Chris Ramseyer, University of Oklahoma

Ph.D., P.E. is an assistant professor at the School of CEES at OU. He has spent 5 years as a structural steel designer. His research interests include cold formed steel, structural stability, bridge issues and concrete materials. His educational interests include undergraduate research in engineering and alternative learning paradigms. He received the OU-CEES George W. Tauxe Outstanding Professor Award in 2004.
An Experiment in Undergraduate Research

Abstract:

The students who participated in the inaugural 2004 summer program coined the name "Camp Concrete" after they cast and tested more than 50,000 pounds of concrete specimens at Donald G. Fears Structural Engineering Lab. This works out to be approximately 500 concrete specimens per student, a phenomenal volume of work. In subsequent years the Camp Concrete research teams have continued to study concrete materials but it has grown to include cold-formed steel and large scale structural testing. This successful summer research program involves large numbers of undergraduates in cutting edge "pure" research as defined by Schoenfeld and Magnan.

Management of the research team is discussed and evaluated. Challenges for the faculty and staff include; providing enough raw materials to keep up with the students' phenomenal volume of work, helping make the work fun and exciting, and expanding the students horizons beyond the immediate research focus of their team. As the summer progresses, the students take over day-to-day management of the projects. To ensure that all the students are engaged in the research and understand its goals and challenges, weekly meetings are held to discuss progress, difficulties and preliminary results. Keeping the work fun and exciting, while granting the students control of the research process, encourages the students to pursue graduate study.

Several research sponsors make this challenging program possible. Each of the projects that form the back bone of Camp Concrete addresses an immediate need identified by the sponsor. Initially the sponsors were not informed of their projects involvement in Camp Concrete but the success of the Camp has help build sponsor support. Assessment methods include evaluation of the projects outcome by sponsors, feedback for students including questionnaires and informal surveys and direct measurement.

Camp Concrete was motivated by a desire to build a robust structural engineering program and to increase the recruitment of our undergraduates. Prior to Camp Concrete recruitment of our graduating bachelors into grad school had dropped to zero. Camp Concrete has been instrumental in creating a sense of community between our undergraduate and graduate programs. In three short years our recruitment into the masters program has grown from zero to about a third of the 2006-2007 graduating bachelors. Camp Concrete provides a possible template for successfully increasing enrollment in graduate school and increasing the number of students leaving school already meeting the criteria for ASCE policy statement 465, commonly referred to as the Body of Knowledge (BOK). Students participating in Camp Concrete are involved in all 15 of the outcomes included in the BOK.

Overview:

Camp Concrete was not developed as an experiment in undergraduate research. It developed in response to the unique constraints and opportunities experienced by the structural engineering group at the University of Oklahoma (OU), Department of Civil Engineering and Environmental Science (CEES). It became apparent that the research experience, developed out of necessity, was beneficial as an undergraduate research experience and has became a key tool for recruiting
students to our graduate program. It also proved to be an effective method for increasing the amount of high-quality research completed in our laboratory.

Background:

The structural engineering group at OU lost all five faculty members between mid 1999 and late 2000. As new faculty members were hired, there was a period of time during which very little research was conducted at Fears Structural Engineering Laboratory. Between 2001 and 2003, only two students completed thesis-based Masters of Science degrees with a structural engineering focus. While the undergraduate program in structural engineering had been relatively unaffected, the graduate program was virtually non-existent.

The new faculty realized that there was a pressing need to generate excitement about structural engineering at OU and to fill Fears Lab with research activity. Kyran Mish, the new senior structural faculty member, suggested that the structural group should be considered as similar to a start-up company during the rebuilding period. By this he meant that risks often avoided in academia should be realized as opportunities to a start-up. To support this idea materially, he plowed the majority of his start up funding into renovating the office space at Fears Lab.

Risks that became acceptable included:

- Encouraging a large number of undergraduate students to do significant, graduate-level research that could ultimately be used for a MS thesis. This encouraged undergraduate students to consider graduate study and demonstrated a commitment to renewing the graduate program. Two of the authors had both taken advantage of an accelerated BS/MS program at OU and completed their MS research before completing their BS coursework, so this was not the first time undergraduate students had done significant research. However, it was the first time a large group of undergraduate students was approached about pursuing this option.
- Focusing on obtaining multiple relatively small grants from local funding sources, such as the Oklahoma Department of Transportation and local industry, rather than a single large grant from sources such as NSF. These smaller grants are less spectacular and provide limited support increasing the risk of insufficient research depth or continuity but the risk of receiving no funding whatsoever was reduced.
- Pursuing research that would be immediately useful to local industry and infrastructure. While less funding is generally available for applied research than for basic research, addressing immediate needs helped to generate excitement from the local community and to address the impression that the OU structures program was dead. It also allowed younger students to see the effects of their efforts quickly.

