
Paper ID #13644

Project-Based Learning with Single-Board Computers

Dr. Joseph Daly Steinmeyer, Massachusetts Institute of Technology

Joseph Steinmeyer is currently a lecturer in the EECS Department at MIT. He obtained his BS in EECS
from the University of Michigan in 2008, and his MS and PhD (also in EECS) from MIT in 2010 and 2014,
respectively. His research interests currently center around neuroscience and engineering, educational
technology development, and STEM curriculum development at both the high school and college level.

c©American Society for Engineering Education, 2015

P
age 26.1272.1

Project-Based Learning with Single-Board Computers

Introduction

Project-based learning (PBL) has been shown to be effective in the STEM fields1,2. In
implementing PBL of Electrical Engineering and Computer Science (EECS) topics for
middle and high school-level enrichment programs, significant thought needs to go into
determining which sub-topics in the EECS field should be covered in a curriculum in
order to enable students to undertake projects of sufficient and satisfying complexity.
One solution is to focus exclusively on either the software (programming) or hardware
(sensors, circuits, etc.) side of EECS, having what amounts to either a computer science
curriculum or a circuit theory curriculum. In the last few years, however, we’ve been
focusing on in integrating both hardware and software engineering into EECS PBL at the
secondary level. We have been carrying out this work with classes of rising high school
seniors in a number of summer enrichment programs run through the Office of
Engineering Outreach Programs (OEOP) at the Massachusetts Institute of Technology. In
the last two years we have particularly been exploring ways of deploying single-board
computer platforms including the BeagleBone Black and Raspberry Pi as means of
providing a flexible, enriching, and open-ended project-based learning experiences that
provides significant exposure to both hardware and software development. In this paper
we will discuss the coursework infrastructure we developed along these lines for three
separate summer STEM enrichment programs: a six week program, a one week program,
and a three hour workshop. We follow this with some preliminary student feedback,
plans for expansion, and plans for quantitatively assessing the efficacy of the curriculum
in the long term.

The OEOP at MIT has run its Minority Introduction to Technology, Engineering, and
Science (MITES) program for the past forty years, serving rising seniors from across the
country coming from traditionally underserved and underrepresented backgrounds.
MITES is a six-week residential program where students take a number of courses
including calculus, physics, life sciences, humanities, and a project course. In the last five
years, the OEOP has expanded its outreach efforts through the creation of several
additional programs, including the Engineering Experience at MIT (E2@MIT), a one-
week residential program heavily focused on only a project course, as well as the MIT
Online Science, Technology, and Engineering Community (MOSTEC), a six-month
online curriculum with a one-week residential portion that includes STEM courses,
seminars, and other activities. Within each of these programs, we were tasked with
creating EECS-themed PBL curricula (a project course for MITES, the primary course
for E2@MIT, and a series of workshop activities for the residential portion of MOSTEC).
In addition we have created an online EECS MOSTEC curriculum with separate themes
that we detail elsewhere3.

Curriculum Design and Considerations

Starting with only the MITES project course in 2008, the EECS curriculum was initially
solely hardware-focused, with students learning basic circuit theory and creating projects

P
age 26.1272.2

composed of discrete components (resistors, capacitors, basic integrated circuits, etc.)
implemented on breadboards. Based on student feedback from these first few years, and
with the advent of two additional programs (the E2@MIT program and the MOSTEC
workshops), we began to integrate software elements, first utilizing the popular Arduino
platform in 2010 and then merging with single-board computers in 20134–6. As we’ve
added in this software engineering component, we’ve placed a priority in maintaining a
significant hardware aspect to all student work. This has necessitated streamlining of the
platforms and environments worked in by students to ensure a sufficient levels of
engagement. We’ve used several self-imposed guidelines as we developed the
curriculum:

• We’ve found an increasing number of our students come into our programs with
some prior exposure to robotics via either FIRST Robotics or other they have
been involved in7–12. We have therefore avoided using robotics as a vehicle of
STEM exploration and teaching. This ensures course material is new to all
students and it levels the playing field for the class so students without robotics
exposure aren’t at a disadvantage. By keeping the vehicle of EECS exploration
more generalized, it also allows students to pursue topics of interest to them, and
hopefully in the process ensure greater motivation for a broader range of students.
Music-based labs and final projects, for example, have been a popular class of
projects that students have pursued in the past.

• When working with single-board computers and Arduino (in the past), we
avoided the use of add-on pre-made boards (shields and capes) in order to
maximize the chance for component-level circuit analysis and design,
implementation, and experimentation. Breadboarding is a key component in the
curricula we develop, and final projects must involve some form of discrete
circuit component.

