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Abstract 

Many educational and industrial applications that involve robots require knowing the location 

information for the robots. This necessitates both the ability to localize the robots globally in the 

absence of any prior data as well as to track the robots’ current positions once their initial locations 

are known. Various approaches have been used to solve these problems, such as encoders, inertial 

navigation, range sensing and vision-based techniques. Among those state-of-the-art robot 

localization methods, vision-based techniques are considered as some of the most effective 

approaches, and they can be enhanced significantly by obtaining additional supporting information 

from signal processing techniques and related algorithm developments. However, many 

challenges associated with the use of vision-based robot tracking systems in uncontrolled 

environments remain. For example, hardware components of visual odometry systems tend to be 

expensive and difficult to implement; choosing the most suitable algorithms and analysis methods 

is not straightforward and those algorithms are considered to be computationally expensive. 

In this paper, a visual odometry system implemented using a low-cost user-friendly 3-D scanner 

(the Microsoft Kinect) is presented. A traditional approach for robot tracking based on object 

recognition was applied, which includes building an object database, followed by extracting, 

describing and matching keypoints between the database and the scene. The advantages and 

disadvantages of using the Kinect in this approach were studied. Then, a technique for the 

simultaneous tracking and reconstruction (STAR) of objects was developed and tested. This 

technique was inspired by the simultaneous localization and mapping (SLAM) approach, and it 

was implemented using the Kinect and an iRobot Create platform. The prototype implementation 

shows that this STAR technique is feasible and suitable to be used in educational robotics 

laboratories. This technique also has multiple advantages compared to traditional educational 

laboratories, such as lower cost, more straightforward setup and less required preparation work by 

the laboratory instructor. 

1. Introduction 

Interest in robotics has increased tremendously over the past decade. Along with the rapid 

expansion of the commercial robotics market, robotics has also entered engineering curricula at all 

levels. The way robotics is currently introduced in educational applications is narrow. Most of the 

applications of robotics technology in education have mainly focused on facilitating the teaching 

of subjects that are closely related to robot design, robot programming, mechatronics and 

industrial robot applications. Only a small number of reported cases indicated the usage of robotic 

techniques in other forms, which are believed to have the potential to engage young people with a 

wider range of interest. These activities use robotics as a way to tell a story (e.g. mechanical puppet 

show [1]) or in connection with other disciplines and interest areas, such as music and arts [1]. 

Studies have shown that it is feasible to use robotics for teaching or developing skills in areas both 

closely and not so closely related to the field of robotics [2]. The empirical evidence to support the 

effectiveness of educational robotics is still limited. However, it is believed that educational 
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robotics has enormous potential as a learning tool. The focus of the work presented here is on 

developing educational applications of robotics. For example, robotics represents an interesting 

practical application of fundamental engineering knowledge areas such as geometry [3], Newton’s 

laws of motion [4] and kinematics [3]. Thus, teaching robotics can contribute to developing and 

improving the students’ skills in problem solving, logic and scientific inquiry as well as to teaching 

the related basic knowledge. 

2. Background 

2.1. Traditional Implementation of Educational Robotic 

There is an extensive list of educational initiatives that use robotic technologies as pedagogical 

tools. However, the way robotics is currently introduced in educational applications is 

unnecessarily narrow. Most of these initiatives are oriented toward teaching subjects directly 

related to the robotics field. Furthermore, it is difficult to keep the complexity and cost of robotic 

devices to a manageable level for a regular size class. 

There are many challenges that need to be tackled to successfully build an educational robotics 

laboratory, related to both hardware and software. In this work, robot localization was chosen as 

the challenge since it is needed in many robotics applications. For example, robot programming 

experiments require the location information of the robots as feedback to the control program. It is 

desirable for tracking systems to be able to localize the robots globally in the absence of any prior 

data as well as to track the robots’ current positions once their initial locations are known. 

2.2. State of the Art in Robot Localization 

Mobile robot localization, which is the process of determining and tracking the robot’s location 

and orientation relative to its environment, has received considerable attention over the past few 

years. Judged by the hardware utilized in robot tracking systems, the most commonly deployed 

state-of-the-art robot localization techniques can be divided into four classes. 

1. Dead reckoning: Encoders are used to calculate translational movements from rotational 

measurements based on integration. This class is theoretically simple and easy to be 

integrated into mobile robots. However, it is considered noisy and less robust than other 

classes [5]. 