These risks were accompanied by significant opportunities, including nearly unlimited access to Fears Structural Engineering Laboratory, a fairly large undergraduate student body wanting to focus on structural engineering, and a very understanding administration. Accepting these risks and taking advantage of these opportunities led to adopting an unusual solution.

Development:

In 2003, the principle author was granted three small research contracts from the Oklahoma Department of Transportation (ODOT). These three projects addressed immediate needs identified by engineers at ODOT. The three projects included a study of the effects of corrosion...
on pre-stressed bridge girders, very early strength (VES) concrete for bridge decks and the
effects of fibers in concrete for bridge decks.

The projects were to start in October of 2003 and be completed by October of 2004. Due to a
lack of current experience executing contracts between OU and ODOT, they were not signed
until February of 2004. For appropriation reasons, the completion dates could not be moved.
The research timeline was reduced to only seven months, and it was estimated that obtaining the
necessary materials to begin the research would take at least one month. Because the spring
semester had already begun, hiring students to help complete the projects was difficult. It was
decided to forego hiring of student research assistants until the end of the spring semester.

While only four months would remain to complete the work, students are generally able to spend
much more time doing research during the summer, when they do not have as many class
requirements. Rather than supporting three students for a full year, twelve students were
supported for the three month period between the end of the spring semester and the beginning of
the fall semester. The hiring of more students met many of our short term goals for Fears Lab. It
meant we would be getting as many undergraduate students as possible involved in research plus
it would generate excitement about structural engineering at OU, filling Fears Lab with research
activity.

In order to find twelve willing undergraduate students, the civil engineering student body was
approached early in March. It was critical to approach students during the time when they were
looking for summer employment or internships, and not after most were already hired. An email
was sent to the entire student body advertising the opportunity, and a small presentation was
made in several classes. The principle author was teaching both Civil Engineering Materials,
with sophomore and junior students, and Steel Design, with senior students, which brought him
into direct contact with many undergraduate students.

Building a sense of community and avoiding feelings of drudgery were critical to the success of
this endeavor. Besides helping to build community between the students, it was important that
the leader was able to get to know each student individually. This helped to avoid students
feeling that they were slave labor. From experience it was known that the lab would be
extremely hot and humid during most of the summer. A social component was
vital. It was decided that providing lunch,
cooked and served by the faculty advisor,
on Fridays might meet this need. While
the menu was never complicated, pizza
and hamburgers were never served.
Figure 1 shows the students eating kabobs
during the first Friday lunch of the
summer. It was hoped that Friday lunch
would help build the sense of community
quickly and also that it would also send
the message that the principle investigator
was committed to and involved in both
the research and the development of the
students.

Figure 1 – Friday lunch in the conference room
Learning Skills Emphasized:

At any university, the undergraduate student can be considered the primary product. With this in mind, our institution's long term success or failure will be gauged by the students we graduate. After studying the impact of departmental research and teaching climates on undergraduate growth, Volkwein and Carbone at SUNY-Albany have concluded that “students in exclusively research-oriented departments report more growth than those in exclusively teaching-oriented departments,” but that departments which exhibit “…a combination of strong research and strong teaching…” make the most “…significant contributions to undergraduate intellectual growth.”

Camp Concrete provides a research oriented component for our undergraduates. Time will determine if this can be considered a “strong research component”.

Schoenfeld and Magnan2 conclude that a typical “pure” research standard includes:

- To conduct research with appropriate methodological techniques and vigor;
- To conceptualize and theorize in an original way, with logical and mathematical formulation as appropriate;
- To synthesize, criticize, and clarify extant knowledge and research;
- To innovate in the collection or analysis of empirical data;
- To relate research to the solution of practical problems of individuals, groups, organizations, or societies.

Camp Concrete involved all five points of “pure” research as defined above.

Implementation:

Due to the time constraints involved in this research program, the research topic and the specific objectives were developed before the students were hired. There was a strong need to avoid wasted time at the beginning of the summer. Any delay at the beginning of the summer could translate into a perception on the research assistants' part that either time was not critical or that a failure to complete the work by summer's end could be blamed on a lack of preparation by the principle investigator. Neither of these outcomes was considered appropriate. Materials were ready to complete improvements to the laboratory work area to increase efficiency, and all materials and testing equipment required for the first eight weeks were available on the first day of Camp Concrete.

