
Paper ID #12960

Microcontrollers for Non-Electrical Engineering Students - Do We Need to
Teach Assembly Language?

Dr. Shouling He, Vaughn College of Aeronautics & Technology

Dr. Shouling He is an associate professor of Engineering and Technology at Vaughn College of Aero-
nautics and Technology, where she is teaching the courses in Mechatronics Engineering and Electrical
Engineering Technology. Her research interests include modeling and simulation, microprocessors and
PLCs, control system designs and Robotics. She has published more than 45 journal and conference
papers in these research areas.

Dr. Yuhong Zhang, Texas Southern University
Dr. Fangyang Shen, New York City College of Technology (CUNY)

Fangyang Shen received his Ph.D. from Auburn University. He had fifteen years’ research and teach-
ing experience in wireless networks, computer education and high performance computing. He had four
years’ experience as a computer engineer. He is currently a faculty at New York City College of Tech-
nology (CUNY) and published over thirty journal and conference papers. He also served as guest editor
and associate editor for Journals, such as Parallel Computing and Computer and Electrical Engineering
and chair for multiple international conferences. Dr. Shen is an engineering technology and computer
education expert with global view.

c©American Society for Engineering Education, 2015

P
age 26.1151.1

Microcontrollers for Non-Electrical Engineering Students - Do

We Need to Teach Assembly Language?

Abstract

Nowadays, most engineering departments offer microcontroller (or microprocessors) related

courses due to the broad applications of computers. For Electrical and Computer Engineering

(ECE) or Electrical and Computer Engineering Technology (ECET) department, students nor-

mally take two or three courses to learn microcontrollers (or microprocessors), such as assembly

language programming, embedded system designs, computer interfacing and computer organiza-

tion. However, for a non-ECE program, such as Mechanical Engineering, Manufacturing Engi-

neering or Mechatronics Engineering program, students most likely only take one Microcontrol-

lers (or Microprocessors) course. Then, teaching non-ECE students from the architecture of a

microcontroller to broad applications in both low-level and high-level programming languages

can be very challenging. In this paper, we present a unique approach that has been applied in the

Microcontrollers course in the past few years. We have limited the content for the exercises in a

low-level language, i.e. assembly language, in (1) understanding how the machine code works,

(2) comprehending the flow of control for a high-level language in a real-time system, e.g. the

time delay is generated by multiple loops, the assembly language is used to demonstrate how it

works, (3) the needs for a microcontroller to use hardware architecture, such as stack and inter-

face operations. The course schedule is in assembly language programming for about 30% of

time and 70% of time is in embedded C programming. The course has been taught this way for

Mechatronics Engineering students for three years. The result is very positive and encouraging.

The future improvement can consist of (1) making a list for the required knowledge for the

course, so that students can prepare themselves before they come to the class; (2) developing dif-

ferent levels of problems so that students can practice based on their levels.

P
age 26.1151.2

1. Introduction

Microcontrollers and microprocessors are playing an important role in a wide range of engineer-

ing applications. Engineers from many disciplines benefit from microcontrollers and micropro-

cessors in solving engineering problems. In most colleges or schools of engineering, microcon-

troller courses are taught by the electrical and computer engineering programs and in some cases

by mechanical or mechatronics engineering programs. Traditionally, the course focuses on

teaching assembly language programming since an assembly language is the mnemonic form of

the machine code. An instructor can systematically discuss the organization of a microcontroller

(or microprocessor), i.e. ALU, CPU, data flow, registers, and memory, while students take exer-

cises in the assembly language to better understand system architecture of the microcontroller (or

microprocessor). Further, in an advanced course, such as embedded systems or computer inter-

facing, a high-level programming language, such as embedded C, will be taught with applica-

tions using microcontrollers. However, for non-electrical and computer engineering students,

since their primary courses are in their professional areas such as mechanical, mechatronics or

manufacturing engineering, etc, the course credits for them to learn microcontrollers, embedded

systems or even high-level programming language are very limited. Under the circumstance,

teaching the microcontrollers (or microprocessors) for non-electrical engineering students has

several challenges.

The first challenge is in the hardship to cover so many types of microprocessors and microcon-

trollers and various programming languages within a limited amount of time during a semester
1
.

