
Paper ID #12829

Writing-to-Learn-to-Program: Examining the Need for a New Genre in Pro-
gramming Pedagogy

Dr. Bryan A. Jones, Mississippi State University

Bryan A. Jones (S’00–M’00) received the B.S.E.E. and M.S. degrees in electrical engineering from Rice
University, Houston, TX, in 1995 and 2002, respectively, and the Ph.D. degree in electrical engineer-
ing from Clemson University, Clemson, SC, in 2005. He is currently an Assistant Professor with the
Mississippi State University, Mississippi State, MS.

From 1996 to 2000, he was a Hardware Design Engineer with Compaq, where he specialized in board
layout for high-availability redundant array of independent disks (RAID) controllers. His current research
interests include robotics, real-time control-system implementation, rapid prototyping for real-time sys-
tems, and modeling and analysis of mechatronic systems

Dr. M. Jean Mohammadi-Aragh, Mississippi State University

Dr. M. Jean Mohammadi-Aragh is an assistant research professor with a joint appointment in the Bagley
College of Engineering dean’s office and the Department of Electrical and Computer Engineering at Mis-
sissippi State University. Through her role in the Hearin Engineering First-year Experiences (EFX) Pro-
gram, she is assessing the college’s current first-year engineering efforts, conducting rigorous engineering
education research to improve first-year experiences, and promoting the adoption of evidence-based in-
structional practices. In addition to research in first year engineering, Dr. Mohammadi-Aragh investigates
technology-supported classroom learning and using scientific visualization to improve understanding of
complex phenomena. She earned her Ph.D. (2013) in Engineering Education from Virginia Tech, and
both her M.S. (2004) and B.S. (2002) in Computer Engineering from Mississippi State. In 2013, Dr.
Mohammadi-Aragh was honored as a promising new engineering education researcher when she was
selected as an ASEE Educational Research and Methods Division Apprentice Faculty.

Ms. Amy K Barton, Mississippi State University

Amy Barton is Technical Writing Instructor in the Shackouls Technical Communication Program at Mis-
sissippi State University. In 2013, she was inducted into the Academy of Distinguished Teachers for
the Bagley College of Engineering. She is an active member of the Southeastern Section of ASEE. Her
research focuses on incorporating writing to learn strategies into courses across the curriculum.

Dr. Donna Reese, Mississippi State University

Donna Reese has served as head of the Computer Science and Engineering Department at Mississippi
State University since 2010. Prior to that she served for six years as associate dean in the Bagley College
of Engineering. Her research interests are in recruitment and retention of underrepresented groups in
computing and engineering fields.

Hejia Pan, Mississippi State University

Hejia Pan received the B.S. degree in automation from the University of Science and Technology of China,
Hefei, China, in 2007 and the Ph.D. degree from Mississippi State University in 2011. He is currently
with Mississippi State University, Mississippi State, MS, USA. His research interests include engineering
education, literate programming and modern control theory.

c©American Society for Engineering Education, 2015

P
age 26.1779.1

Writing-to-Learn-to-Program: Examining the Need for a
New Genre in Programming Pedagogy

We are a nation driven by code, dependent on programs for our everyday lives. Vital aspects of
our national security depend on our ability to withstand daily cyber intrusions into Department of
Defense assets; likewise, our economic security rests on the ability of banks and stock exchanges
to securely move millions of dollars electronically. Our nation’s infrastructure depends on the
smart grid and thousands of other process control systems that manage our water supplies, run
our factories, and operate our cars. The social lives of millions of Americans rely on social net-
working, smart phones and tablets, and a high-speed internet backbone. Serious, sometimes fatal
bugs such as Toyota’s $1.2 billion dollar penalty1 for unintended acceleration2, Shellshock3,4,
and Heartbleed5 all demonstrate the need for proficient programmers.

Despite the constantly increasing need for qualified engineers with strong programming abilities,
the difficulty of teaching introductory programming still stands as a barrier to many STEM dis-
ciplines. A multi-institutional, multi-national experiment conducted by the McCracken group6
reported only a little over 20% of students were able to solve the types of programing problems
expected by their instructors. It is essential to properly prepare the people who power our securi-
ty, our economy, and our lives.

In this paper, we present a new genre in computer science education that is aimed at improving
student learning and application of programming concepts. Based on the well-acknowledged ef-
fectiveness of the writing across the curriculum (WAC) and Writing-to-Learn (WTL) move-
ments, this paper employs the intermingling of writing activities with coding, which has the po-
tential to dramatically impact the programming learning process. We term this approach Writing-
to-Learn-to-Program (WTLTP). Following our discussion of the WTLTP genre, we present
technologies that support the genre and discuss our future efforts to investigate the effectiveness
of WTLTP in the classroom environment. This paper contributes both to WTL literature by in-
corporating WTL principles into a new domain and to computer science education literature by
proposing a new approach to introductory computer science courses (CS1).

