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Video Resources and Peer Collaboration in Engineering 
Mechanics:  Impact and Usage Across Learning Outcomes 

 
 
Abstract 
Video resources, largely in the form of recorded lectures or problem solutions, have become 
fairly commonplace in higher education classroom in the past few years.  Video authoring tools 
and distribution channels are now powerful and seamless, presenting a wide array of new 
opportunities for faculty to produce sharable educational assets.  Video resources, when created 
using pedagogical and multimedia best practices, are known to be valuable learning tools for 
students.  A variety of studies have enlisted cognitive load theory and/or the worked example 
effect to demonstrate efficacy in a variety of settings and disciplines. 
 
In this paper, we examine the use of video resources by students in an undergraduate engineering 
mechanics (dynamics) class, with a specific focus on how video consumption correlates to the 
achievement of specific learning outcomes.  We focus on video solutions to problems, and map 
student perceptions about the usefulness of the videos onto the learning outcomes for the course.  
Then, we map each graded assignment (homework, quiz, exam) onto those same learning 
outcomes, and compute an average score for each student on each learning outcome.  We use 
student background information and data about total video consumption to further enrich the 
discussion. 
 
The results indicate that some students find video resources crucial to their academic success, 
across learning outcomes, while other students extract little value from the video resources.  
These students indicate that they prefer to work alone, with another technology (i.e., the 
textbook), or in study groups rather than engaging with the technology as a partner for learning.  
Some learning outcomes within the course, notably those related rigid body kinematics and rigid 
body kinetics (via Newton’s laws), reveal that students perceive high value of the videos 
regardless of their grade on assignments related to those outcomes.  We find significant interplay 
with other factors reported on student background surveys, especially their views on 
collaboration. The data suggest that peer collaboration and video usage have a mutually-
reinforcing effect, with students actively engaged in both earning better grades in the course. 
 
Introduction 
Technology-based innovations in engineering education have a long history, and the relatively 
recent maturation of social media tools such as blogging and video have accelerated 
development of new approaches to support student learning. The idea of anywhere, anytime 
learning, supported by a variety of asynchronous resources, is particularly alluring in this modern 
era of hyperconnectivity. Giving students learning resources, and allowing them to choose when, 
where, how often, and with whom they use those resources holds the promise for powerful, 
personalized learning experiences. The sophistication of the learner matters, however, and it 
seems intuitive that some students are better at managing their academic environment than 
others.  As such, there are many open questions about how students use technology resources for 
learning, especially in the context of their full academic workload and their general approach to 
learning. In this study, we have introduced video technologies within the context of a sophomore 
mechanics classroom, and we ask the specific questions: to what extent do the videos support 
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student learning? Does student usage of the videos vary with learning outcome? Are the videos 
better suited to enable learning for more complicated topics? And how do students weigh the 
relative value of learning with videos against the other options available to them (the textbook, 
their peers, and the instructor)? 
 
Review of relevant literature 
Learning by watching experts solve problems. Dynamics belongs to the class of foundational 
courses for mechanical, aerospace, and civil engineering students, and their mastery of these core 
concepts is crucial for future success in the curriculum as well as the workplace. Developing 
mastery often involves a combination of actually solving problems (live, on paper), as well as 
watching experts solve problems (via pre-recorded videos). Solving problems is both an intuitive 
and well-worn idea whose value is not disputed, and engineering students are constantly 
sharpening their problem solving skills by actually solving problems on homework assignments 
and exams. 
 
The other part of this dyad, watching experts solve problems, leverages the worked example 
effect[1]–[3] (WE).  In brief, WE contends that students can become better at many cognitive tasks 
by watching experts solve problems via carefully-constructed learning materials. Worked 
examples can be paper-based or video-based, and in general the literature converges on the idea 
that studying worked examples can form a powerful approach to learning. Worked example 
research has focused on all manner of technical topics, including secondary math education[4], 
electrical engineering[5], and even engineering mechanics[6] and physics[1]. Especially when 
extended with other pedagogical tools such as self-explanation prompts[7], [8] or other kinds of 
scaffolding[9], worked examples are known to be a useful tool to support learning cognitively 
complex tasks with both efficiency and accuracy. 
 