• We have emphasized the concepts of sensors, signals, and signal processing when
teaching programming and electronics. Many labs, homework exercises, and
activities involve interpreting signals generated by using sensors and circuits of
the student’s creation, interpreting those signals using programming, and making
design decisions based off of those interpretations.

• All laboratory exercises in the first half of the courses are designed to be carried
out in groups of two or three, and be significantly open-ended (see Tables 1, 2,
and 3). This prepares students for the open-ended final design project in the
second half of the course. In the MITES Electronics curriculum (long residential
program), student final projects take place over about two-and-a-half weeks and
are extremely open-ended, with students building projects of their own design
with few end-goals specified (other than it be “something they’ve always wanted
to build” and of sufficient complexity). In the shorter one-week E2@MIT
curriculum, loose project assignments are provided for them, however students
invariably customize and bend specifications throughout the design and
implementation process. In the three-hour MOSTEC workshops, projects are
similar to a one-day laboratory that would be found in the longer MITES and E2
programs, but are still left open-ended.

P
age 26.1272.3

Motivation for Single-Board Computers

We used the Arduino environment for several years in MITES and E2@MIT as well as to
a lesser degree in our first iterations of MOSTEC workshops5. Excellent overviews of
Arduinos exist in the literature13,14. In using Arduinos, we encountered several limitations
in the context of the courses we ran:

• Arduino programming relied upon external or student-provided computers for
programming. The courses we ran had to take place either in rooms with available
computers or require students to bring their own laptops. In either case time had
to be spent to prep the computers for running the Arduino Integrated
Development Environment (IDE), which in the case of student-owned laptops
would invariably come out of class time.

• Arduino programming had to be carried out in the Wiring programming
language/environment. In other courses both at and affiliated with MIT, we have
been teaching the Python programming language15,16, and we desired to
transfer/borrow this infrastructure and coursework into the STEM curricula
developed for these EECS courses.

Figure 1. Single-Board Computer Prototyping Platform.

We investigated using single-board computers new to the market in early 2013 including
the Raspberry Pi6, and the BeagleBone Black single-board computers as a solution to the
problems above with Arduinos. Samples of both computers were purchased, and we
developed experimental platforms similar to that shown in Figure 1 with a monitor,
keyboard, and mouse being directly hooked up to the computer. The single-board
computers could run their own operating system, with the intention that students would
interface with the computers input/output connections via hookup wires that would go to

P
age 26.1272.4

their hardware components implemented on a breadboard. The result was a completely
stand-alone development platform to be used by students that was uniform for the entire
class. This also allowed the courses to be taught more easily in multiple classroom
settings since the entire development environment was self-contained, requiring only
power outlets and Internet access.

In 2013, there were two major choices for single-board computers at very similar price
points: the Raspberry Pi and the BeagleBone Black17. From initial testing, the
BeagleBone Black appeared the better choice, due to the larger number of input and
output pins, and on-board integrated compatibility with analog and digital signals. In-
house benchmark tests run by us also showed the BeagleBone Black to run more quickly
than the Raspberry Pi when used in the self-contained prototyping platform in Figure 1.
Additionally at the time, Raspberry Pis were in short supply. We therefore settled on the
BeagleBone Black as the single-board computer of choice.

Curriculum Design (MITES and E2@MIT)

While the MITES and E2@MIT electronics programs differed significantly in overall
duration, with the former being five weeks and the latter being one week, they both
followed a similar curriculum path shown in Table 1 below. Because students in the
E2@MIT program focus almost exclusively on their project course and MITES students
spend roughly one-fifth of their time on the project course, the total amount of hours
devoted to the EECS course is very similar between the two programs. In 2014, total
student course time was tallied at approximately 40 hours for the E2@MIT program,
while for MITES the total time throughout the course was closer to 55 hours. Because of
these similarities, both courses cover similar amounts of material, however the number of
guided laboratory exercises was fewer in E2@MIT than in either iteration of MITES
(Table 3 vs. Table 4). In both courses, we chose to teach elements of software
engineering simultaneously with hardware engineering to immediately enable lab
exercises involving both types of activities.

For both MITES and E2@MIT, the first half of the course was built around lab exercises
devoted to developing and exploring hardware and software concepts techniques. During
this half of the course, students participated in an instructor-led discussion to introduce
concepts that were going to be encountered in lab that day. This portion of the class was
about twenty minutes for MITES and thirty minutes for E2@MIT. Following this,
students spent the remainder of the class (ninety minutes in MITES and three hours in
E2@MIT) carrying out hardware and software laboratory exercises with the single-board
computer platforms covering topics shown in Tables 2 and 3. Each lab was designed to
be about two-thirds guided with an open-ended final portion where students could pursue
a number of suggested projects expanding on the themes for the day or come up with
their own additional projects and modifications. An extract from one lab handout is
shown in Figures 2 and 3. Students were provided nightly homework sets that were
carried out in an online tutor environment (see discussion on Python below). Homework
questions focused more on filling in gaps of knowledge in programming, circuits, and
signals in preparation for lab work the following day.