2. Inertial navigation systems: Inertial sensors, accelerometers and detectors for 

electromagnetic fields and gravity are used to calculate motions based on integration. This 

class can lead to error accumulation, especially when drift-prune sensors are used [6]. 

3. Ranging: Laser, infrared, acoustic or radio signals are used to measure distance. This class 

tends to be unreliable in highly dynamic environments, limited in range and tends to be 

expensive [7]. 

4. Visual odometry: Single-camera, stereo-vision or even omni-directional imaging is used to 

determine the position and orientation of a robot. This class is considered to be 

computationally expensive. However, it has become a popular research topic lately. It can 

be improved significantly by embedding signal processing techniques and adopting new 

computer-vision algorithm developments [8]. P
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2.3. Vision-based Methods and Benefits of using 3-D Scanners 

There are three broad groups of indoor robot localization systems: map-based localization, 

map-building-based localization and mapless localization [9]. The first kind of system operates on 

user-created geometric models or topological maps, while the second kind uses sensors to 

construct its own maps and then uses these maps for localization. Mapless tracking systems 

recognize objects and calculate their motions based on visual observations, which suits our 

purpose (i.e. building easy-to-use educational laboratories) better than the first two categories. 

In order to build a simple system and render it easy to operate even for inexperienced users, a 

single camera or groups of cameras fixed in the environment and a robot without additional 

sensors attached to it were chosen here as experimental setup. The robot motions are determined 

by observing and extracting relevant information about the elements in the environment (i.e., 

walls, objects such as desks, chairs, etc. and the robot itself). Using a 3-D scanner (e.g., the 

Microsoft Kinect) instead of stereo vision cameras can further simply the hardware setup because 

of the depth information it provides [10,11]. If appropriately placed in the environment, a single 

3-D scanner could be enough to capture the entire motion of the robot. 

3. Recognition-based Object Tracking 

3.1. Overview of Recognition-based Tracking Methods 

Of the techniques that have been tried for mapless tracking, the prominent ones include optical 

flow based methods [12] and object recognition [13]. The optical flow based methods first extract 

moving objects by using motion detection between frames, then they determine feature points on 

the surface of the objects, and finally they match the corresponding feature points between frames 

to estimate the object motion. Therefore, objects can be tracked without any prior information or 

constraints with respect to camera position or object motion. However, different implementations 

of optical flow based methods can cause different errors, such as induced noise when the 

illumination changes, failure to tack large motions, and accumulation of computational errors [14]. 

Localization by using object recognition techniques is promising because it uses natural visual 

features that can be extracted from the target objects [15]. The object recognition problem can be 

defined as a labeling problem based on models of known objects. Thus, the information of the 

object models must be available a priori, and the model database becomes an essential part of an 

object recognition system. A typical object recognition process includes building the model 

database, detecting the feature points on both the models in the database and those in the scene, 

finding corresponding feature points and verifying the result. 

3.2. Background of 3-D Object Reconstruction 

Geometry reconstruction is a well-studied research area in computer graphics and computer vision 

and extensive literature on this topic has been published. Examples include the digital 

Michelangelo project that used tracked 3-D scanners to digitize large statues [ 16 ], the 

viewpoint-based approach of 3-D shape reconstruction using video sequences [17], dense 3-D 

reconstruction from unregistered Internet-scale photo collections using appearance-based 

clustering techniques [18], surface reconstruction from unorganized 3-D points by solving a 

spatial Poisson problem [19], and environment and object virtualization using a single 3-D scanner 

[20,21]. 
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There is a body of research focusing on object scanning, and those techniques have been proven to 

be suitable for building the datasets of 3-D models of objects. One of the first real-time 

reconstruction methods for small models was developed using a frame-to-frame iterative closest 

point (ICP) implementation [22]. Since the introduction of depth cameras, a large number of 

real-time 3-D reconstruction related applications have been reported, including a scanning system 

using a fixed time-of-flight (ToF) camera to track moving objects [23] and a moving handheld ToF 

object scanner [24]. 

In the project described here, an iRobot Create platform [25] was chosen for the prototype 

implementation, which consists of a Create and a laptop. The user programs the path of the Create 

using the laptop, and a recognition-based tracking technique was employed to record the actual 

path of this Create. In order to recognize the Create using the Kinect, a model representing it must 

be present in the object database. In the work presented here, a software project named 

KinectFusion [26] was used to generate 3-D models for the objects of interest. These generated 

models can then be used as object database in the following experiment development. 