Technology interventions and specific learning outcomes. Much of the worked example literature 
used a fairly controlled laboratory setting rather than an actual higher education classroom. Some 
of that literature focuses quite closely on mechanics related learning outcomes.  Recent work 
using controlled eye gaze experiments examined how students learn physics concepts from 
worked examples[10], with the conclusions supporting the central tenets of both the worked 
example effect (via cognitive load theory[11]) and effective multimedia design that leverages 
spatial contiguity principles[12]. Quite a bit of work in similar laboratory settings has focused on 
quantifying specific aspects of physics or mechanics problem solving using eye gaze 
technologies and other instruments to evaluate student differences[5], [13], [14]. And again, the 
preponderance of the literature supports the idea that learning very specific topics can be 
effectively supported with a variety of worked examples and other technology-based 
interventions. 
 
Technology interventions in a classroom environment. Studies to evaluate interventions in a 
classroom environment are more difficult to execute for a variety of reasons, not the least of 
which is the issue of experimental controls. A recent meta-review[15] of web 2.0 technologies 
concluded that at least the tools appear to do no harm in classrooms, and in the best cases they 
can be quite effective (such as when integrated into a full package of engaged pedagogies[16], 
assessments, and so forth that are self-consistent).  Although the authors conclude that strong 
evidence is still lacking, they nonetheless argue that web 2.0 technologies can be effectively 
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deployed in a variety of classroom contexts. However, a counterpoint emerges[17] when/if 
students perceive technology interventions to be “added” workload, an additional expectation, or 
in other ways conflicting with their preferred approach to learning. These two meta-reviews 
engage the underlying tensions of technology interventions in classroom environments: students 
perceive tremendous academic stresses on their time, and they make expeditious decisions about 
how to manage their workload; they seek to optimize task efficiency with task accuracy. To the 
extent that technology interventions clash with student expectations about how they best learn, 
such interventions may not be successful or even welcome.   
 
The gap in the literature. Taken together, these studies illustrate that technology-based 
interventions can be powerful aids to learning (the worked example effect), especially for 
cognitively complex tasks.  This has been repeatedly shown in various laboratory environments 
across different technical subjects. Yet, when deployed in classroom environments, the 
interventions may expose underlying tensions about how students manage their workload within 
their educational ecosystem, and what instructional supports they are comfortable accessing. 
These individual student differences are important and can seriously impact their learning[18]. We 
therefore observe a gap in the literature that helps to motivate this study: for students in a real 
classroom environment, what are the usage patterns of the various instructional supports (videos, 
peers, textbook, instructor) available to them, and in what ways does the ecosystem shape these 
usage patterns?  This paper gives a preliminary look at these issues using data collected during a 
recent academic semester in a Dynamics course. 
 
Study population, data, and methodology 
Student population.  The subjects in this study were students in the sophomore-level course 
Dynamics at a large, mid-Atlantic public university during the Spring 2012 semester.  Total 
enrollment in the course was 120 students, drawn mostly from mechanical and aerospace 
engineering (about 85% of the total enrollment), but also including students from biomedical 
engineering and other disciplines.  The course textbook was Hibbeler[19], and the Mastering 
platform was also used for online homework (HW) assignments (in addition to traditional hand-
written homework assignments).  There was a single section of this course offered in Spring 
2012.  Moreover, many of the students in this course were also enrolled in other single-section 
courses including Strength of Materials and a mathematics course (either differential equations, 
or probability and statistics).  As such, there were dozens of students in this class who shared 
nearly-identical technical course schedules, and they therefore could easily form study groups for 
in-person collaboration.  This question about collaboration habits is important and appears later 
in the paper. 
 
Course content and learning outcomes.  This course followed the Hibbeler text in terms of 
presentation, with one notable exception.  Kinematics content was covered at the beginning of 
the course, for both particles and rigid bodies, with kinetics for each following in sequence.  In 
terms of chapters in Hibbeler, the sequence was: particle kinematics (Ch. 12), rigid body 
kinematics (Ch. 16), particle kinetics (Chs. 13, 14, 15), and rigid body kinetics (Chs. 17, 18, 19). 
The course was structured with a total of 21 learning outcomes (LOs) organized into three 
essential categories (Table 1).  Due to time constraints during the course, none of the vibrations 
content [LOs 2(g) and 3(h)] was assessed, leaving 19 LOs explored in the course. 
 