P
age 26.1272.5

MITES E2@MIT Topics
Week 1 Day 1 Programming, Inputs, Outputs, Control
Week 2 Day 2 Programming Signals, Amplification
Week 3 Day 3 Feedback Control/Final Project
Week 4 Day 4 Final Project
Week 5 Day 5 Final Project

Final Day Final Day Final Presentations
Table 1. Overview of similarity between MITES and abbreviated E2@MIT programs

Lab Number MITES 2013 MITES 2014

1 Linux, Python I, Digital Outputs Linux, Python, Digital Outputs
2 Python II, Digital I/O Python II, Digital Inputs, Outputs
3 Python III, Signals Audio Amplification with Pygame
4 Motor Control, Amplification Audio Signal Analysis and Control
5 Motor Control, Feedback Motor Control, Amplification
6 Audio Amplification Light-Tracking Servo Control
7 Soldering and Circuit Assembly Light-Tracking Servo

Table 2. Comparison of Lab Topics in 2013 and 2014 MITES curricula

 Lab E2@MIT
 1 Linux Python I, II, Digital Inputs/Outputs
 2 Analog Inputs/Outputs, Amplification
 3 Audio Amplification, signal analysis, and Feedback Control

Table 3. E2@MIT Lab Topics

Final Projects (MITES and E2@MIT)

The second half of the MITES and E2@MIT courses were focused on designing,
building, and debugging a final project that incorporated concepts learned in the course.
A final presentation and demonstration of the projects in front of the entire MITES and
E2@MIT communities was carried out on the final day. Final projects varied slightly
between the MITES and E2@MIT EECS courses. In MITES, students are instructed to
create a final project of their choosing, which can take the form of any device that
interests them (determined in discussions with instructor to ensure feasibility). In
E2@MIT, groups collectively self-assign themselves to one of a number of bio-medically
themed projects, which they are then free to expand and customize. This is done because
of time constraints; in MITES students spend approximately a week out of class
brainstorming and researching ideas they would like to pursue, while in E2@MIT this
isn’t possible. Additionally, open-ended projects usually require the instructional staff to
acquire outside materials after a decision on a project has been reached. This isn’t
possible in the one-week timespan of the E2@MIT curriculum. In both cases, however
students are given significant freedom in what they actually deliver even if the project
goal has been assigned. A selection of projects created from the past two years is shown
in Figure 4 below with a brief overview of these are provided below. The type of single
board computer used (BeagleBone Black or Raspberry Pi is specified and discussed in
detail below) along with the year and specific program are listed.

P
age 26.1272.6

Figure 2. Extracted pages from

 Lab 2 in the Sum
m

er 2014 M
ITES EEC

S C
ourse (continued in Figure 3).

P
age 26.1272.7

Figure 3. Extracted pages from Lab 2 in the Summer 2014 MITES EECS Course

(continued from Figure 2).

• Response Time Game (BeagleBone Black, 2013 MITES, Fig. 4A): A game in
which the objective is to “shoot” at a series of illuminated points using a laser
pointer. LEDs serve as indicators and photoresistors serve as exposure detectors.
The user has to shoot an indicated target within a certain period of time. Failure to
do so results in loss of points. Successive rounds increase in speed and response
time.

• Electrocardiogram (Raspberry Pi, 2014 E2@MIT, Fig. 4B): A functioning ECG
built by the students and based off of an instructor-provided schematic. They then
experimented and created a program that tracked, filtered, and analyzed the
generated signal in order to estimate the patient’s heart rate. A programmed
threshold detector also generated an audio indicator of heart rate.

• Solar Charger (Raspberry Pi, 2014 E2@MIT, Fig. 4C): A solar-celled driven
capacitor charger as a proof-of-concept of a larger solar-powered battery charger
that could power a remote clinic. Students used the Raspberry Pi to track and
estimate power usage, charge time, and send messages via Twitter to report the
status of system.

• Robot with Object Avoidance (Raspberry Pi, 2014 MITES, Fig. 4D): A hybrid
project featuring an Arduino controlling an ultrasonic range finder and a
Raspberry Pi controlling a dual-motor robotic chassis. The robot was programmed

P
age 26.1272.8

to go forward towards a light source until encountering an object in its path
(determined through the ultrasonics) at which point it would execute an avoidance
routine specified by the students.