The second challenging factor is in students possibly having different interests and knowledge

backgrounds for microcontrollers (or microprocessors)
2
: while the majority of students have not

been exposed to any microcontrollers (or microprocessors), some students have already pos-

sessed advanced programming experience from high school Robotics lessons or pure hobbies.

Both types of students might feel that an assembly language is not quite attractive: the former

students may not be able to follow the problem solving approach in digital electronics and mi-

croprocessors so quickly and the latter students couldn't see the direct help to solve some ad-

vanced problems, such as programming smart phone or tablet applications. Especially, from the

professional development point of view, when non-ECE engineering students come to a Micro-

controller course, they are anticipated to effectively solve problems in their professional areas,

rather than a deep understanding of the structure inside a microcontroller (or a microprocessor).

Therefore, as educators, we have to ask the problem: is the traditional approach to teach the Mi-

crocontrollers (or Microprocessors) course adequate for non-ECE engineering students?

From a practical perspective, assembly languages are seldom used to solve problems in the real

world since it is very easy to make bugs and quite difficult to find and debug them. Most indus-

trial employers may prefer engineering graduates to master at least one high-level programming

language for microcontroller applications. Hence, the further question is: do we need to teach

the assembly language of a microcontroller in the microcontroller course for non-electrical engi-

neering students? To answer it, we consider the following questions may assist us in approach-

ing a logical conclusion:

1) How does learning assembly language programming help students understand a microcon-

troller (or microprocessor)?

P
age 26.1151.3

2) If we need to choose some parts of an assembly language to teach, what topics should we

choose?

This paper will be organized in the following way: in the next section, we will analyze the mi-

crocontroller related courses taught in the Electrical and Computer Engineering program at a col-

lege where one of the authors was teaching. Further, we will discuss how an assembly language

may help students understand microcontrollers and what topics we should teach using assembly

language. The third and fourth sections present the course layout, taught at Vaughn college, and

the evaluated results. Conclusion will be given in the fifth section.

2. Analysis on teaching a microcontroller course with or without an assembly language

 In terms of teaching an introductory microcontroller course without assembly language, the

Electrical Engineering Technology (EET) program at Purdue University has successfully taught

students using embedded C
3
. However, as far as our knowledge is concerned, there hasn’t been

found evidence of a university teaching purely embedded C in an introductory microcontroller

course in an ECE program. Furthermore, several microcontroller textbooks
4,5,6

 popularly used

in U.S. universities have covered both the assembly language and embedded C in almost all

samples, which really provides the flexibility for an instructor to choose what to teach. On the

other hand, due to the fact that too much information needs to be covered in an introductory mi-

crocontroller course, choosing proper topics to teach becomes very important.

To teach an assembly language in a Microcontroller (or Microprocessor) course, people working

in the area of embedded systems may provide the following reasoning:

1) Assembly language is the mnemonic form of machine language. For some hardware features,

for example, port access, an assembly language is the most efficient way to program a micro-

controller (or a microprocessor).

2) A simple rule of thumb, “90% of the time is spent executing 10% of the code”, has been gen-

erally known by computer engineers. Therefore, to complete a task with fully making use of

a processor, i.e. push it to the limits in terms of coding efficiency, cost, performance and

power consumption, an assembly language is still the best choice.

3) Learning assembly language can help students understand more about microcontroller struc-

ture
7
. Particularly, for instruction formats, the flow of control structure, the hardware stack

operations as well as the interrupts, an assembly language has to be used to show the archi-

tecture of a microcontroller (or a microprocessor) and do exercises.

For above arguments, we can analyze as follows:

1) Most modern embedded C compilers have already adopted bit-wise operations and memory

mapped IO. Therefore, in terms of port or pin access, majority embedded C language com-

pilers for a microcontroller (or microprocessor) have similar functions as the corresponding

assembler in its assembly language.

P
age 26.1151.4

2) An engineer in non-electrical and computer engineering major may seldom have the oppor-

tunity to independently develop a software package with time-to-market and cost efficient

constraints for a microcontroller program design. Particularly, with the rapid development of

computer industry, the coding efficiency for the memory size and CPU speed may become

less important compared to other design factors in manufacturing, mechanical or mechatron-

ics engineering areas.

3) It's widely acknowledged that learning assembly language can help understand how a com-

puter executes a program, how a control structure, such as for-loop and if-statement, can be

converted into machine code, how a real-time system is designed to satisfy the time con-

straint and as well as how an interrupted function works.