P
age 26.1700.4



Technology components.  The course included two key technology elements that enabled 
anytime, anywhere learning and collaboration:  a course blog instead of a more traditional course 
management system (CMS), and substantial video content.  The course blog replaced the CMS 
as an information distribution channel, but it also served as a communication and peer 
collaboration platform through its posting and commenting features.  Students were awarded up 
to 3% of their final course grade based upon their level of participation on the blog.  Video 
content took two forms: (i) lecture videos were condensed, efficient coverage of lecture 
concepts, motivation, and derivations, typically lasting about 15 minutes, and (ii) video problem 
solutions were detailed solutions to dynamics problems authored by the course instructor, 
typically lasting between 5-20 minutes.  All videos were authored according to best practices for 
multimedia content creation[12], [20], and were distributed in compressed format for student use.  
Our data for this course and many others indicate that students use the lecture videos in very 
targeted ways, for instance if they miss class due to illness or a job interview.  Their overall 
perception of the lecture videos is rather lukewarm; they appreciate having access to them, but 
do not believe they are exceptionally helpful for their course performance.  They much prefer the 
video solutions, which more closely resemble the graded assignments in the course, and we 
therefore restrict the discussion in this paper to student perceptions about and use of video 
solutions. 
 
Table 1. Learning outcomes for Dynamics. 

1. Understand the kinematics of particles and rigid bodies, and describe their motion in 
quantitative terms. 

1(a). understand particle kinematics in multiple coordinate systems, including moving systems 
1(b). understand projectile motion 
1(c). define absolute and relative motion for particles 
1(d). understand planar kinematics for rigid bodies, including translation and rotation about a 
fixed axis 
1(e). define absolute and relative motion for rigid bodies 
1(f). apply rotating coordinate system techniques to the solution of planar rigid body problems 

2. Relate applied force/moment/torque to translational/angular acceleration using free body 
diagram methods. 

2(a). use FBD techniques to derive equations of motion (EOM) for particles 
2(b). apply Newton’s second law to relate force to acceleration in multiple coordinate systems 
for particles 
2(c). define moment of inertia for a rigid body 
2(d). use FBD techniques to derive EOMs for rigid bodies 
2(e). apply Newton’s second law to relate force to acceleration in multiple coordinate systems 
for rigid bodies 
2(f). derive EOMs for general motion of rigid bodies 
2(g). use Newton’s second law to derive EOMs for vibrating systems 

3. Apply energy and momentum methods to the solution of practical problems. 
3(a). understand kinetic and potential energy 
3(b). apply work-energy methods to particle kinetics problems 
3(c). understand the concepts of conservation of energy 
3(d). understand impulse, momentum, and impact 
3(e). apply I-M methods to particle kinetics problems 
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3(f). apply W-E methods to rigid body kinetics problems 
3(g). apply I-M methods to rigid body kinetics problems 
3(h). use energy methods to derive EOMs for vibrating systems 