• Artificial Insect Eye (BeagleBone Black, 2013 MITES, Fig. 4E): As part of a
research project, students created a 64-element photo-sensing region using visible
light phototransistors. A program was written to control hardware to scan the
signals from all phototransistors and subsequently reconstruct a monochromatic
image in a text-based display. Frame rate was approximately 10 Hz.

• Model Water Monitored Water Supply System (Raspberry Pi, 2014 E2@MIT,
Fig. 4F): A functioning water supply system that would pump water up to an
elevated holding tank from a simulated underground aquifer. Water level was
monitored and tracked using sensors of the student design and water level and
pressure were maintained via programming in the Raspberry Pi.

• Dance Dance Revolution Clone (Raspberry Pi, 2014 MITES, Fig. 4G): A dance
pad, consisting of four pressure-sensitive switches. Students used elements of the
Pygame package as a starting point for developing a dance-move response game
complete with scoring and varying levels of difficulty.

Figure 4. Example Projects using BeagleBone Black and Raspberry Pi.

P
age 26.1272.9

All student projects involved significant hardware and software engineering components.
A brief overview of the program complexity developed by a number of groups is
included below in Table 4.

Group Num. of Lines of

All Code*
if/else

control
structure?

for, while
loops?

Function
abstraction?

Class
abstraction

1 42 Yes Yes No No
2 34 Yes Yes Yes No
3 253 Yes Yes Yes Yes
4 21 Yes Yes No No
5 88 Yes Yes Yes No
6 51 Yes Yes No No
7 33 Yes Yes No No
8 55 Yes No No No
9 60 Yes Yes Yes No

10 152 Yes Yes Yes Yes
11 76 Yes Yes No No
12 90 Yes Yes Yes No
13 38 Yes Yes No No

Table 4. A simple analysis of student programs written for their final projects.
*Estimated by ignoring large gaps in code.

Python Programming Language

Part of the motivation to move to single-board computers was to allow the use of Python
as the primary programming language15. We adapted an online teaching environment that
had previously been developed by Adam Hartz at MIT for one of its large EECS
introductory courses known as CAT-SOOP (CAT-SOOP is an Automated Tutor for Six-
Oh-One Problems)20. This learning environment provided a platform in which students
explored hardware and software concepts, answered questions, and tested code out in
preparation for labs on the following day (Figure 5A and 5B). While both the Raspberry
Pi and the BeagleBone Black come with Python preinstalled, in order to access and
interface with the two system’s hardware, we needed to create wrapper libraries simple
enough for students to use.

BeagleBone Black vs. Raspberry Pi

While we felt use of single-board computer-based platforms for lab exercises and PBL
was a success in 2013, we ran into several serious issues with the BeagleBone Black. The
BeagleBone Black was difficult for students to work with because it lacked clear labeling
of its connections. We resorted to attaching colored tape and providing hookup diagrams
customized for each lab exercise in order to streamline student experience as shown in
Figure 6. Second, the lack of readily accessible audio output from the board prevented
students from integrating audio or music into their projects (audio output only being
accessible via HDMI, and we could not generate a functional breakout of this due to time
constraints). Third, and by far the most frustrating, was the sensitivity of the BeagleBone

P
age 26.1272.10

(A) (B)
Figure 5. An web-browser accessible Python and engineering automated tutor, CAT-
SOOP, was adapted to provide lessons for students in (A) hardware and (B) software-
focused problems.

Figure 6. (A) BeagleBone Black Revision B, which were used for 2013 summer
programs (B) Example Pin diagram provided to students to assist in interfacing with
BeagleBone Black.

Black to external voltages. Because many labs and final projects interfaced the computer
directly to breadboarded circuits, ranging from simple devices such as LEDs, to complex
ones including coin-operated switches, we inadvertently created a laboratory environment
with board-incompatible voltages (greater than 3.3V). While not dangerous for the
students, this did lead to undesirable behavior of the BeagleBone Black computers,
ranging from sudden shutdown of the machine to permanent destruction of the entire

P
age 26.1272.11

board. In the summer of 2013, throughout all courses, we lost five out of ten BeagleBone
Black computers in such a way. While similar failure modes had been experienced
previously when we working with the Arduino platform, it was relatively easy to fix
since student programming work was saved on external computers, and the ATMega328
DIPs (preloaded with an Arduino boot loader) could be readily replaced on the Arduino
Duemilanove and Uno models that we used at a cost of approximately 5 USD. In the
case of the BeagleBone Black single-board computers, the surface mount nature of the
chips prevented repairs. Furthermore, all work by the students was lost and no longer
accessible due to the integrated onboard flash memory. This proved extremely frustrating
for several groups, particularly in the MITES program, where student Python programs
often were above 100 lines of code.