KinectFusion enables the user to hold and move a standard Kinect sensor to rapidly create detailed 

3-D reconstructions of an indoor scene. The system works by continually tracking the 6 DOF pose 

of the Kinect camera and fusing live depth data from the camera into a single global 3-D model in 

real time. The reconstructed models of the scene can also be texture mapped using the RGB 

camera of the Kinect. A sample implementation is shown in Figure 1, where a laboratory scene 

was reconstructed using the KinectFusion. Then, the points belonging to the object of interest were 

segmented out to form the object model. 

 

Figure 1: Generation of 3-D object model using KinectFusion; Left: Scene with Create; Right: 

Point cloud model of Create (after segmentation) 

3.3. Implementation of Recognition-based Tracking and its Problems 

The strategy in recognition-based tracking is to compare each frame of the acquired data with the 

object database, find the objects of interest and calculate their positions and orientations. The 
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localization information of the objects of interest can be acquired by aggregating the calculation 

results. 

Common approaches for object recognition consist of three main stages, namely extracting 

keypoints, generating appropriate feature descriptors from them and subsequently comparing the 

keypoint descriptors from the scene and model database for a possible match. Here, the 3-D SIFT 

keypoint technique [27] was chosen for the implementation. This technique extends the feature 

descriptors from 2-D images (i.e., x and y) to 3-D spaces (i.e., x, y and z). It starts by extending the 

scale space using the 3-D Gaussian blur operator G, followed by finding the keypoints at the 

maxima/minima of the Difference of Gaussian (DoG). The DoG image D(x,y,z,)  is defined as: 
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Here,  , , ,G x y z   is the Gaussian blur operator,   is the standard deviation of the Gaussian 

distribution of the points’ grayscale values,  , ,I x y z  is the grayscale value of the original input 

image, and ik  and jk  are scalar numbers used to define the scale of the Gaussian blur. 

The next few steps include finding keypoints, eliminating bad keypoints (i.e., false keypoints 

induced by image noise or computational errors) and calculating the gradient direction and 

magnitude in the proximity of the keypoints. In the final step, the descriptors are created, which 

typically consist of 64 histograms aligned in a 4×4×4 grid, each with 8 azimuth directions and 4 

elevation directions, thus resulting in a feature vector containing 2,048 elements for each keypoint. 

These resulting vectors are known as SIFT keys, and they are used for a nearest-neighbors search 

aimed at identifying possible matches within the source and target images. 
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Figure 2: 3-D SIFT keypoints; Left: Create model generated by KinectFusion; Right: Create 

model segmented from raw data 

Keypoint extraction is performed in both the model that is created by KinectFusion and the point 

cloud sequence captured by the Kinect. The calculated keypoints are used for generating keypoint 

descriptors and then tracking the motion of the Create by finding a possible match between the 

models in the database and the point cloud sequence. The result of the keypoint extraction is 

shown in Figure 2, where the red dots represent extracted feature keypoints. The overall result of 

using this frame-by-frame object recognition based tracking method is not ideal, whereby most of 

the errors are caused in the first stage of the object recognition, i.e. during the keypoint extraction. 

The factors that cause recognition failures can be categorized into two groups, namely keypoint 

extraction errors from the data recorded by the Kinect and keypoint extraction errors from the 

object database that was created using the KinectFusion. The first category of recognition failures 

is caused by the imperfection of the raw data obtained from the Kinect. Among the limitations that 

the Kinect inherits from it being a structured light scanner, several have a direct impact on the 

quality of the raw data. For example, the Kinect’s strong dependency on the surface properties and 

the shadowing problem [28] can both cause occlusions in the raw data [29]. Also, the low accuracy 

and high error rate in the Kinect’s depth data are caused by the round-off errors from the 

computations associated with the infrared sensor [30]. The second category of recognition failures 

arises when building the object database using the KinectFusion. One of the main problems is that 

KinectFusion uses the ICP algorithm [31] to track the position of the camera. The ICP algorithm 

assumes that the camera pose changes very slightly between two frames and that the scene is 

sufficiently feature-rich. Both a lack of distinguishable features and sudden movement of the 

handheld Kinect can cause reconstruction errors in the final database of object models. 

