
Paper ID #11861

Work in Progress: Intelligent Tutoring Systems in Computer Science and
Software Engineering Education

Dr. John C Nesbit, Simon Fraser University

John Nesbit is a professor in the Faculty of Education at Simon Fraser University, Canada, where he
conducts research on argumentation and learning, multimedia learning, self-regulated learning and the
effectiveness of intelligent tutoring systems. He has collaborated with colleagues to publish over 60 peer-
reviewed journal articles, book chapters and indexed conference papers.

Li Liu, Simon Fraser University

Li Liu is a second year doctoral student in Educational Technology and Learning Design at Simon Fraser
University. With an interdisciplinary background in interaction design, media arts and education, her
passion lies in exploring how innovative technologies can be harnessed to promote teaching and learning.

Qing Liu, Simon Fraser University

Qing Liu is a doctoral student in Educational Technology and Learning Design at Simon Fraser University.
Her research focuses on conceptual change, the potential of learning by arguing, the role of need for
cognition in learning, the effectiveness of intelligent tutoring systems, and meta-analysis of empirical
studies.

Dr. Olusola O Adesope, Washington State University-Pullman

Dr. Olusola O. Adesope is an Assistant Professor of Educational Psychology at Washington State Uni-
versity, Pullman. His research is at the intersection of educational psychology, learning sciences, and
instructional design and technology. His recent research focuses on the cognitive and pedagogical un-
derpinnings of learning with computer-based multimedia resources; knowledge representation through
interactive concept maps; meta-analysis of empirical research, and investigation of instructional princi-
ples and assessments in STEM.

c©American Society for Engineering Education, 2015

P
age 26.1754.1

Work in Progress: Intelligent Tutoring Systems in Computer

Science and Software Engineering Education

John C. Nesbit, Arita Liu, Qing Liu

Simon Fraser University

Olusola O. Adesope

Washington State University

Abstract

Many research reports have been published over the last 30 years on the use of intelligent

tutoring systems in computer science and software engineering education, but no

previous systematic review has been conducted to describe and assess the field as a

whole. This project (in progress) searched for publications meeting defined inclusion

criteria and identified 280 eligible reports. We are currently coding these works using 28

variables that will allow us to describe the research field in aggregate. The results will tell

us: What research questions are being asked? What are the types of student modeling

being used? What subject domains have ITS been designed for? What issues or themes

are most evident in recent research? What are the gaps in research on intelligent tutoring

systems in computer science and software engineering education. Finally, what

technological and pedagogical innovations are needed to advance research in this field?

Research on intelligent tutoring systems (ITS) has accelerated over the last decade, and scholarly

interest in such systems has never been greater.
1
 ITS have been developed for a wide range of

subject domains (e.g., mathematics, physics, biology, medicine, reading, languages, and

philosophy) and for students in primary, secondary and postsecondary levels of education.

Although most ITS have been developed by researchers and never deployed outside the

laboratory or the single university-level course for which they were designed, there are examples

of mature systems that have been deployed more widely and extensively evaluated.
2, 3

Like previous reviewers
1, 4, 5

we have adopted a definition of ITS that emphasizes student

modeling as an essential characteristic. We identify an ITS as any computer system that performs

teaching or tutoring functions (e.g., selecting assignments, asking questions, giving hints,

evaluating responses, providing feedback, prompting reflection, providing comments that boost

student interest) and adapts or personalizes those functions by modeling students’ cognitive,

motivational or emotional states. This definition distinguishes ITS from test-and-branch tutorial

systems which individualize instruction by matching a student’s most recent response against

preprogrammed, question-specific targets. Complicating matters, there are sophisticated

P
age 26.1754.2

computerized adaptive testing systems, not usually considered to be ITS, that use item response

theory to model student ability as a single dimension.
6
 To distinguish ITS from such systems we

further specify that student modeling must be multidimensional.

Quantitative and Meta-Analytic Reviews on the Effectiveness of ITS

The first quantitative review which compared the instructional effectiveness of ITS to other types

of instruction was an analysis published in 2011 by VanLehn that examined learning outcomes in

STEM.
7
 VanLehn was primarily interested in distinguishing between human tutoring and three

types of computer-based tutoring systems: answer-based, step-based, and substep-based.