Improvements for 2014

For 2014, we adjusted pieces of the infrastructure to address issues from the prior year’s
implementation. Priority was centered on input/output protection of the computers. The
only suitable such board we could find was the Gertboard, intended for use with the
Raspberry Pi and designed by Gert Van Loo. The Gertboard is available at many hobby
electronics retailers that supply Raspberry Pis and assorted peripherals and can be
purchased for approximately 50 USD as of 201418,19. It can mount directly onto the
Raspberry Pi, however we chose to connect them using a 26-pin ribbon cable as shown in
Figure 7. This had the added benefit of providing some distance from the Raspberry Pi
and student electronics. In addition to providing input and output protection for the GPIO
pins, the Gertboard also came with an on-board digital-to-analog converter (DAC), a
dual-channel analog (ADC), an onboard ATMega328 (Arduino-compatible
microprocessor), and a single-channel motor driver. All of these devices could be utilized
through the selection of a series of jumpers placed on the board as well as a software
library provided by the developers. While adopting the Gertboard required switching
from the BeagleBone Black to the Raspberry Pi, the benefit of input/output protection
and additional features of the Gertboard were enough to justify rewriting our 2014
curricula to utilize the Raspberry Pi and Gertboard in spite of the significant additional
work it required.

In redesigning our labs for use with the Raspberry Pi/Gertboard, an immediate challenge
was how to deal with the complex jumper/hookup diagrams of the Gertboard necessary
for different functionalities. For example, to use a specific Input/Output (I/O) pin as a
digital output required several lines of setup code as well as the placement of a two wire
jumpers. This effectively protected the Raspberry Pi I/O from shorts and overvoltage
exposure, but proved far too difficult for students, especially at the beginning of a course
or in a time-constrained workshop, to implement. The solution to this problem was to
pre-wire Gertboards for each lab’s exercises and provide a pre-made software library that
would be imported in each day’s program skeleton provided to the students. For the
software distribution, all machines were either manually synchronized or linked to a Git
repository which allowed rapid distribution (either manually or by default at startup) of
current code distributions for the day’s assignments. For hardware setup, organization of
the jumper configuration was generally carried out by the course TA and instructor

P
age 26.1272.12

immediately before class began, taking approximately one minute per board. In the case
of MITES and E2@MIT, over the course of the labs, we spent small amounts of time
describing actual details of the Gertboard, and only focused on their specific workings
during the final project periods as required by particular student projects.

Figure 7. Raspberry Pi Model B (right) connected to a Gertboard via ribbon cable (left).

Deployment of the Raspberry Pi/Gertboard assemblies in 2014 was as successful than
2013’s BeagleBone Blacks in terms of student progress and project complexity. In
addition, the increased usability and protection afforded by the Gertboard completely
removed the danger of partial/complete loss of student work, and greatly improved the
speed and efficiency of student wiring when interfacing with the board due to the clear
hookup pin numbering.

 Approximate Cost (USD)
Item BeagleBone Black Raspberry Pi

Main Board 50 35
External Shield N/A 50

Keyboard/Mouse 15 15
USB Extension 5 5

SD card N/A 6
Power supply 9 9

Monitor connector/adaptor 12 12
Monitor N/A* N/A*
Total: 91 132

Table 5. Total cost of components for single-board setup of BeagleBone Black and
Raspberry Pi. *Monitors were borrowed or acquired for free for our course. Sufficient
models of monitor for both platforms can be purchased for approximately 100 USD.

P
age 26.1272.13

Setup Costs

In comparing the two systems, as implemented between the two years, the BeagleBone
Black was the less expensive (91 USD vs. 132 USD) as shown in Table 5, however
because we lost 50% of the BeagleBone Blacks due to in-lab accidents the cost benefit
narrows significantly. Furthermore, a simplified output protection board will be used in
2015, further decreasing the cost of a Raspberry Pi to at or below the cost of the
BeagleBone Black setup. The Raspberry Pi/Gertboard assembly was far more durable in-
lab, however this isn’t a completely fair comparison since the Raspberry Pi on its own is
just as sensitive to overvoltage exposure and accidental shorts as the BeagleBone Black
boards (assessed through in-lab stress tests by the author), and one could argue that with
an equivalent, compatible Gertboard-equivalent for the BeagleBone Black, the shorting
problems would have been avoided.