  
Data. From the class, 83 students consented to participate in this study; participation was 
voluntary and did not impact their grade in the course.  The dataset for analysis includes 35 
pieces of graded work (each in the form of a mechanics problem to be worked from beginning to 
end and eligible for partial credit during grading) in all, including 19 hand-written HW 
assignments of two problems each (only one of which was collected and graded), two quizzes 
composed of one problem each, and three exams (two mid-terms, one final) composed of 5 
problems each (15 problems total).  The Mastering data from online homework (another 19 
assignments) was included in the student’s final course grade, but is excluded from the analysis 
here for two reasons.  First, the Mastering work was meant to encourage low-stakes practice, 
with multiple submissions allowed for each problem, and no hand-written work associated with 
the Mastering problems was collected.  Second, Mastering grading is only granular in the sense 
of how many attempts a student has taken—not in reference to the quality of their work leading 
up to submission of their answer. In the absence of any evidence of problem-solving process, we 
decided to remove the Mastering data from the analysis completed here because it is qualitatively 
different (i.e., no meaningful partial credit) than the other pieces of graded work in the analysis. 
Students also completed a small project (5% of their final grade) on a topic of their choice, and 
they earned class credit (up to 3% of the final grade) corresponding to their level of participation 
on the course blog.  The 35 assignments were mapped onto the course learning outcomes, while 
the project and course blog content were not (due to the diversity of topical areas covered in both 
the project and blog contents). Students in this study also completed 3 surveys totaling 91 items 
throughout the semester (pre-, mid-, and post-) , and these surveys covered a wide range of 
topics about their perceptions, work habits, collaboration habits, consumption of technology, and 
so forth.  Many survey questions asked about the overall course experience, but some survey 
questions targeted specific learning outcomes and/or topical areas for the course.  The surveys 
were mainly composed of Likert-scale items, with about 12 open response items covered over 
the three surveys.  Surveys were administered during class meetings, on paper, and then recorded 
into an Excel spreadsheet for further analysis.  Because not all consented students attended class 
on all three days on which surveys were administered, not all 83 participants completed all three 
surveys. 
 
Methods.  For all participants, survey and open response data were merged with gradebook data 
for the 35 graded assignments described above, plus the project and blog contributions points, 
into a master dataset that allows us to correlate survey and open responses with academic 
performance data. The learning outcomes are mapped onto each topical area for the course, and 
there are 8 of them: 
 

• Particle kinematics (P-K), Hibbeler Ch. 12 
• Particle kinetics, Newton’s law (P-N), Hibbeler Ch. 13 
• Particle kinetics, work-energy methods (P-WE), Hibbeler Ch. 14 
• Particle kinetics, impulse-momentum methods (P-IM), Hibbeler Ch. 15 
• Rigid body kinematics, including rotating coordinate systems, (RB-K), Hibbeler Ch. 16 
• Rigid body kinetics, Newton’s law (RB-N), Hibbeler Ch. 17 
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• Rigid body kinetics, work-energy methods (RB-WE), Hibbeler Ch. 18 
• Rigid body kinetics, impulse-momentum methods (RB-IM), Hibbeler Ch. 19 

 
The LOs were then mapped onto both the 8 topical areas defined above, as well as the 35 graded 
assignments included in the analysis.  In each case, one LO was defined as the “primary” LO for 
that topic or problem, and one or more “secondary” LOs were also defined.  This LO mapping 
allows us to connect specific problems to specific topics and specific LOs. In particular, we 
matched graded assignments to topical areas if any of the assignment’s learning outcomes 
matched the topical area’s primary learning outcome.  This mapping enables us to connect 
student gradebook data from specific topical areas with their survey responses to examine 
relationships among student perceptions and their academic performance.   
 
The population in this study is of reasonable size (n = 83 students) but the number of data points 
related to graded assignments per student can be small, especially for grade calculations related 
to a specific learning outcomes.  For instance, of the 35 graded assignments considered in this 
analysis, only 3 have learning outcomes that match the RB-IM primary outcome [which is LO 
3(h)].  The number of problems included in the analysis across topical areas ranges from a low of 
3 (for RB-IM) to a high of 10 (for RB-K), with an average of 5.5 problems.  In any event, 
because to the relatively small number of graded assignments per LO, we use simple descriptive 
statistics (mean, standard deviation) and trend analysis to illuminate this LO data, and we do not 
rely on more sophisticated statistical techniques.  When aggregating over the number of subjects 
in the population or a reasonably large subset thereof, we do use other statistical techniques as 
appropriate.  We also triangulate the data, where possible, with survey and open response data to 
add texture and meaning to the analysis. 
 