From the analysis, we can see that complete exclusion of assembly language from a Microcon-

troller course may not be a good idea. As educators in the area of Electrical and Computer Engi-

neering, we know that students need to learn digital electronics so that they gain the knowledge

of how a binary (or machine) code is generated. Assembly language is the mnemonic form of

the machine code, which is used to explain how a computer (hardware) executes a computer pro-

gram (software). Therefore, the elimination of assembly language may result in difficulty ex-

plaining the physical connection between computer hardware and software. However, limiting

the assembly language study only for students to understand how a computer works, we can save

a lot of time to enhance students' programming skills in a high-level language, such as embedded

C. From the point view of an educator, we consider the major difference between the assembly

language of a microcontroller and the embedded C language is that the former can be used to ex-

plain the working principle of a computer more easily and the latter can be exploited to solve en-

gineering problems more efficiently.

Table1 Course Topics for Assembly Language Programming and Embedded Systems

 Assembly Language Programming Embedded Systems

1 Introduction to Microprocessor & As-

sembly Languages
Introduction to Embedded Microcontroller

2 8086 Family Hardware Specification PIC16F Microcontroller Architecture

3 Memory and Bus Architectures Introduction to Embedded C Programming

4 Assembly Language Fundamentals Arrays, Pointers and Function Calls

5 Real Mode Addressing Port Operations and Interrupts

6 Stack and Procedures Timers and Timer 0 Programming

7 Interrupts: DOS Function Call and BIOS Timer1 and Capture/Compare Module

8 Conditional Jumps and Loops Timer 2 and PWM Module

9 High-Level Logic Structures Serial I/O, SPI and I2C

10 Arithmetic1: Multiplication and Division UART/USART Communications

11 Arithmetic2: Shift/Rotate Instructions

P
age 26.1151.5

Table 1 shows the course layouts to teach students in the ECE department assembly language

programming using the 8086 microprocessor and embedded systems using PIC16F microcontrol-

lers. For non-electrical engineering students, we are expected to combine the two courses and

provide both fundamental knowledge of microcontrollers and certain experience to apply the mi-

crocontroller to solve some practical problems in the real world. By our analysis, we can remove

the topics 9-11 in assembly language programing, and insert the topics 4-6 after the microcon-

troller architecture, which is the topic 2 in embedded systems. The advantage of the new course

topic layout is in students learning both microcontroller architecture in assembly language and

embedded C for some applications using the microcontroller. Thus compromising some topics in

microcontroller for embedded systems, such as the serial communication, in the course.

3. Microcontroller course taught for Mechatronics Engineering students

The microcontroller course for mechatronics engineering students at Vaughn college is sched-

uled in the first semester of junior year. The students at junior year standing have learned

MATLAB programming course and a C++ programming course. After several times of adjust-

ments, including careful examination of the program outcomes and the course objectives,

PIC18F microcontrollers, developed by Microchip Technology Inc
8
, are used for the Microcon-

troller course. The course topics are listed in Table 2.

Table 2: Course Topics and Lecture Hours Devoted to Each Topic

Week # Hours Topics

1 2 Microprocessor architecture and PIC18 microcontroller

2 2 PIC18 assembly language, directives, instruction formats

3 2 Branch, looping and time delay

4 2 The stack and function calls

5-6 4 Introduction to embedded C programming, data type and arithmetic op-

erators and bitwise operators, flow of control

7 2 Function calls and arrays in embedded C with interfacing a liquid crystal

display (LCD) module

8 2 PIC18 features and analog-to-digital (A/D) conversions

9 Course Review - Midterm Exam

10-12 6 Timer programming and interrupt programming

13-14 4 Capture-compare-PWM programming

15 Course Review - Final Exam

Table 3 shows the laboratory projects in the laboratory exercise sections, where the content of

laboratory project #3 is included in Appendix A. For the laboratory exercises, MPLAB Integrat-

ed Development Environment (IDE)
8
 as shown in Figure 1 is used to program the source code in

PIC assembly language and embedded C language. MPASM assembler and PIC C18 Compiler

are used to convert the source code into the corresponding machine code. For the implementa-

P
age 26.1151.6

tion, the EB006 V9 PICmicro microcontroller programmer board, developed by Matrix Technol-

ogy Solutions Ltd
9
, has been used to test and demonstrate the program (Figure 2). PIC Kit2 in-

circuit programmer
10

 is used to download the code into PIC18F microcontrollers, which is also

shown in Figure 2.