In our experience, audio-based experiments and final projects have routinely been among
the most popular final projects and activities carried out by students, and the much more
accessible audio interface of the Raspberry Pi (3.5 mm TRS connector) proved to be a
significant benefit than when working with the BeagleBone Black. Additionally,
numerous Python packages have been developed and tested specifically for use on the
Raspberry Pi, and this made assisting student work far easier in the time-restricted
environment of these summer courses. The added complexity of the Gertboard hardware
and software did prove to be a hurdle for many students during the course, however in
our opinion its benefits outweigh these additional challenges. Taking everything into
consideration, we intend to continue using the Raspberry Pi/Gertboard platform for future
iterations of this course

MOSTEC Workshops

Our third and shortest single-board curriculum from recent years is an EECS-themed
workshop run for the residential portion of the MOSTEC program using the hardware
platforms derived for the other two courses. These workshops were three hours long and
involved a brief discussion of the EECS field, a cleanroom tour at MIT (given by Jamie
Teherani), and about two hours of in-lab explorations. Because of the tight time
constraints labs are significantly more guided than in E2@MIT or MITES, however we
did leave them open-ended by proposing a number of improvements at the end of each
activity. The amount of guidance provided in the MOSTEC laboratory handouts was
greater than in either the E2@MIT or MITES exercises. This allowed students with a
range of different backgrounds the opportunity to achieve some subset of lab goals.
Somewhat similar labs have been used in both years, with BeagleBone Blacks used for
2013 and Raspberry Pi systems used in 2014. In both situations, eight stations were set up
and students were free to work in groups of their choosing of two or three. The three
primary projects we’ve had in the workshops have been:

• Temperature Logger: Students must interface with an LM35 temperature sensor
and then write code to sample interpret output of sensor and then email updates to
a personal address. Students can expand and customize the project through use of

P
age 26.1272.14

multiple temperature sensors, switches, etc. An example of the starter code
skeleton and one student group’s solution in 2014 is shown in Figure 8A and 8B,
respectively.

• Reaction Timer (2014 only): Students are tasked with creating a sound and light
response-time circuit that measures how quickly a human can respond to a light or
sound stimulus (flash of LED or beep from buzzer, respectively).

• Audio Amplifier: Students are tasked with building an LM386 audio amplifier
using discrete components on a breadboard, and then encouraged to interface it
with Pygame-based audio playing code.

from MOSTEC import * #import important MOSTEC
files

sendToAddress = ‘default@mit.edu’ #who you want to
email

while True: #run forever
 value = readAnalogInput() #read in value at
Analog Input 1
 print ‘hello’ #print ‘hello’
 #your code here (consider getting rid of
pointless “hello” eventually)

from MOSTEC import * #import important MOSTEC
files

sendToAddress = ‘default@mit.edu’ #who you want to
email

while True:
 value = readAnalogInput()
 value = value*3300.0/1023
 tem = value/10
 print tem
 delay(8000)
 if temp>29:
 writeDigitalOutput(1,1)
 message = ‘Current Temp is‘+str(temp)+’
deg C.’
 Server=smtplib.SMTP(‘smtp.gmail.com:587’)
 server.starttls()
 server.login(username,password)

server.sendmail(fromAddress,sendToAddress,message)
 server.quit()
 else:
 writeDigitalOutput(1,0)

(A) (B)
Figure 8. (A) Example of temperature-logging skeleton code provided to students in 2014
MOSTEC Electronics workshop, and (B) resulting final working code developed by a
group of three students.

Conclusions, Scalability, Applicability, and Future Work

Overall we are pleased with the last two years of curriculum development. Aside from
some minor changes, we believe the hardware implementation for the 2015 versions of
the course will remain relatively stable compared to what is reported here. The
complexity, and variety of projects that students have been capable of generating using
single-board computers is much greater than when compared with prior years. This is
readily apparent when comparing the complexity of projects in this paper with the
versions of the E2@MIT course that used Arduinos shown elsewhere5. Student feedback
from both the 2014 MITES class and the 2014 E2@MIT class was anonymously
collected at the completion of both courses. The results were generally positive (Table 6,
Table 7, and open-ended student feedback in Table 8). We currently (as of the time of
writing this draft) do not have access to student feedback from 2013 and from both years
of the MOSTEC workshop.