It is believed that the tracking results can be improved using the following three approaches: by 

building a more accurate database, by finding more suitable recognition algorithms [30] and by 

preprocessing the Kinect’s raw data to improve their accuracy. However, certain drawbacks of this 

recognition-based tracking technique still remain, namely the requirement that the database must 
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be large enough to cover all possible objects to be tracked and the fact that it is difficult for 

inexperienced users to generate such a database. Therefore, a system that is capable of creating and 

updating the database automatically and that can also track the movement of objects of interest is 

desired. 

4. Simultaneous Tracking and Reconstruction of Objects 

4.1. Background on Simultaneous Tracking and Reconstruction 

Simultaneous localization and mapping (SLAM) is a technique that uses digital devices to 

construct a map of an unknown physical environment or to update a map within a known 

environment, while simultaneously keeping track of the device’s location in the environment 

[32,33]. The SLAM technique consists of the following steps: 

1. Landmark extraction: extract from the environment features that can easily be re-observed 

and distinguished; 

2. Data association: match observed landmarks from different scans with each other; 

3. State estimation: estimate the position of the device from odometry data and landmark 

matching; 

4. State update: update the estimated state from re-observing landmarks; 

5. Landmark update: add new information to the current map. 

Inspired by the SLAM scheme, a simultaneous object tracking and reconstruction technique is 

proposed here. This technique can be used either to track the movement of unknown objects while 

generating their models or to track objects known a priori while updating their models. The system 

works by first analyzing the raw data recorded by the Kinect and segmenting out the potentially 

moving objects. Then, the segmented point cloud is compared with models in the database. If the 

database contains models of the objects, the position of the objects is estimated and the model is 

updated if necessary. Otherwise, the segmented point clouds from different scans are compared, 

the movements of the objects between those scans are estimated, and the model is generated and 

stored in the database. 

Various methods, including the 3-D SIFT technique mentioned above, can be used either to 

estimate the position of the target objects using models from the database or to estimate the 

movement between segmented point clouds from different scans. Here, the ICP algorithm was 

implemented, which works by minimizing the difference between two clouds of points [34]. The 

algorithm involves the following steps: 

1. For each point in the source point cloud, find its closest point in the reference point cloud as 

a match; 

2. Estimate the combination of rotation and translation (i.e. the transformation matrix) using a 

mean squared error cost function that best aligns those matched points; 

3. Transform the source points using the obtained transformation matrix. 

4.2. Prototype Implementation of STAR with Kinect and its Problems 

An educational robotics laboratory was selected to validate the STAR approach proposed here. 

The Kinect was chosen as sensor to build an educational laboratory where the motion of an 
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unknown object of interest is tracked and simultaneously its model is generated. Starting with the 

Kinect’s raw data, NaN value filtering [11], motion detection and local region segmentation are 

applied [35]. Only the point cloud that potentially contains the moving objects is segmented out 

and used as input for the simultaneous object tracking and reconstruction process. First, object 

recognition between the first frame of the point cloud and the model dataset is performed. If a 

match is found, the model from the dataset is chosen as the object representation for further 

tracking and potential target of model updating. Otherwise, the first frame is chosen as model 

representation and used for further tracking and model updating, after which the final model is 

stored in the model dataset as a newly discovered object. The pseudo code of the STAR algorithm 

is shown in Listing 1. 

 

Listing 1: STAR algorithm 

1: for each segmented point cloud iP  do 

2:  Calculate rigid body transformation between iP  and object model 1iM  using ICP 

3:  Transform iP  into global coordinates to align with 1iM  

4:  Update voxel grid representation of object 1iV  by 

5:   Update grid point count 

6:   Filter color noise and update color information 

7:  Generate object model iM  from voxel grid iV  

 

There are two approaches to performing object tracking using the ICP technique. In the first 

approach, each point cloud frame is compared with its preceding frame, the relative rigid body 

transformation is computed, and the final moving path is acquired. The benefit of using this 

approach is that the object motion between two consecutive frames is usually small, which makes 

the ICP algorithm converge in a very short time. However, some small errors (e.g., computation 

truncation, extensive error from certain frames and the ICP resulting in a local minimum) are 

accumulated, thus causing all subsequent computations to be corrupted. ICP tracking methods are 

undesirable for tracking objects through a long time period, unless some intermediate calibration 

stages are introduced into the process. The second approach for object tracking is to compare each 

frame with the updated object model and calculate the relative rigid body transformation, which 

can be used as the final moving path directly. This method is inherently more robust than the first 

method. However, the motion between a particular frame and the updated model is larger 

compared to the first method, which makes this approach more computationally costly. Though 

unlikely to happen, large motions cause the ICP to converge to a local minimum, thus yielding 

false results. In the application presented here, the second approach for object tracking was chosen. 