Table 3: Laboratory Projects

Lab No. Hours Topics

1 3 Introduction to MPLAB IDE, simple assembly program

2 3 Status register and time delay examination in assembly language

3 3 Function calls and the stack operation

4 6 Microcontroller hardware board and embedded C programming

5 6 LCD module Interfacing with PIC Microcontroller

6 6 ADC Conversion and analog signal display

7 6 Timer0 and digital clock

8 6 Interrupts and Timer0/Timer1 overflow interrupt

9 6 PWM module and DC motor control

Figure 1: MPLAB IDE
8

EB006 V9 PICmicro board is a low cost and flexible microcontroller programmer. This board

can be used with conventional microcontroller programs that generate hex code for the PIC fami-

ly, MPLAB, C compilers, etc. The board provides ‘clean’ access to all input/output lines on the

relevant PICmicro microcontroller device. These are presented on 9-pin D-type connectors: 8

bits and earth. A range of additional E-blocks boards can be plugged into these D-type connect-

ors to provide a rapid prototyping system for learning and development.

P
age 26.1151.7

Figure 2: EB006 V9 PICmicro microcontroller programmer board
9
 and PIC Kits2 programmer

10

As shown in Table 2 and Table 3, we only used first four weeks, i.e. one-third laboratory times,

to do the exercises for the PIC assembly language. The topics covered (1) machine code formats

with the opcode and operand; (2) status register for jump instructions; (3) implementing time de-

lay using jump instructions and calculating exact time delay in assembly instructions; (4) exam-

ining the hardware stack through the implementation of function calls.

After the first four weeks, we start to review C++ or MATLAB program for the flow of control

in a high-level language and introduce the port operations for PIC18F microcontrollers. Students

began to program in embedded C with bitwise operations and flow of control. In lab 5, students

are taught to wire an LCD module and display some text information on the module. Then, ADC

conversion and timer operations are introduced in lab 6 and lab 7. Lab 8 is devoted to interrupt

programming. Since students already know the stack operation, interrupt concepts are relatively

easier for students to accept. Finally, the laboratory exercises end by examining control of DC

motors using PWM signal and the basic concepts about capture and compare modes.

4. Result and Evaluation

For the class, a final project was assigned. Students individually choose the topics and complete

them in groups. In Fall 2014, students chose the following topics:

(1) Connect Four in a Digital Approach

Connect Four is a two-player game which uses a vertical 6×7 grid of 42 LEDs to the game

pieces. There are red and black pieces, one color for each player. Game pieces are dropped

down one column at a time, and the goal is to win by having four of the same color pieces

line up either horizontally, vertically or diagonally.

(2) An Armed Alarm System

The armed alarm system disables when the correct password is entered. If the wrong pass-

word is entered, the alarm sounds and warning lights will flash. Otherwise, a green LED light

will turn on to indicate everything is all right.

P
age 26.1151.8

(3) Digital Tachometer and Display

The device can detect a rotating speed of an object via an IR sensor. The microcontroller

counts the number of counts to calculate the RPM of the rotating object.

(4) Safety Storage System

The system is designed to ensure the safety of employees working in walk-in cold rooms at

-30˚C inside a freezer warehouse with the size of a football field. The safety storage system

can provide a supervisor with an employee’s location by means of an LCD display and an

LED signal.

As a result, 100% percent of students completed the project in embedded C program. In the final

exam, more conceptual problems in both assembly language and embedded C language were given.

100% students successfully passed the course examination. 87.5% of the students got very good

grades in solving the problems with the assembly language.

Mechatronic Engineering is a new program at Vaughn college, it received ABET accreditation in

Fall 2014. From 2012 to 2014, four groups of Mechatronics Engineering students have complet-

ed their capstone degree projects. All four groups of students have used one or two microcon-

troller in their projects, ranging from PIC18F microcontroller, AVR microcontroller, Arduino

Uno and Arduino Mega as well as other driver boards. Due to the solid knowledge background

of microcontroller architecture, they haven’t shown any difficulty in using other microcontroller

boards. Furthermore, due to the acquaintance with embedded C in the PIC microcontroller, they

were quickly and independently familiarized with the high-level language programming envi-

ronment of other microcontrollers and programs.

Student evaluation of the course is encouraging. Students have learned a lot from the course.