Answer-based systems typically assign a problem and then provide feedback and further

branching that depends on the student’s answer. Conventional test-and-branch, computer-based

instruction programs are usually classified as answer-based systems. Step-based and substep-

based systems have finer-grained interfaces that provide instructional support as the student

progresses through the solution of a problem. Most ITS that teach students procedures for

solving problems in areas such as math, physics and chemistry would be classified as step-based

or substep-based systems. VanLehn found very little difference in post-test performance between

students learning from human tutoring and step-based or substep-based systems; and, based on a

small number of primary studies, he found that answer-based systems tend to produce poorer

posttest performance than step-based systems (.40 SD) and substep-based systems (.32 SD).

Steenbergen-Hu and Cooper published two methodologically rigorous meta-analyses on the

effects of using ITS.
8, 9

 In a 2013 review covering primary and secondary mathematics they

found no significant difference between ITS and other modes of instruction when measured by

standardized tests; but when measured by course-specific tests designed by teachers or

researchers, there was a small, statistically significant effect (g = .19) favoring ITS. In 2014, they

published a second meta-analysis that examined ITS learning outcomes in postsecondary

education. They found that, overall, ITS significantly outperformed other modes of instruction (g

= .35). They also found that human tutoring produced only slightly better results than ITS (g =

-.25), and the difference was not statistically significant.

More recently, we co-authored the first comprehensive meta-analysis on the effectiveness of

ITS.
1
 It included all available studies prior to 2012 that compared ITS to other types of

instruction. We analyzed 107 effect sizes comparing learning outcomes from ITS against other

types of instruction and found a statistically significant, overall weighted mean effect size

favoring ITS of approximately g = .40. Similar effect sizes were found when ITS were compared

specifically to textbooks, large teacher-led classes, and non-ITS computer-based instruction.

However, no significant differences in learning outcomes were found when ITS were compared

to one-to-one tutoring and small group instruction. ITS were found to be significantly more

effective than other types of instruction at all levels of schooling (elementary, secondary, and

postsecondary) and in most subject domains, including computer science (approximately, g =

.50).

To summarize, the recent quantitative reviews indicate that research has found ITS to be more

effective than other types of instruction except one-to-one and small group instruction provided

P
age 26.1754.3

by a human. For unknown reasons, this pattern of advantage for ITS was not found in the

specific case of mathematics at the elementary and secondary levels.

Meta-Analysis of ITS in Computer Science and Software Engineering Education

We recently reported a meta-analysis of 22 effect sizes that compared ITS to other types of

instruction in the subject domain of computer science and software engineering (CS/SE)

education.
10

 Although an overall effect size associated with ITS in the domain had been already

established
1
 our meta-analysis sought to examine how the effect of using ITS breaks out by

moderator variables such as type of student modeling and whether the ITS modeled

misconceptions.

The studies that met our inclusion criteria were published from 1998 to 2013. Although a few of

the better-known student modeling techniques were represented in our sample, most of the ITS

tested in the primary research used ‘one-off’ student model designs that appeared in only a single

evaluative study. We found that learning outcomes were significantly higher for students using

ITS than those learning in large teacher-led classes (g = .67) or from non-ITS, computer-based

instruction (g = .89). ITS were associated with better learning outcomes when they were used as

the principle means of instruction and also when they served an assistive or supplementary

function. ITS were more effective than other types of instruction when they modeled

misconceptions (g = .41) and when they did not (g = .68).

Purpose of the Systematic Review

Meta-analysis is appropriate for assessing an intervention that is identifiable prior to the

searching and coding stages of the review process. Because meta-analysis focuses on comparison

of pre-identified treatments it is not suitable for a broader examination of the whole body of

research on a topic such as the use of ITS in CS/SE education. As it required quite specific

inclusion criteria, our meta-analysis excluded all but 21 research publications, which we

observed to be a minor fraction of all research on the topic. We are now conducting a systematic

review to discover the significant features of research in the field. The review is addressing

questions such as:

 What subject areas within CS/SE education (e.g., programming, database design) have

been taught by ITS?

 What instructional functions (e.g., task assignment and sequencing, hints, feedback,

motivational prompts) are adapted by the systems?

 What types of student models are being designed and used?

 What instructional strategies are the ITS based on?

 What interface features are being used in the ITS?

P
age 26.1754.4

 What research questions are being investigated?

 What are the most recent research trends?

 In what ways might the research be advanced or improved?

The systematic review is critically evaluating research on the use of ITS in software engineering

education and will make recommendations for improving the quality of methods and reporting in

primary studies.

