  I(G;S)  0.018705 0.019646 0.020513

Table 3: Mutual Information Values for the Three Cohorts 
 

 We compute the mutual information between last term and major switches, ܫሺܶ; ܵሻ, and 
the mutual information between last gpa and major switches, ܫሺܩ; ܵሻ, and compare across our 
desired cohorts. The whole spaces indicates that the entire set was analyzed with the double lines 
separating this from the analyses done on the graduated and failed to graduate subsets.  
 
Discussion  
 

The values presented in Table 3 give us a measure of the decrease of uncertainty last term 
and last GPA with respect to the number of times a student switched majors. In each cohort we 
notice that, at most, our uncertainty with respect to the last GPA decreases at most by ~0.032 
nats. Compared to last term this seems to suggest that the number of major switches and the last 
GPA are not dependent variables. Furthermore this reduces significantly if we only consider 
those students who graduated. In each cohort this value is ~0.02 nats. This suggests that other 
factors in student progression have more influence in determining final GPA, especially for those 
students who graduate.  
 

In addition, it would seem that for each cohort, the graduated subset has drastically lower 
values of mutual information than for any other subset. This is especially interesting when 
noticing that, across each cohort, the mutual information between the whole space and the subset 
that failed to graduate are approximately equal. This suggests that studies that utilize major 
switching should not that there appear to be differences in the between-variable relationships for 
those students that graduate and those that fail to graduate.  
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Specifically, we see that major changes reduce the uncertainty with regards to last term 
more for students who fail to graduate than for students who graduate. This reduction in 
uncertainty is less for the only engineering and left in engineering cohorts across the whole 
space. In the graduated subset, there seems to be more of a dependency between last term and 
major changes compared to the full cohort. More interestingly, before the split the mutual 
information between last term and major switches for the engineering cohorts were ~0.085 nats 
but jumped above 0.1 nats when only considering those that did not graduate.  
 
Conclusions 
 
 We computed the mutual information between the last term/last GPA and the number of 
major switches for students in the MIDFIELD database across subsets of cohorts. We found that 
last GPA and number of major switches do not appear to share many dependencies in all cases 
while there does appear to be some relationship between last term and the number of major 
switches. This trend changes when splitting the cohorts between graduated and failed to 
graduate: it remains the same for those that fail to graduate but last term and major switches 
appear to be more independent for those students that graduate.  
 
 We note that further study on MIDFIELD using concepts of mutual information theory 
will require more robust computation for continuous variables that address the approximation 
issues mentioned by Steuer[5]. Furthermore, a framework for testing the significance of these 
values should be established for statistical completeness.  
 
 Aside from comparison, statistical robustness provides a useful vehicle for model 
selection in the MIDFIELD and other data spaces. Steuer notes[5] that the mutual information can 
also be used as a sort of sanity check for Pearson’s correlation coefficient with respect to linear 
relationships. We may hence use this measure with Pearson’s coefficient to assess non-linearity 
between random variables in the aforementioned data. This would codify which variables are 
linearly related and which require nonlinear models when looking at major progression.  
 
 Our results demonstrate that there may exist subpopulations in MIDFIELD of students 
who graduate and fail to graduate. These subpopulations seem to exist among all our cohorts. 
Our computation of mutual information demonstrates that the dependencies between the same 
variables change over this cohort. This in turn shows the value of mutual information: before 
drilling down into the data we have identified, over a uniform set of variables, the presence of 
subpopulations with different statistical behavior. Future work can explore this phenomenon 
through descriptive analytics while using the mutual information itself as a metric for its 
analyses.  
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