Results 
Important and challenging dynamics concepts.  In anticipation of these results, we begin by 
characterizing the expected difficulty of the topic areas listed in Table 2 in light of the Dynamics 
Concept Inventory (DCI)[21].   The DCI targets 11 core dynamics concepts, and these concepts 
were identified through a Delphi process[22] involving expert educators who suggested rigid body 
dynamics concepts their students struggled with.  From this process emerged a set of 11 key 
concepts that fall into the topical areas here as follows:  RB-K (5 DCI concepts), RB-N (3 DCI 
concepts), RB-WE (1 DCI concept), RB-IM (2 DCI concepts).  Results from 2005 suggest[21] 
that across the items on the DCI, 6 are the most problematic for students; they include two items 
on RB-K, two on RB-IM, and one each on RB-N and RB-WE.  Certainly some of the graded 
assignments in this course conform to the spirit of DCI problems, and in particular those 6 quite 
challenging DCI items.  Moreover, all students in the course have already completed the 
mechanics portion of college-level physics, which means that many of the particle concepts in 
dynamics are partially, at least, review for students.  Our conclusion, then, is that we expect 
students to perform worse in general on the rigid body learning outcomes than they do on the 
particle outcomes.   
 
Aggregate performance per learning outcome.  This analysis focuses on understanding any 
differences in student attitudes or performance by course learning outcome. Table 2 describes 
class averages on the primary learning outcome associated with each topic area, as well as the 
number of graded assignments used in the score calculation.  Each graded assignment represents 
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one problem, and each one is weighted equally in the mean score and standard deviation 
calculations regardless of whether the assignment was a HW, quiz, or exam question. This 
approach artificially deflates student scores on the per-topic calculations because a single 
homework problem is given equal weight to a single exam problem.  In the overall grading 
scheme of the course, and in the calculation for final course average used here, the HW problems 
were individually weighted quite a lot less than individual exam problems (and the final grades 
were calculated according to the weighting scheme detailed on the course syllabus). The last 
column on the table indicates the student perception of usefulness of the video solutions 
available to them, by topic area, averaged across all students who completed the post-survey 
(which contained this item).  Survey responses were on a 0-1-2 scale, with 0 being “low” 
usefulness and 2 being “high” usefulness.  The scores reported on the table support our 
contention that students would perform more poorly on rigid body concepts than on particle 
concepts.  Not only are the average scores lower for rigid body concepts, but the standard 
deviations tend to be higher, indicating more scatter in student performance.  In the aggregate, 
students perceive the video solutions to be somewhat useful, and we note that on the topic that 
students generally find very challenging (RB-K, which includes rotating coordinate systems), 
they perceive the videos to be more useful. 
 
Table 2. Topic area breakdown of student performance, perceptions of video usefulness, with 
number of assignments composing each area. 

Topic area # assignments Mean score (%) St. Dev. (%) Average video usefulness 
P-K 5 88.1 10.9 0.98 
P-N 4 88.9 8.9 1.05 
P-WE 8 88.3 8.4 1.07 
P-IM 6 93.5 7.5 1.07 
RB-K 10 83.3 10.5 1.32 
RB-N 4 81.0 13.7 1.13 
RB-WE 4 85.2 10.2 1.15 
RB-IM 3 84.3 9.3 1.15 
 
Individual performance, and complicating factors, per learning outcome.  Individual student 
performance gives further clues about how students use their available support resources to 
promote their academic success.  Figure 1 illustrates student performance by topic area, their 
final course grade, and their perception of usefulness of video solutions for that topic area.  The 
figure reinforces the notion that generally students perform better on particle topics than on rigid 
body topics (as reported in Table 2), as the spread in the topic scores seems to be higher for rigid 
body topics.  The colors on the figure also convey the idea that students perceive the rigid body 
videos to be slightly more useful than the particle videos (due to the presence of less black 
symbols—low usefulness—on those sub-figures).  In the dataset, there were 16 students whose 
assessments of usefulness were not uniform across all topic areas, and their usefulness 
assessment averaged 0.48 on particle topics and 1.05 on rigid body topics (on the 0 = low, 1 = 
medium, 2 = high scale).  This again reinforces the notion that students perceive the rigid body 
material to be more difficult and to derive more use from the rigid body videos.  It seems clear 
that students attached value to the video solutions and recognized that they could be helpful for 
their learning, especially for more difficult topics in the course. 
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Figure 1.  Perceived usefulness of video solutions by topic area, with student grades on 
assignments related to those topics and overall course grade. 