Method

We completed a search of five major bibliographic databases (IEEE, SpringerLink, Web of

Science, PsycInfo, ERIC) using the following search expression:

("computer science education" OR "software engineering education" OR "computer

literacy" OR "database design" OR "network security" OR "introductory computer" OR

"introductory programming" OR "teach* programming" OR "learn* programming")

AND ("intelligent tutor*" OR "adaptive tutor*" OR "cognitive tutor*")

The 1085 unique reports returned by this search were augmented by 72 reports obtained by

consulting reference sections of review papers and conducting informal searches. We adopted

the following inclusion criteria:

1. The paper must deal in a substantial way with an ITS.

2. The ITS must be intended for use or substantially evaluated in the curricular domain of

software engineering education, computer science education, computer literacy, or cognate

areas.

3. The paper must be a review, a system design report, a system evaluation report, or an

empirical evaluation.

We read the titles and abstracts of the 1157 reports and excluded all but 325, which were

downloaded so their full text could be examined. After examining the full texts, 280 reports were

retained for the systematic review.

In developing an initial set of variables and codes, especially those which describe the

characteristics of the ITS studied, we were guided by previous reviews and meta-analyses. For

example, a recent review
11

 attempted to classify ITS developed for learning programming into

six tutoring approaches (example-based, simulation-based, dialogue-based, program-based,

feedback-based, collaboration-based). These categories informed the development of the

instructional strategy variable shown in Table 1.

A codebook was developed by a two-phase, formative coding process that was seeded with the

initial set of 28 variables. There were two main goals for the formative coding process. The first

P
age 26.1754.5

goal was to develop a final set of variables and codes that represented features of the studies

matching our research questions and which could be efficiently and reliably applied to extract

those features. The second goal was to train two researchers (Liu and Liu) to code the studies in

a mutually consistent and accurate manner.

In the first phase, the two coders independently coded six randomly selected papers and then

compared the results. The two coders met to resolve all differences that did not require changes

in the tentative set of variables and codes. They subsequently met with a third researcher (Nesbit)

to discuss coding problems and opportunities that indicated changes to the codebook. At that

meeting decisions were taken to clarify, delete, add or revise variables and codes. The most

common changes resulted from ambiguity in the descriptions of the initial variables and codes.

Other changes were made so that the variables captured more of the relevant features of the ITS

and research described in the primary studies. For example, the coders noticed the prevalence of

pedagogical agents in the ITS described in the primary research and a decision was taken to add

a pedagogical agent variable to the codebook. In the second phase of formative coding, another

six papers were randomly selected and independently coded by the two researchers. A

comparison found that the only disagreements between the coders centered on two variables:

research validity and treatment fidelity. The discrepancies were mainly attributed to poor

reporting of research methods in the primary studies, especially in brief conference proceedings.

Most of the sampled reports provided insufficient information on the research methods to allow

reliable and consistent coding of research validity and treatment fidelity. Consequently those

variables were removed from the codebook. After adding and deleting several variables, the final

codebook consisted of 28 variables and their associated codes.

The two phases of formative coding played an important role in (a) selecting, shaping and

clarifying the variables and codes in the codebook, and (b) preparing the reviewers to

independently code the primary research with a high degree of reliability. Table 1 shows a

sample of the variables and codes in the final version of the codebook.

Table 1. A Sample of the Variables and Codes used in the Systematic Review

Research Type

Design proposal

Empirical evaluation

Review

Other

Student Model Type

Model tracing only

Knowledge tracing

Constraint-based modeling

Bayesian network modeling

Expectation and misconception tailoring

Open learner modeling

Other

P
age 26.1754.6

Instructional Strategy

Example-based

Program visualization

Program analysis

Natural language dialogue

Collaborative learning

Problem-oriented

Adapted Instructional Functions

Feedback

Hint

Task selection

Task sequencing

Dialogue summarization

Agent facial expression

Other

Results

Although few results are available now, we were able to complete four of the more easily coded

variables. Figure 1 shows the distribution of publication dates for the included studies. It

demonstrates continued growth of scholarly interest in the use of ITS in CS/SE education.

Figure 1. The number of published research reports on ITS in computer science and software

engineering education (in 5-year periods).

Table 2 shows the number of research publications broken out by publication type, educational

level and subject domain. We observed that ITS used for teaching programming dealt with a

variety of programming languages including Java, PHP, Python, Ada, C, C++, LISP, and Prolog.

0

10

20

30

40

50

60

70

80

90

1975-1979 1980-1984 1985-1989 1990-1994 1995-1999 2000-2004 2005-2009 2010-2014

E
li

g
ib

le
 P

u
b

li
ca

ti
o
n

s

Year

P
age 26.1754.7

Note that under subject domain, the categories computer science and software engineering refer

to general curricula in those subjects.