The knowledge of the assembly language, especially in embedded C language, helped them to

think about more projects for various courses. However, as we have expected due to the difficul-

ty of programming languages, the common complaint of students is the workload of the course,

particularly, students have to practice both assembly language and embedded C language. Most

students state that this course is the most intensive course in their semesters. One important im-

provement can be to make a list for the required knowledge for the course, which allows students

to prepare for the class in advance. The second improvement is to develop different levels of

problems so that students can practice based on their levels.

5. Conclusion

In this paper, we have discussed teaching a Microcontrollers course for non-electrical engineer-

ing students. The proposed coverage is based on the limited credits available and practical expec-

tation for the students in non-electrical engineering majors. Our goal is to make the microcon-

troller more practical without loss of essential knowledge necessary for students to learn from the

microcontroller course, i.e. making the microcontroller as a design tool to solve engineering

problems rather than spending considerable amount of time to learn assembly language pro-

gramming skills.

P
age 26.1151.9

Bibliography

1. A. F. Mondragon and A. Becker-Gomez, "So many educational microcontroller platforms, so little time!", The

119th ASEE Annual Conference & Explosion, San Antonio, Texas, June 10-13, 2012.

2. S. He, " Laboratory design for introductory course of microprocessors", 2013 IEEE Frontiers in Education

Conference (FIE), 2003.

3. R. H. Barnett, S. Cox & L. D. O’Cull, Embedded C Programming and the Atmel AVR. Delmar Learning, Clif-

ton Park, NY, 2003.

4. M. Mazidi, R. McKinlay, & D. Causey, PIC Microcontroller and Embedded Systems using Assembly and C for

PIC18, Prentice Hall, 2007.

5. B. B. Brey, Applying PIC18 Microcontrollers - Architecture, Programming , And Interfacing using C and As-

sembly, Prentice Hall, 2008.

6. H.W. Huang, PIC Microcontroller: An Introduction to Software and Hardware Interfacing", Delmar Cengage

Learning, 2007.

7. N. Salzman, P. H. Meckl, "Microcontrollers for mechanical engineers: from assembly language to controller

implementation", The 120th ASEE Annual Conference & Explosion, Atlanta, Georgia, June 23-23, 2013.

8. Microchip Technology Inc, www.microchip.com, accessed by Jan. 2015.

9. Matrix Technology Solutions Ltd, "E-block User Manual", www.matrixtsl.com, accessed by Jan. 2015.

10. Microchip Technology Inc, "PICkit
TM

2 Programmer/Debugger User's Guide", 2008,

www.microchip.com/pickit2, accessed by Jan. 2015.

P
age 26.1151.10

Appendix A An Sample of Laboratory Projects

Function Call and the Stack

This laboratory project familiarizes the students with the function call instruction and the stack.

References Textbook Chapter 3.2.

In this lab, we will learn how the stack works while a function call is executed. We will run single-step

and go through two programs using the MPLAB simulator.

Setup

[1] Turn on the personal computer and enter your folder.

[2] Create a new folder in C drive, C:\CoureName&Number_yourIntials\lab3 in which you

store all of your work.

[3] Create a new project named lab3 and then create a file named as lab31.asm. Type the fol-

lowing program. Select the menu item Project  Build All (Relocatable). You should see

a new output window in MPLAB IDE followed by “Build Succeeded” message.

Part1 - Execution of Call Instructions

[1] On the MPLAB IDE menu, select Debugger  Select Tool  MPLAB SIM menu item.

This specifies that the project will run in simulation mode, apart from any microcontroller

hardware.

;***

; Lab31.asm: The program calls the function DELAY two times to

; generate time delays.

;***

 list p=18F458 ;list directive to define processor

 #include <p18f458.inc> ;specific variable definitions

MYREG EQU 0x08

 ORG 0x0000

BACK MOVLW 0x55

 MOVWF PORTB

 CALL DELAY

 MOVLW 0xAA

 MOVWF PORTB

 CALL DELAY

 GOTO BACK

;--------- This is the delay subroutine --------------------------

 ORG 60H ; Subroutine started at 60H

DELAY MOVLW 0x3

 MOVWF MYREG

AGAIN NOP ; No operation,but take one instruction cycle.