To further instill a sense of mission and urgency, each day of the first week was pre-planned with group meetings and work. The meeting topics included an orientation to the summer's goals, introduction to the research topics and instruction on completing literature reviews, creating a test matrix, planning work, keeping records of the research in a lab book and writing a research report. The work sessions included initial cleaning and organization of their work area, rebuilding several pieces of equipment, removing the old racking system from the environmental chamber and replacing it with a more efficient rack system built from raw materials and modifying a surplus table to serve as

![Figure 2 – New shelves in use](image)
a batching table. Figure 2 shows the new shelves in use. Having the students clean and improve their work space before starting helped them to take ownership of the area and encouraged them to maintain the area in an acceptable manner. The students did an excellent job of maintaining the space and monitoring each other’s behavior. The lab management did not have to hold a special “lab cleaning day” during the entire summer.

During orientation on the first day of Camp Concrete, the summer research assistants learned what the research topics were. They were each given copies of the research proposals and asked to list their preferences. By the third day of Camp Concrete, the students were divided into five teams with specific goals. Each team had a leader and one or more team members. None of the teams was large enough to be self sufficient. They all needed to trade labor between each other to complete the more physically challenging portions of the research.

By the end of the first week, the work area was ready and each team had developed a test matrix, which the principle investigator reviewed. By the beginning of the second week, research was in progress. Each member was required to bring in copies of two research papers relevant their research weekly for the first eight weeks. By the middle of the summer, each team’s notebook included 25 to 40 papers. The students quickly became familiar with the latest research on their topics.

Due to the nature of the research, a rigid work schedule was not possible. The teams were sharing a limited work space. Four of the teams were working on concrete material studies and needed to batch concrete, but Fears Lab only has one small batch mixer. For most of the summer, batching began at six in the morning and extended until mid-afternoon. Specimen testing often ran into the evening, and material preparation often went on until after midnight. No single student was in the lab during the entire 20 hour work day, but at any given time several students could be found working. The students created a work schedule that would have seemed draconian if the principle investigator had suggested it. Several students also took an intersession or summer session class during part of the summer, and coordinated their working hours around time spent in class and studying.

During the first four weeks of the summer, the teams required a lot of help and direction. The principle investigator was careful to suggest courses of action but not to dictate a work regime. This allowed the research assistants to rapidly gain control of the day to day operation of their research. At end of the summer each team gave a presentation of their work and turned in a completed research report.

Lessons Learned:

Difficulties were encountered during the twelve weeks of Camp Concrete, but many lessons were learned from them.

- In general, the student teams were extremely productive. More than 50,000 pounds of concrete specimens were cast and broken over the 15-week period. The research material on hand at the start of Camp Concrete did not last eight weeks as expected. By week four, the principle investigator was scrambling to find another 26 cubic yards of aggregate and 15 drums of portland cement. Brief non-productive periods occurred during the summer while the teams were waiting for materials. These surprises have not occurred during subsequent years due to a simple inventory management system.
• Not all teams integrated well. One research assistant was not motivated to help with the labor of batching. There was a definite personality clash between this person and the team leader. They were not fighting, but rather they were ignoring each other. After discussing with the individuals involved, the principle investigator moved this team member to a new team. The team member worked much better with the new leader.

• One of the teams had some trouble starting their research. This team was the only team with a graduate student as a team leader. The graduate student did not feel a sense of urgency to complete the work during the summer, and neither team member wanted to start any research until they fully understood the expected outcome. They were not used to a problem with multiple possible solutions. Several meetings with the principle investigator were required to help these students understand that a "failed" test was acceptable so that they could move forward.

• Students want ownership of their work. By allowing the students to determine their own work schedule and to create their own test matrices, the students achieved much more than anticipated. The students far exceeded the principle investigator's expectations for both breadth and depth of study. Several groups initiated investigations into possible solutions that were not in the initial proposals or test matrices. Their initial pilot studies have led to additional research funding.

• Failure is not to be avoided, and the principle investigator must resist the temptation to micro-manage undergraduate students out of fear that they are incapable. One of the most productive teams discovered at mid-summer that all of their previous work was flawed. They identified the flaw and the action required to address it with only minimal guidance. They decided on their own to redo all of their previous work. Within four weeks, they had recovered and were back on their schedule.