Table 2. Number of Publications by Publication Type, Education Level, and Subject Domain

Publication type

 Proceedings 198

 Journal article 66

 Book chapter 16

 Dissertation 1

Education level

 Postsecondary 190

 Postsec/Secondary 8

 Postsec/Sec/Primary 1

 Secondary 5

 Not reported 72

 Not applicable 1

 Other 3

Subject domain

 Programming 175

 Computer literacy 26

 Database design 41

 Computer science 15

 Network security 5

 Software engineering 6

 Artificial intelligence 3

 Other 9

What We Know So Far

Research has established that intelligent tutoring systems can be effective tools for learning that

compare favorably with other types of instruction. There is evidence based on a few studies that

for some learning goals they may be as effective as small-group human tutoring and nearly as

effective as one-to-one human tutoring. ITS seem to be particularly effective in CS/SE education

when compared with large-teacher-led classes and non-ITS computer-based instruction. We

speculate that relative to some of the other subject domains in which ITS have been evaluated,

CS/SE education has a higher proportion of procedural learning goals and a lower proportion of

conceptual learning goals. Programming is largely a cognitive skill, and learning to program

requires problem solving practice. Compared to large group instruction, ITS provide more

individualized task assignment and feedback that may increase the opportunity to learn from

practice. Compared with non-ITS computer-based instruction, ITS provide feedback at a more

granular level – at the level of the problem solving step rather than the problem answer. This

difference in level of interaction has been theorized to account for much of the ITS advantage in

teaching procedural cognitive skills.
3

P
age 26.1754.8

Our systematic review has found that research on the use of ITS in CS/SE education has grown

significantly over the last 30 years and, like ITS research generally, the field has never been

more active. Most of the publications are brief proceedings papers, indicating that most of the

research is being done by researchers from computer science and software engineering where

proceedings are the most common publication format, rather than from education where journal

articles are more common. There is far more research being conducted with curricula at the

postsecondary level, and most of it is focused on teaching programming. It may be that

researchers in computer science and engineering departments find it most convenient to develop

ITS for courses they themselves teach, or perhaps they seek to develop systems that would have

the most value within their own academic departments.

In the final version of this review we will report on the characteristics of the ITS themselves,

including the types of instructional strategies, the types of student models, and the instructional

functions that are individualized. We will also report on the research questions that are driving

empirical and design-oriented studies in the field.

Recent Trends and Themes

An examination of the research published over the last two years suggests several emphasized

themes. Although these themes are not necessarily new to the area, they are currently attracting

considerable attention from researchers.

Some recently developed systems combine ITS and gaming.
13, 14, 15

 In ITS designed to teach

programming, gaming often takes the form of a simulation-based instructional strategy in which

students are given puzzles to solve in a virtual environment. For example, in BOTS,
14

students

program a robot to move blocks into specified positions in a virtual environment. The ITS acts as

a coach by generating hints to help students improve their performance.

One current research trend involves tracking and modeling students’ affective state to inform and

individualize instructional interactions.
16, 17, 18

 The interest in emotional modeling for CS/SE

education reflects a wider trend in the ITS research community. Much of the research is still

working out how to model emotion from one or more data sources and does not attempt to

incorporate the model in an ITS. For example, Grafsgaard et al. tracked student posture, gesture

and skin conductance during human-to-human, computer-mediated tutorial dialogues about Java

programming. They found that students’ shifts in posture and gesturing were associated with

particular types of dialogical moves by the tutor (e.g., positive feedback).

Pedagogical agents are anthropomorphic characters in educational software that are usually

represented by static or animated avatars and are used to deliver notifications, messages and

tutorial dialogues. We found that systems combining ITS with pedagogical tutors, which first

appeared about 17 years ago, continue to be improved and evaluated by researchers in CS/SE

education.
12, 13, 19, 20

 The accumulated evidence indicates that pedagogical agents are associated

with small, positive effects on learning,
21

 but that the content of instructional messages is far

more important than whether the messages are presented by an anthropomorphic figure.
20

Researchers in CS/SE education are exploring whether virtual agents can help students interpret,