For each frame of the point cloud that potentially contains the object of interest, the previously 

updated object model is used to calculate the ICP convergence. The transformation matrix 

calculated by the ICP algorithm is recorded as tracking result and the current frame point cloud is 

then used to update the object model. 
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Figure 3 depicts the overall tracking result, where the Create was controlled to move on a circular 

path. The left figure represents the Create’s circular path that was preset by the user, and the right 

figure depicts the path that was calculated using the STAR technique discussed above. 

 

Figure 3: Tracking result of Create; Left: preset circular path; Right: path calculated by STAR 

algorithm 

Once the position and orientation of the target object have been determined, the segmented point 

cloud is transformed into the global coordinate system (here chosen as the coordinate system of the 

first frame) using the acquired transformation matrix. The model that represents the target object is 

then updated using the latest frame of the point cloud, which involves three stages of calculation. 

First, the voxel grid representation of the model is updated. Here, the global vertices are integrated 

into voxels using a Truncated Signed Distance Function [36]. Second, each discrete 3-D grid 

location is converted into a vertex in the global coordinate system, which generates the point cloud 

that represents the updated object model. Finally, the color information is retrieved and added to 

the point cloud. The result of the updated point cloud model is depicted in Figure 4. Here, the 

recognition-based tracking was accomplished without generating the model of the Create a priori. 

Instead, the model was generated from the first two frames of the point cloud sequence and then 

updated using the following frames. After the ICP calculation of each frame of the point cloud, the 

positions and orientations of the Create are recorded as tracking result. At the end of this 

experiment, the model of the Create was stored in the model database for future usage. 
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Figure 4: Updated object model using STAR technique 

4.3. Benefits of Using STAR in Educational Applications 

In order to implement robot tracking using the localization techniques mentioned above (dead 

reckoning inertial navigation and ranging), significant modifications (in most cases on both the 

robots and in the laboratory environment) are required. These changes add to the cost of 

constructing the laboratory. The complexity of the hardware setup is also owed to the fact that 

these platforms require experienced and well trained users to be operated and maintained. 

However, vision-based methods can make the hardware system simpler and easier to operate for 

inexperienced users. 

Since most vision-based methods require marks to be added on the robots for tracking, using 

recognition-based methods can further reduce the complexity of the hardware setup. However, a 

comprehensive and high quality object model database needs to be built beforehand, which can be 

difficult and time consuming for the developers. Among those recognition-based tracking 

methods, using the STAR technique proposed here, the developed educational system only 

requires a straightforward setup (the user only needs to place the Kinect in a suitable position to 

cover the motion of the objects). This system does not require the user to prepare the model 

dataset, thus minimizing the preparation workload of the laboratory instructor. 

In conjunction with suitable image processing algorithms, the Kinect has the potential for 

becoming a versatile 3-D range sensor with numerous options for educational and industrial usage. 

Taking educational laboratories as an example, the Kinect will be able to meet some fundamental 

requirements, such as a short time for learning the use of the system, ease of operation, the ability 

to add resources as the students’ knowledge grows and robustness to prevent certain kinds of errors 

[37]. Furthermore, the ability to track the position, velocity, acceleration and even deformation of 

multiple moving objects in three-dimensional space would make the Kinect superior to most of the 

existing data acquisition systems currently used in educational laboratories. 

5. Conclusions and Future Research 

In this paper, the usage of the Kinect as alternative 3-D scanner in educational robotics laboratories 

was proposed. The state of the art in robot localization was studied. The benefits and limitations of 
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using vision-based methods in robot localization were discussed. The traditional object 

recognition based tracking method was implemented and its advantages and disadvantages were 

explored. A novel simultaneous object tracking and reconstruction technique that is based on the 

SLAM and ICP algorithms was developed and implemented, and its advantages compared to 

traditional recognition based tracking methods were presented. 

The next stages of research should focus on three issues. First, a more suitable ICP implementation 

aimed at minimizing the tracking error should be explored. Second, a better voxel grid method that 

improves the quality of the resulting object models should be developed. Third and finally, 

prototype applications should be chosen and implemented to prove the validity and impact of this 

work. 
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