 NOP

 DECF MYREG, F

 BNZ AGAIN

 NOP

 RETURN

 END

P
age 26.1151.11

[2] Select Configure  Configuration Bits menu item. The pop-up window should show that

the configuration bits are set in code, do not check it and set Oscillator as HS and

Watchdog Timer as Disabled. Close the Configuration Bits window.

[3] Select the Osc/Trace tab in the Debugger  Simulator Settings window. Set the Proces-

sor Frequency as 8 MHz. Click the OK button.

[4] Reassemble the file in the project by hitting F10.

[5] Select View  Program Memory menu item. Find the location of the main program and

the called program (subroutine). Explain the reason why the subroutine is placed at the

address 0×0050.

[6] Select the menu item View  Hardware Stack, which shows the stack and return address

window.

[7] Select the menu item View  Watch. This shows the values of selected SFRs and defined

variables (GPRs or Symbols). Now, highlight the SFR WREG and add it to the window.

Similarly, add the registers, PORTB, PCL and Status.

[8] Close the Project window and Output window by clicking the close sign on the up-right

corner of each window. Select the Window  Tile Horizontally menu item so that you can

see (1) the source code; (2) watched registers; (3) hardware stack; (4) program memory.

[9] Move your mouse in the source program and click it to activate the window and press F7 to

step through the program instruction by instruction. In the File Register window and

Watch window, notice the register at the Program Counter Low (PCL) register (at 0xFF9)

and the Stack. Fill the following table for the contents of the five registers after each in-

struction is executed.

Table A1: Stack Operation for Function Calls

Instruction\Register PCL The Stack (TOS)

MOVWF PORTB (Before the first call)

CALL DELAY

In the called program

NOP (After the BNZ AGAIN instruction)

RETURN

In the main program

MOVWF PORTB (Before the second call)

CALL DELAY

In the called program

NOP (After the BNZ AGAIN instruction)

RETURN

P
age 26.1151.12

[10] Now, reset the MALAB SIM by selecting the Debugger  Select Tool  None menu

item. Then, selecting the Debugger  Select Tool  MALB SIM menu item again. Step

into the call function (the first call) and observe the STATUS register.

(1) Do all instructions in the subroutine affect the STATUS register? Explain.

(2) If not, indicated the instructions that affect the STATUS register. What value is

stored in the STATUS register when the instructions that affect the STATUS register in

the function call are executed? Write down the values of the five flags, Negative, Over-

flow, Zero, Digital Carry and Carry after the following instructions are executed and

explain the reason.

 (a) DECF MYREG, F with the first loop, i.e. from MYREG = 3 to MYREG = 2:

 (b) DECF MYREG, F with the third loop, i.e. from MYREG = 1 to MYREG = 0:

Part2 - Execution of Nested Call Instructions

 [1] Create a new file and name it as lab32.asm. Type the following program to observe the

nested call. Add the register of TOS (Top-of-Stack) to the Watch window to see how the

stack pointer moves.

;* ;**

; Lab32.asm: A nested function call.

;**

 list p=18F458 ; list directive to define processor

 #include <p18f458.inc> ; specific variable definitions

 COUNT EQU 0x07

 MYREG EQU 0x08

 ORG 0x000

 MAIN MOVLW 0

 MOVWF COUNT

 BACK CALL DISPLAY

 GOTO BACK

 ;-------- Display subroutine -------------------------------------

 DISPLAY INCF COUNT, F

 MOVFF COUNT, PORTB

 CALL DELAY

 RETURN

 ;-------- Delay subroutine ---------------------------------------

 ORG 50H ; Subroutine started at 50H

 DELAY MOVLW 0x3

 MOVWF MYREG

 AGAIN NOP ; No operation, but take one instr. cycle.

 NOP

 DECF MYREG, F

 BNZ AGAIN

 NOP

 RETURN

 END

P
age 26.1151.13

 Table A2: Stack Operation for Nested Function Calls

Instruction\Register PCL The Stack Top-of-Stack

MOVWF COUNT

CALL DISPLAY

In the subroutine DISPLAY

MOVFF COUNT,

PORTB

CALL DELAY

In the subroutine DELAY

NOP (outside of the

AGAIN loop)

RETURN

In the subroutine DISPLAY

RETURN

When you finished your laboratory project successfully

1. Flag down the instructor.

2. Show your codes and results.

3. Have your instructor grade your lab.

4. Keep your program and lab handout for further study.

P
age 26.1151.14