1. From writing-to-learn (WTL) to writing-to-learn-to-program (WTLTP)
WTL strategies arose from the writing across the curriculum (WAC) movement, which can be
traced back to the 19th century in the U.S. It describes programs that emphasize the connection
between writing and learning, but the term also refers to the pedagogical theories that support
this connection. In the following sections, the history and influence of WTL are discussed as the
foundation for WTLTP.

1.1. History of WTL
David Russell’s history7 of the WAC movement traced the cultural changes in the U.S. that ena-
bled the movement’s growth. Until the 1960s, universities were focused on disciplinary rigor and

P
age 26.1779.2

purity, so writing instruction was considered the domain of the English department. However,
social change made the college classroom increasingly diverse, underscoring the need to provide
more comprehensive writing instruction to students of all backgrounds and disciplines. WTL
strategies were useful because they prompt students to write for their own benefit, making course
material more meaningful. WTL is based on the premise that students learn through the act of
writing, particularly when the writing assignments are short, informal, and designed to promote
reflection, analysis, synthesis, and deeper understanding of course material. Examples of such
assignments include journals, commentary, and reflections.

WTL strategies also allow students to assert more control over the way they learn. Emig8 ex-
plains this benefit: “One writes best as one learns best, at one’s own pace.” Butler and Winne9
assert that individualized learning is critical to individual success: “the most effective learners
and self-regulating.” They define self-regulation as “a suite of powerful skills: setting goals for
upgrading knowledge; deliberating about strategies to select those that balance progress toward
goals against unwanted tasks; and, as steps are taken and the task evolves, monitoring the accu-
mulating effects of their engagement.” If students are to be active participants in their learning,
writing assignments must prompt self-analysis and reflection. Emig describes the simple act of
reading one’s own writing as a valuable learning moment in which “information from the pro-
cess is immediately and visibly available as that portion of the product already written.” Review-
ing a set of writings collected over time, then, creates an opportunity to extend the learning pro-
cess. Both instructors and students benefit from the act of collecting artifacts because they repre-
sent the changes and growth that accompany learning. When integrated in a purposeful way ap-
propriate to a given discipline, WTL deepens student understanding, improves student engage-
ment, increases retention, and makes students active participants in the learning process10,11.

1.2 WTL and computational thinking
To understand the value of WTL strategies to computer science education, it is useful to examine
the thinking processes involved in learning to program and the problems novice programmers
tend to encounter. Davies12 defines “computational thinking” as a complex type of problem solv-
ing that requires creativity as well as “elegance and precision.” According to Soloway13, the
problem solving process is inextricably linked with the act of communicating understanding:
“learning to program amounts to learning how to construct mechanisms and how to construct
explanations.” George14 distinguishes computer science learning from learning in “humanity-
based subjects” as the difference between “declarative content,” or facts, and content that in-
volves “procedures, processes, algorithms and problem solving steps.” To program, students
must think computationally, which requires critical thinking, reflection, revision, and communi-
cation ability.

The challenge for many is that computational thinking takes place in the context of a new, com-
plicated language. According to Davies, the challenge for students trying to learn a new way of
thinking is the language of programming itself: “a frightening world of semicolons and curly

P
age 26.1779.3

braces whose secret meaning takes great pains to discover.” With this type of distraction, Davies
asserts that students cannot undertake the serious problem solving that lies behind the language.
While programming does require a programming language, computational thinking can be sup-
ported by writing in a student’s native language.

Research in computer science has demonstrated that students’ ability to effectively explain the
meanings of code “in plain English” is correlated with their ability to program. Murphy et al.15
found that students who could not correctly explain sections of code also had difficulty develop-
ing their own code as the semester progressed. Corney et al.16 found that this issue carried on in-
to the data structures class. They hypothesize that developing students’ ability to explain code in
written English can improve their ability to develop code. Essentially, WTL principles can sup-
port students’ development of computational thinking skills by allowing them to think in their
native language, thereby reducing a major barrier for learning to program.

1.3 WTLTP: A new genre in computer science education
The difficulty of teaching and learning introductory programming concepts is well documented.
As early as the mid 1980s, the work of Soloway17 documented that only 14% of Yale’s CS1 stu-
dents could solve a simple programming problem correctly. This study has been repeated over
the years with similar results. At our home institution, for example, 42% of the students who
have completed a two-semester programming class cannot solve the following program: “In a
programming language of your choice, prompt the user to enter integers one at a time, keeping a
running sum of the integers. If -1 is entered, then exit and print the sum.” Perkins and Martin de-
scribe the main deficit of novice programmers as “fragile knowledge…knowledge that is partial,
hard to access, and often misused”18. According to Lahtinen, Ala-Mutka and Järvinen19, while
most programming students can comprehend “basic concepts,” they struggle with “learning to
apply them.” There is a significant need to address the well-documented and persistent need to
improve programming pedagogy.