• Community building is extremely important. The Friday lunches provided by the principle investigator were a much needed social event every week. After the first week, this became the only time all of the students were present at once. By the end of the summer, several students had volunteered to show off their own cooking skills to each other. In addition to community building the lunches also became an excellent avenue for the principle investigator to assess the progress of the teams without creating any undue pressure. It also became a good method for the research assistants to address issues with one another and the principle investigator.

• Undergraduate students are capable of both performing laboratory research and reporting it. The teams wrote the final project reports, which were submitted to **DOT with only minor editing by the P.I.

• Management of a large group of students is not easy. Acting as the principle investigator and faculty advisor on this type of project is time consuming. Camp Concrete and the associated research were the primary activities the faculty advisor worked on during the summer of 2004.

• Be prepared for administrative difficulties. One of the most difficult roadblocks to making Camp Concrete a success was hiring undergraduate research assistants for the summer. We could not appoint them to a position for the summer. Hiring them required extra time, effort and paperwork.

Administrative Support:

The University of Oklahoma is a research one university that places enormous emphasis on under-graduate education and the Department of Civil Engineering in the College of Engineering
is known for actively supporting this emphasis and for its leadership in education research. The department has fostered several large National Science Foundation research projects in engineering education such as Sooner City, Authentic Learning Alliance and Adventure Engineering. So when the concept of "Camp Concrete" was presented to the department and university administration this project found an audience receptive to new ideas.

Typically pre-tenure metrics of faculty performance often involve items such as nationally funded research dollars and graduate students being mentored. The University of Oklahoma follows a similar approach but because of their strong belief in undergraduate education the pre-tenure metrics of faculty performance also include state funded research dollars and undergraduate students being mentored. This approach to tenure system metrics allowed a program such as "Camp Concrete" to be recognized as a significant portion of the faculty members annual evaluation without needing to modify or adjust the metrics system.

Bob Knox, the CE director and Kyran Mish, the senior structures faculty member were totally supportive. Without this support it is doubtful if "Camp Concrete" would have had such a positive outcome or even if it would have been possible in the first place. They actively supported the program and arranged for the use of a significant portion of Fears Structural Engineering Lab.

Conclusions:

Camp Concrete improves the undergraduate experience and is an excellent retention and recruitment tool for graduate school. Several of the students who were initially not planning to earn graduate degrees returned to continue the research they had begun and to develop their own theses. Figure 3 shows the number of undergraduate civil engineering students with a structural emphasis who entered the CEES graduate program over a nine year period. The students shown for the 2007 year are students who have officially entered the accelerated masters program and who have completed a significant amount of their research by participating in Camp Concrete.

![Figure 3](image-url) – Number of CE structural grad students with a B.S. in civil engineering from OU
During the period shown on Figure 3 there was not a significant change in the number of undergrad students pursuing a structural emphasis. All of the students retained in 2005, 2006 and 2007 participated in Camp Concrete. As pointed out by the spike in recruitment in 2005, 2006 and 2007, Camp Concrete is an excellent retention and recruitment tool for graduate school.

While the initial contracts were fulfilled in 2004, continuation contracts were obtained to pursue the expanded studies proposed by the students. Three presentations at the semi-annual ACI convention were generated by this work, three journal papers are being written and this work will form the bases of five masters thesis. Because of the success of the inaugural Camp Concrete, the program was repeated in 2005 & 2006. The number of students was increased to 23 in 2005, and cold-formed and large structural steel projects were added to the concrete materials projects. Twenty three students was found to be slightly too large to effectively manage and the number of students was reduced to 19 in 2005.

The "Camp Concrete" research experience for undergraduates is an example of how a low budget program can add value to the undergraduate experience. Camp Concrete provides a possible template for successfully increasing enrollment in graduate school. This model could be easily be extended to other schools or other specialized research area's. The equipment required to do some types of basic environmental or geotechnical engineering are no more expensive then the equipment used during the "Camp Concrete" experience. What is required is an understanding administration at the department level, a willingness to trust undergraduate students abilities to perform good research, enough structure or format in the program to support the goals of the research but not so much that it stifles creativity, a good lunch menu or other social events that build community, and a principal investigator that is willing to devote a lot of time to the project.

Acknowledgements:

Financial support for this work was provided by the Oklahoma Department of Transportation (ODOT) under three separate research grants. We also thank Dolese Bros., Holcim, LaFarge Concrete Co., Red Resins and W.R. Grace Construction Products for their donation of materials. We thank Kyran Mish, director of Fears Laboratory, for his understanding and support and Mike Schmitz, lab facilities manager, for his help organizing the lab.

Bibliography