We have two major goals for the upcoming summer of 2015 that will expand upon the
curriculum development discussed in this paper. The first is to collect large amounts of

P
age 26.1272.15

quantitative student performance data from before, during, and after the courses in order
to more effectively assess student progress during the course and to more effectively
asses the efficacy of the curriculum as a whole. Previously, content-specific assessment
of student activity was not possible in the scope of OEOP enrichment programs, but will
be possible for this upcoming year. Additionally because students perform all work using
the single-board computer-based development platforms (Figure 1) that we’ve developed,
we can record student activity in real time in the laboratory setting. This development
work is ongoing and will be accomplished by integrating the Raspberry Pi hardware with
the previously developed tutor system (CAT-SOOP) referenced above in this paper. Such
a setup will permit the collection of real-time data of student lab progress from both the
software and hardware side of their activities. The ultimate plan is to provide both
hardware and software “test-cases” that will help students get more feedback as progress
through the guided portions of the labs, and provide the instructional staff with a means
of monitoring additional work the students perform in class.

A second major goal for this upcoming summer is to implement a completely remote
version of the single-board computer curriculum through an additional program at the
OEOP. We began to develop something somewhat similar in the summer of 2014,
creating an online EECS curriculum that focuses on both hardware and software using a
previously developed remote hardware infrastructure (iLab)21,22, hardware simulations,
and the CAT-SOOP remote automated tutor discussed above3,20. For the summer of 2015
we intend to send all participating students a hardware development kit similar to that
shown in Figure 1, which they will then set up and run locally at their homes. All of the
distributed systems will be connected and synchronized with a central server on MIT’s
campus. Rather than have students work with simulated circuits over their computer as
was done in 2014, students will carry out hardware and software-based tasks locally on
their own version of the development environment23. By merging this with the hardware
and software monitoring we’re developing for the residential programs we will be able to
provide students feedback on their progress of labs in an automated fashion remotely.
This work is on-going and we intend to have more details to show at the ASEE
Conference in June or 2015.

Prompt Strongly
Agree

Agree Undecided Disagree Strongly
Disagree

“I learned a lot in this course” 100% 0% 0% 0% 0%
“I was challenged in this

course”

91.7%

0%

8.3%

0%

0%
“I would recommend this

course to others”

83.3%

16.7%

0%

0%

0%
“The instructor of this course
helped me learn in a different

way”

91.7%

8.3%

0%

0%

0%

“The instructor spent most of
class time lecturing”

75.0%

16.7%

8.3%

0%

0%

“The course was appropriate
for my ability level”

91.7%

8.3%

0%

0%

0%

Table 6. Post-program responses of students to MITES EECS curriculum (2014) (n=12).

P
age 26.1272.16

Prompt Strongly

Agree
Agree Undecided Disagree Strongly

Disagree
“I learned a lot in this course” 91.7% 8.3% 0% 0% 0%

“I was challenged in this

course”

83.3%

16.7%

0%

0%

0%

“I would recommend this
course to others”

91.7%

8.3%

0%

0%

0%

“The instructor of this course
helped me learn in a different

way”

91.7%

8.3%

0%

0%

0%

“The instructor spent most of
class time lecturing”

25.0%

75.0%

0%

0%

0%

“The course was appropriate
for my ability level”

66.7%

25.0%

8.3%

0%

0%

Table 7. Post-program responses of students to E2@MIT EECS curriculum (2014)
(n=14).

“The most exciting and enjoyable course of my MITES experience. Put real-life application to previous
knowledge in science and math.”
“On top of that, the class mostly consisted of us experimenting with wires and circuits. We learned through
hands-on experiences, which greatly helped us in completing the final project which was so fun to work on
itself. We behaved like a family, and I was able to know everyone in the class on a deeper level...”
“I still cannot believe that someone without any previous experience in Python and EE could actually help
build a thermal cycler in a course of two days. I am amazed at how amazing the people were in the class,
especially the TA and our instructor. I loved the experience and would recommend it to my friends…”
“I really, really enjoyed the electronics course!...I learned a lot and had a lot of fun. Before this experience,
I was set on going into medicine, but now I am considering electrical engineering, as well.”
“I really enjoyed being in the Electronics course…It didn't feel like an ordinary course where the only
objective is to learn. I was also able to receive as much help as I needed, so it did not matter that I started
the course with little previous knowledge of the material.”
“Electronics was not my first choice coming into E2. However, I now regret that is was not because if I had
not been placed in electronics, I would have missed out on an amazing experience. With little prior
knowledge of programming, the tasks were difficult at first. But by the end of the week, I managed to help
build and ECG that functioned extremely well. Never, when I was told about the course, did I think we
were going to be able to finish the projects in two days. The fact that we were was due to the staff and
students in the class. No student was off task…”

Table 8. Open-ended feedback from 2014 MITES and E2@MIT EECS participants.

Acknowledgement

This work would not have been possible without assistance from the OEOP staff
including Shawna Young, Sandra Tenorio, Professor Cardinal Warde, Yonatan Tekleab,
Nathnael Abebe, Stephanie Haro, as well as Adam Hartz, and MIT’s EECS Department.