The role of peer collaboration.  Much of the research on technology interventions focuses on 
laboratory work that considers the intervention in the vacuum of the controlled experimental 
setting.  In truth, all educational interventions—technological, pedagogical, and so forth—exist 
within the ecosystem of each class, and within the student’s ecosystem of their overall college 
experience.  Students have many competing demands on their time, and we might rightly ask:  
within a real educational context, what mediating factors might influence when/how/how often 
students use video resources to support their learning?  Our previous research[23]–[25] has shown 
that attitudes about peer collaboration may be important for students, and we explore this issue 
next as a mediating factor for video usage. 
 
More granularity on a per-student basis is shown in Figure 2, which contains four different sets 
of data.  The two axes of the plot are two survey items from the post-survey:  a binary question 
about whether a student prioritizes peer collaboration, and an item about the perceived usefulness 
of video solutions on the topic of RB-IM.  The bubble radii correspond to the reported total 
consumption of solution videos by the student (as determined by an item on the post-survey), and 
the color of each bubble indicates the student’s performance on all graded assignments whose 
primary learning outcome was related to RB-IM.  The two axes are categorical data, with two 
levels on the peer collaboration question, and three on the perceived usefulness question.  As 
such, we have jittered the data so that all the bubbles do not fall exactly on top of each other.  
Jittering is a data visualization technique[26] that adds a small amount of random noise to 
measurements to avoid having data points fall exactly on top of each other, and it is particularly 
useful for visualizing the categorical data on this plot.  Only the measurements on the two axes 
are jittered. 
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The plot contains great depth and richness and requires explanation.  First, this plot is 
representative of the class of plots corresponding to all 8 topical areas listed in Table 2.  Only 
the plot for RB-IM is shown here, but the plots for all eight topic areas are qualitatively similar 
to this one.  Second, generally students who perceived higher usefulness (higher on the y-axis) of 
the videos consumed more of them (larger bubble radius).  Third, generally students who 
consumed more of the videos (larger bubble radius) earned a better score on graded assignments 
(more blue and green colors). Fourth, generally students who prioritized collaboration (more 
blue and green on the right side of the figure) outperformed those who did not, regardless of 
number of videos consumed or perceived usefulness.  Fifth, some students perceived high 
usefulness and consumed many videos, yet did not score very well on graded assignments (large 
red bubbles). 
 

	  
Figure 2.  Bubble plot of student attitudes and performance on four metrics: perceived usefulness 
of video solutions, prioritization of peer collaboration, video consumption, and academic 
performance on graded assignments.  The perceived usefulness and assignment grade correspond 
to topic area RB-IM. 

 
Mismatch in performance on different learning outcomes.  We now introduce a new metric that 
helps shed some light on student performance across learning outcomes.  We define a mismatch 
parameter 𝑆!,! for student i as follows: 
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                                      𝑆!,! = 𝑔!,! − 𝑔!,!

!!!
!!!

!
!!!  (1) 

 
where the 𝑔!,! and 𝑔!,! are the average grades of student i on graded assignments for topical area 
k and j as defined in Table 2.  For the 8 topical areas in this study, there are a total of 28 terms in 
the mismatch summation for each student, as follows.  For area 1, there are 7 other areas 
available for the mismatch calculation. For area 2, there are 6 others (because its mismatch with 
area 1 has already been calculated).  For area 3, there are 5 others, and so forth, until we arrive at 
the total of (7+6+5+4+3+2+1 =) 28 terms in the summation.  
 
This mismatch parameter characterizes the variation in student experience/perception of the 
difficulty of material in the course, relative to himself/herself. A small mismatch parameter 
means that a student found all the topical areas to be of roughly equal difficulty and their 
performance was about the same on each area.  A high mismatch indicates that a student found 
some material more challenging than other material, and their performance on graded 
assignments reflects that. As a practical matter, the minimum value for 𝑆!,! is zero (the student 
performs exactly the same on each topic area) and the maximum mismatch could be as large as 
800 or 900 (for a student whose performance is wildly erratic across topical areas).  In this study, 
the minimum mismatch score was 52.5, the mean was 248, and the maximum was over 700. The 
class average mismatch 𝑆!,!"#$$, calculated via equation (1) using class averages on each topic 
area in the j and k summations, was about 130, corresponding to just less than ½ letter grade 
mismatch (130/28 = 4.6 percentage points) on average. A statistical summary of the data, parsed 
by mismatch score, is given in Table 3.   
 