P
age 26.1754.9

cognitively organize, and appropriately attend to the information ITS provide. For example, ITS

that provide many types of messages or notifications may be able to improve pedagogical utility

by assigning each broad category of message to a different pedagogical agent.
19

Hints are strategic dialogical moves that assist learners in answering a question or solving a

problem. The related problems of automatically generating hints and determining appropriate

conditions under which to present them have received considerable attention from the ITS

research community. We found substantial recent research on hints for ITS in CS/SE

education.
14, 19, 22, 23

 Interestingly, there is recognition that the conditions for providing hints

include the motivational state of the student because de-motivated students are inclined to

request hints immediately rather than expend effort in problem solving.
22

 The problem of

automatically generating hints is quite specific to ITS that coach beginning programmers. In

generating hints for the BOTS environment, for example, researchers found that they were able

to generate hints more easily by analyzing the state of the world resulting from the program that

moved the blocks (i.e., the positions of blocks) than by analyzing the program itself.
14

Recommendations

Even at this incomplete stage of data gathering and analysis, we have observed several inter-

related barriers to advancement of ITS in CS/SE education. First, there may be insufficient

attention given to coordination with and replication of work being conducted by other groups.

We believe the field would benefit from greater effort to build on the work of others. Second, we

believe the research could be accelerated by establishing a standard, open-source ITS platform

for teaching introductory programming. When researchers conduct design research on a single

aspect of an ITS, say a pedagogical agent, an open-source platform would allow lower

development costs because the researchers would likely only need to develop the re-designed

pedagogical agent component and not the entire system. Also, evaluation and comparison of

alternate designs by different researchers would be more feasible because they would be

variations on the same base system. Finally, we were able to locate very few review articles

about ITS in CS/SE education. Review articles are crucial for (a) consolidating theories and

methods that guide further primary research, (b) critically evaluating the state of research and

recommending improvements, and (c) identifying neglected topics that require the attention of

researchers. Our completed systematic review will contribute in each of these three areas.

Bibliography

1. Ma, W., Adesope, O. O., Nesbit, J. C., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A

meta-analytic survey. Journal of Educational Psychology, 106, 901-918.

P
age 26.1754.10

2. Sabo, K. E., Atkinson, R. K., Barrus, A. L., Joseph, S. S., & Perez, R. S. (2013). Searching for the two sigma

advantage: Evaluating algebra intelligent tutors. Computers in Human Behavior, 29, 1833-1840.

doi:10.1016/j.chb.2013.03.001

3. VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., Tracy, D., Weinstein, A., &

Wintersgill, M. (2005). The Andes Physics Tutoring System: Lessons Learned. International Journal of

Artificial Intelligence in Education, 15, 147-204.

4. Shute, V. J., & Psotka. J. (1996). Intelligent tutoring systems: Past, present, and future. In D. Jonassen (Ed.),

Handbook of Research for Educational Communications and Technology (pp. 570-600). New York, NY:

Macmillan.

5. Sottilare, R., Graesser, A., Hu, X., & Holden, H. (Eds.) (2013). Design Recommendations for Intelligent

Tutoring Systems. Orlando, FL: U.S. Army Research Laboratory.

6. Kuo, C., & Wu, H. (2013). Toward an integrated model for designing assessment systems: An analysis of the

current status of computer-based assessments in science. Computers & Education, 68, 388-403.

doi:10.1016/j.compedu.2013.06.002

7. VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other

tutoring systems. Educational Psychologist, 46, 197-221.

8. Steenbergen-Hu, S., & Cooper, H. (2013, September 9). A meta-analysis of the effectiveness of Intelligent

Tutoring Systems on K-12 students’ mathematical learning. Journal of Educational Psychology. Advance

online publication. doi:10.1037/a0032447

9. Steenbergen-Hu, S., & Cooper, H. (2014). A meta-analysis of the effectiveness of Intelligent Tutoring Systems

(ITS) on college students’ academic learning. Journal of Educational Psychology, 106, 331-347.

doi:10.1037/a0034752

10. Nesbit, J. C., Adesope, O. O., Liu, Q., & Ma, W. (2014). How effective are intelligent tutoring systems in

computer science education? IEEE 14th International Conference on Advanced Learning Technologies

(ICALT) (pp. 99-103). Athens, Greece, July 7-10.

11. Le, N. T., Strickroth, S., Gross, S., & Pinkwart, N. (2013). A review of AI-supported tutoring approaches for

learning programming. In N. T. Nguyen, T. van Do, and H. A. le Thi (Eds.), Advanced Computational Methods

for Knowledge Engineering: Studies in Computational Intelligence 479 (pp. 267-279). Heidelberg: Springer

International Publishing

12. Graesser, A. C., Moreno, K., Marineau, J., Adcock, A., Olney, A., & Person, N. (2003). AutoTutor improves

deep learning of computer literacy: Is it the dialog or the talking head? In U. Hoppe, F. Verdejo, and J. Kay

(Eds.), Proceedings of Artificial Intelligence in Education (pp. 47-54). Amsterdam: IOS Press.