Bibliography

1. Thomas, J. W. A Review of Research on Project-Based Learning. (2000).
2. Laboy-Rush, D. Integrated STEM Education through Project-Based Learning. at

<http://www.rondout.k12.ny.us/common/pages/DisplayFile.aspx?itemId=16466975>

P
age 26.1272.17

3. Steinmeyer, J. D. Online EECS Curriculum for High School Students. In Integrated STEM
Education Conference (ISEC), 2015 IEEE 5th (2015).

4. Brock, J. D., Bruce, R. F. & Reiser, S. L. Using Arduino for introductory programming courses. J.
Comput. Sci. Coll. 25, 129–130 (2009).

5. Steinmeyer, J. D. Accelerated project-based introduction to EECS for high school students. In
Integrated STEM Education Conference (ISEC), 2012 IEEE 2nd (2012).

6. Brock, J. D., Bruce, R. F. & Cameron, M. E. Changing the world with a Raspberry Pi. J. Comput.
Sci. Coll. 29, 151–153 (2013).

7. Rosen, W., Ertekin, T. & Carr, M. E. An Autonomous Arduino-Based Racecar for First-Year
Engineering Technology Students. in American Society of Engineering Education Annual
Conference (2014).

8. Walter, W. W. & Southerton, T. G. Teaching Robotics by Building Autonomous Mobile Robots
Using the Arduino. in American Society of Engineering Education Annual Conference (2014).

9. Kim, M. & Schlosser, J. Hardware Support for Project Based Learning. In IEEE EDUCON Pre-
Conference Workshop (2013).

10. Lau, K. W., Erwin, B. T. & Petrovic, P. Creative learning in school with LEGO(R) programmable
robotics products. in FIE’99 Frontiers in Education. 29th Annual Frontiers in Education
Conference. Designing the Future of Science and Engineering Education. Conference Proceedings
(IEEE Cat. No.99CH37011 2, 12D4/26–12D4/31 (Stripes Publishing L.L.C, 1999).

11. Erwin, B., Cyr, M. & Rogers, C. LEGO Engineer and RoboLab: Teaching Engineering with
LabVIEW from Kindergarten to Graduate School. at
<http://www.researchgate.net/publication/246676439_LEGO_Engineer_and_RoboLab_Teaching_
Engineering_with_LabVIEW_from_Kindergarten_to_Graduate_School>

12. Williams, A. B. The qualitative impact of using LEGO MINDSTORMS robots to teach computer
engineering. IEEE Trans. Educ. 46, 206–206 (2003).

13. Recktenwald, G. W. & Hall, D. E. Using Arduino as a Platform for Programming, Design, and
Measurement in a Freshman Engineering Course. in American Society of Engineering Education
Annual Conference (2011).

14. Bird, N. Use of the Arduino Platform for a Junior-Level Undergraduate Microprocessors Course. in
American Society of Engineering Education Annual Conference (2011).

15. Zelle, J. M. Python as a First Language. at <http://mcsp.wartburg.edu/zelle/python/python-
first.html>

16. Ateeq, M., Habib, H., Umer, A. & Rehman, M. U. C++ or Python? Which One to Begin with: A
Learner’s Perspective. in 2014 International Conference on Teaching and Learning in Computing
and Engineering 64–69 (IEEE, 2014). doi:10.1109/LaTiCE.2014.20

17. Wirth, M. & McCuaig, J. Making Programs With The Raspberry Pi. in Proceedings of the Western
Canadian Conference on Computing Education - WCCCE ’14 1–5 (ACM Press, 2014).
doi:10.1145/2597959.2597970

18. Foundation, R. P. Gertboard.
19. Van Loo, G. & VanInwegen, M. Gertboard User Manual Revision 2.0. (2012).
20. Hartz, A. CAT-SOOP!: a tool for automatic collection and assessment of homework exercises.

(2012). at <http://dspace.mit.edu/handle/1721.1/77086>
21. Mitchell, R., Fischer, J. & del Alamo, J. A. A Survey Study of the Impact of a MIT

Microelectronics Online Laboratory on Student Learning. in ASEE/IEEE Frontiers in Education
Conference (2006).

22. Fischer, J., Mitchell, R. & del Alamo, J. Inquiry-Learning with WebLab: Undergraduate Attitudes
and Experiences. J. Sci. Eng. Technol. 16, 337–348 (2007).

23. Circuits, 123D. Simulate Arduino online and easily create custom circuit boards. (2014).

P
age 26.1272.18