The relationship between mismatch and final course grade is perhaps not surprising:  high-
performing students earned a strong grade by performing well on each topic area.  Poorer-
performing students scored more erratically across topic areas.  Students with highly-erratic 
performance scored the worst of all. We intentionally chose a comparison of student 
performance to himself/herself, rather than to the class as whole, because we were interested in 
each student’s performance as they experienced and perceived different topics of different 
difficulty in the course.  We explored a number of other potential definitions for the mismatch 
parameter, some involving the class average mismatch, and all yielded qualitatively similar 
results to those reported here. 
 
We are particularly interested in understanding students with low mismatch scores, those whose 
experience in the course was fairly level and who performed about the same on each of the topic 
areas.  We further parse this group into two sub-groups: high performers (nhigh = 16, final course 
grade > 90%) and low performers (nlow = 10, final course grade < 80%).  Our question is: do we 
see any differences in video consumption or collaboration patterns between these two groups? 
 
Figure 3 is a bubble plot comparing performance of students with mismatch parameter 
𝑆!,! < 300.  We choose 300 as the cutoff because across the 28 terms in the mismatch 
summation, a mismatch of 300 corresponds to an average mismatch of just over 10 percentage 
points, or about one letter grade.  The bubble radius indicates each student’s reported total usage 
of video solutions (larger radius = more solutions watched), and the bubble color indicates the 
student’s response to the post-survey item about whether they prioritize peer collaboration (black 
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= no, red = yes).  The trend is clear:  higher-performing students tend to collaborate more with 
peers and consume more video resources than lower-performing students. However, the relative 
value of either form of collaboration, with peers or with the videos, requires more exploration. 
 
Table 3.  Mismatch score range and academic performance of students in each range. Final 
course grades are calculated for students within each mismatch score range. 

Mismatch score 
(points) 

# students Final course grade 
Mean (%) Standard deviation (%) 

0-100 4 95.2 5.1 
100-150 16 87.9 6.0 
150-200 19 85.5 5.7 
200-250 12 85.5 5.8 
250-300 4 80.2 2.9 
300-350 7 84.0 6.8 
350-400 11 80.5 8.7 
400-450 5 85.1 6.2 
450-500 3 76.1 -- 
500-600 1 79.8 -- 
600+ 1 74.2 -- 

 
The relative roles of video usage and peer collaboration.  Our data do not allow us to parse out 
effect sizes for the contribution of peer collaboration, video usage, or other factors to overall 
student academic performance.  But we can say something about the total ecosystem in which a 
student experiences each of these and give a qualitative description of what we believe to be the 
underlying factors impacting technology usage and peer collaboration. 
 
(a) The role of video usage.  Laboratory and even some controlled in-class experiments have 
consistently demonstrated the worked-example effect for students in many different disciplinary 
areas. The worked-example effect posits that students can learn by studying worked examples, 
and that their learning is improved through intentional scaffolding of various other instructional 
experiences around the worked examples.  For example, worked examples that include reflective 
instructional prompts[27] or requests for self-explanations[28] were found to improve student 
learning. This paper, as well as our prior research, shows the strong suggestion of the worked 
example effect at work. Generally, students who consume more videos perform better in class, 
across all topic areas.  
 
(b) The role of peer collaboration. However, there are certainly some students who consume 
many videos yet do not earn a good result on either specific topics or in the course as a whole. 
Our data certainly suggest an additive effect in which more peer collaboration, combined with 
higher video consumption, leads to improved outcomes. There are outliers in the data, to be sure, 
but the general trend seems to be positive reinforcement of video usage and peer collaboration. 
Peer-mediated learning is widely known to be a potentially valuable strategy for students, so the 
positive role of peer collaboration is no surprise. However, we do see evidence that students 
sometimes prefer peer collaboration to video usage.  In open response items on the surveys, 
more than one dozen students expressed some version of “I prefer to collaborate face to face, 
rather than using digital technologies” (which would include both videos and the course blog), so 
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it is clear that some students simply relied on their peers in study groups to learn the content.  
This is completely consistent with the observation above that many students are in many of the 
same (single-section) courses together, so study groups across multiple courses can provide a 
stable peer group that is valuable and productive. 
 