13. Ogar, O., Shabalina, O., Davtyan, A., & Kizim, A. (2014). Mastering programming skills with the use of

adaptive learning games. In A. Kravets, M. Shcherbakov, M. Kultsova., and T. Iijima (Ed.), Proceedings of the

11th Joint Conference on Knowledge-Based Software Engineering Communications in Computer and

Information Science 466 (pp. 144-455). Volgograd, Russia: Springer International Publishing.

14. Hicks, A., Peddycord III, B., & Barnes, T. (2014). Building games to learn from their players: Generating hints

in a serious game. In S. Trausan-Matu, K. E. Boyer, M. Crosby, and K. Panourgia (Ed.), Proceedings of the

12th International Conference on Intelligent Tutoring Systems: Lecture Notes in Computer Science 8474

(pp.312-317). Honolulu, HI, USA: Springer International Publishing. P
age 26.1754.11

15. Xie, T., Tillmann, N., & de Halleux, J. (2013). Educational software engineering: Where software engineering,

education and gaming meet. In Proceedings of the 3rd International Workshop on Games and Software

Engineering (pp. 36-39), San Francisco, CA.

16. Bosch, N., Chen, Y., & D’Mello, S. (2014). It’s written on your face: Detecting affective states from facial

expressions while learning computer programming. In S. Trausan-Matu, K. E. Boyer, M. Crosby, and K.

Panourgia (Ed.), Proceedings of the 12th International Conference on Intelligent Tutoring Systems: Lecture

Notes in Computer Science 8474 (pp.39-44). Honolulu, HI, USA: Springer International Publishing.

17. Grafsgaard, J. F., Wiggins, J. B., Boyer, K. E., Wiebe, E. N., & Lester, J. C. (2013). Embodied affect in tutorial

dialogue: Student gesture and posture. In H. C. Lane, K. Yacef, J. Mostow, and P. Pavlik (Ed.), Proceedings of

the 16th International Conference on Artificial Intelligence in Education: Lecture Notes in Computer Science

7926 (pp. 1-10). Memphis, TN, USA: Springer Berlin Heidelberg.

18. Guia, T. F. G., Rodrigo, M. M. T., Dagami, M. M. C., Sugay, J. O., Macam, F. J. P., & Metrovic, A. (2012).

Modeling the affective states of students using SQL-Tutor. In S. A. Cerri, W. J. Clancey, G. Papadourakis, and

K. Panourgia (Ed.), Proceedings of the 11th International Conference on Intelligent Tutoring Systems: Lecture

Notes in Computer Science 7315 (pp. 634-635). Chania, Crete, Greece: Springer Berlin Heidelberg.

19. Ivanović, M., Mitrović, D., Budimac, Z., Vesin, B., & Jerinić, L. (2014). Different roles of agents in

personalized programming learning environment. In D. K. W. Chiu, M. Wang, E. Popescu, Q. Li, and R. Lau

(Ed.), New Horizons in Web Based Learning: Lecture Notes in Computer Science 7697 (pp. 161-170). Hong

Kong, China: Springer Berlin Heidelberg.

20. Nye, B. D., Graesser, A. C., & Hu, X. (2014). AutoTutor and family: A review of 17 years of natural language

tutoring. International Journal of Artificial Intelligence in Education, 24 (4), 427-469.

21. Schroeder, N. L., Adesope, O. O., & Gilbert, R. B. (2013). How effective are pedagogical agents for learning?

A meta-analytic review. Journal of Educational Computing Research, 49, 1-39.

22. Verginis, I., Gouli, E., Gogoulou, A., & Grigoriadou, M. (2011). Guiding learners into reengagement through

the SCALE environment: An empirical study. IEEE Transactions on Learning Technologies, 4 (3), 275-290.

23. Gerdes, A., Heeren, B., & Jeuring, J. (2012). Teachers and students in charge: Using annotated model solutions

in a functional programming tutor. In A. Ravenscroft, S. Lindstaedt, C. D. Kloos, and D. Hernández-Leo (Ed.),

Proceedings of the 7
th

 European Conference of Technology Enhanced Learning: 21
st
 Century Learning for 21

st

Century Skills, Lecture Notes in Computer Science 7563 (pp. 383-388). Saarbrücken, Germany: Springer Berlin

Heidelberg.

P
age 26.1754.12