Taken together, the entirety of the student ecosystem for learning becomes more clear. Within 
the context of this class, students have finite time and cognitive resources to devote to class 
activities. Students seek to optimize the time they spend and their usage of available support 
resources. Students can collaborate with the learning technologies available to them, including 
the video solutions, the textbook, their peers, the instructional team (office hours), and internet 
resources.  Students therefore attempt to shape their approach to the course to emphasize 
collaboration with whatever resources they are most attracted to. 
 
But our data suggest only mild agility when it comes to shaping their approach to learning 
based upon task complexity/learning outcome.  There is very little evidence in our dataset that 
students alter their approach to use more of less of any one resource in response to a change in 
difficulty of a course topic. Some of the open response items from the surveys reveal student 
usage of videos in targeted ways for difficult concepts: “[I use the videos] only when I’m not 
understanding a matter/subject”. And we have presented evidence of differential perceptions of 
usefulness of solution videos across topic areas. But our data at present do not support the 
contention that students employ a highly dynamic study strategy that truly optimizes their 
approach and usage of available resources, by learning outcome or topical area. 
 
This observation may have important implications for how we think about educational 
interventions, especially technology-mediated interventions.  Too often interventions are 
developed in idealized settings, and their use by students in the full context of their educational 
experience is not fully considered.  Here, we have learned that the video solutions we have 
developed are: (i) generally viewed by students to be useful (sometimes differentially by learning 
outcome), and (ii) students who use the videos more actively generally perform better on graded 
assignments, but (iii) given the choice of which collaborative resources to use (peers, textbook, 
videos, or instructor), students may not always prioritize the intervention (the videos) the way we 
might like or expect. Within the overall educational ecosystem experienced by the students, they 
make decisions and trade-offs about how they spend their time, with whom, and doing what.  
Their rationales for decisions about use (or not) of various kinds of educational interventions can 
be opaque and a complicated function of their workload, peer group, ease of access to the 
resources, predisposition toward technology, and the difficulty of the material.  While there has 
been a large amount of research about change processes involving faculty adoption of 
innovations[29], [30], it appears that more research is needed to fully understand student choices 
about which interventions might afford them a powerful and efficient learning experience. 
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Figure 3.  Comparison of video consumption and final course grade for low and high mismatch 
students. 
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Conclusions 
In this paper, we present recent research results concerning the use of video-based instructional 
resources in a Dynamics class. Our goal was to examine technology usage and impact as a 
function of learning outcome in the course, and we used the 8 topical areas across particle and 
rigid body dynamics as representative of the key learning outcomes. We examined class 
performance across and within topical areas, as well as video usage, attitudes about 
collaboration, and perceptions of video usefulness (on a per-topic basis) to develop a description 
of student usage and decision making about these instructional supports. We generally conclude 
that students who use the videos more actively perform better in the course, a clear suggestion of 
the worked example effect at work. In addition, we found that generally students who 
collaborated with peers more actively performed better in the course, a result consistent with the 
large body of literature on collaborative- and peer-based learning strategies. We did not find 
especially persuasive evidence of per-learning-outcome differences in student usage and 
approach, although some elements of this did appear in open response items on our surveys.  
Students also perceived some differences in the usefulness of the videos by learning outcome, 
suggesting that perhaps students viewed some topics as cognitively more demanding than others. 
The most important outcome of this work is that well-established ideas like the worked example 
effect, when integrated into an actual classroom environment, co-exist in the student’s ecosystem 
that is filled with competing choices and priorities. Student agility in shaping their learning 
environment by accessing the full spectrum of instructional support resources appears to be low. 
Despite the evidence that an intervention may add value in a controlled setting, a classroom 
environment may introduce irresolvable conflicts to students that may limit adoption or 
effectiveness of an innovation in practice. More research about these conflicts and their 
resolution would certainly be a welcome addition to the literature. 
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