To improve programming pedagogy, we seek to re-introduce Knuth’s concept of literate pro-
gramming in a significantly revised and improved manner. To quote Knuth, “Let us change our
traditional attitude to the construction of programs: Instead of imagining that our main task is to
instruct a computer what to do, let us concentrate rather on explaining to human beings what we
want a computer to do.”20 The philosophy undergirding literate programming, succinctly stated,
is that “you do not document programs (after the fact), but write documents that contain the pro-
grams.”21

As educators, we believe that writing clarifies thinking, extends creative abilities, and enables
effective communication. Our beliefs are backed by the aforementioned literature. Thus, our re-
search goal is to explore how reflective writing intermingled with coding can enable students to
more effectively develop requisite problem solving skills and learn how to program. We hypoth-
esize that the interaction between writing and programming can significantly improve the devel-

P
age 26.1779.4

opment of a novice programmer’s skills. Through writing, programmers can visualize their learn-
ing, allowing them to view the coding process as a series of logical, interrelated steps that con-
nect an overall goal to all the potential ways of reaching it. In a broader context, this visualiza-
tion could have far-reaching implications for professional programming. This fundamental shift
in the programmer’s thinking requires a change in the programming process, particularly the
process of learning to program.

We therefore propose a radical redesign of how writing and programming can and should inter-
act, by making writing an essential component of programming instruction and the coding pro-
cess as a whole. Specifically, embedding WTL strategies into the coding process will transform
the way students learn to program. While students often view writing as separate from the practi-
cal demands of their professions, WTL strategies, when integrated purposefully, blend writing
and learning in a way that can support development in any discipline and particularly in the con-
text of programming, WTLTP leverages WTL strategies and intermingles writing with coding to
support learner processes in an effort to improve programming pedagogy.

2. Writing-to-learn-to-program (WTLTP)
WTLTP represents a new genre built on the ideals of literate programming, which has rarely
been incorporated into programming pedagogy. The purpose of WTLTP (and of literate pro-
gramming) is not simply to add comments to code, but to transform a student’s thinking process,
by making writing an integral step in every aspect of the programming endeavor. In addition to
researching changes in student thinking and learning, we will explore the design of software and
technologies that support WTLTP and programmer development in relevant learning environ-
ments.

2.1 WTLTP in the classroom
In a typical programming class, a lab assignment provides a problem specification; students are
then graded on the correctness of their implementation. The bulk of instruction, therefore, focus-
es on teaching students to transform a problem into a specific implementation through a design-
build-test cycle in which the design is accompanied by written artifacts such as a flowchart or
pseudocode. The build process might also be accompanied by written artifacts (explain in Eng-
lish, for example), while the test process relies solely on the students’ expertise rather than taking
any written form. The design-to-build process is typically a linear, one-time process—students
are expected to iterate the build-test cycle based on their own abilities. Moreover, the written ar-
tifacts remain isolated from the program; while the code (and, implicitly, the design) may evolve
during the build-test cycle, the written artifacts remain unchanged. This process poorly supports
the student’s actual thinking process.

Therefore, we propose a method that matches and supports the ways students think about and
solve programming problems, by intermingling writing throughout the design-test-build cycle.
The WTLTP program is a document, which can and must contain all writing artifacts produced

P
age 26.1779.5

throughout the process. These artifacts prompt students to describe their thinking processes and
reflect on their learning throughout the cycle. Specifically, the process begins as the students
craft a description of their design, capturing the overall flow of the program. Next, students write
reflectively, considering how this design should be captured in specific coding constructs (loops,
functions, etc.). The build step begins with students evaluating which specific statements to use
(which is the best library function to call, or how to index an array), then coding that particular
portion of the program. The coding informs the overall design; perhaps the constraints of the
language as the implementation proceeds will change the design, prompting students to rewrite
and rethink that portion of the document. Next, students execute the program, then record and
reflect on the observations captured by this experiment: did the program follow the mental model
the student had formed of the program? If not, how was that model incorrect? What then should
be changed? If these written reflections change the design or build aspects, those can be updated
as a part of making changes to the code.

As a concrete example, consider a typical programming assignment taken from CSE 1384, In-
termediate Computer Programming, offered at our home institution. In this lab, students write a
class to support basic operations on rational numbers, which are represented as two integers N/D
(Figure 1). A set of requirements is given, and students must then solve the problem with little
guidance on the thinking process that should accompany the problem. In contrast, the screen-
shots in Figures 2–5 illustrate the integration of writing throughout the process of crafting a solu-
tion to this problem. In a beginning lab, the literate programming paradigm carefully guides stu-
dents through the writing and thinking process; later labs have less guidance, requiring more cre-
ative, independent writing and thinking.

2.2 Existing software supporting WTLTP processes
Knuth’s original literate programming system, consisting of the WEB (for the Pascal language)
and CWEB (for C) applications, provide this needed ability, albeit with several significant draw-
backs22. First, CWEB’s input is not source code, but a document containing fragments of code
mixed with troff/nroff or TeX/LaTeX and CWEB markup, requiring a steep learning curve and
resulting in difficult-to-read documents for the uninitiated. CWEB then transforms this input into
source code, stripping out much of the markup and formatting and rearranging the order, which
produces source code that cannot be understood apart from laboriously referring to the CWEB
document it came from. This makes use of a traditional IDE, along with the many tools it offers
(debuggers, syntax highlighting, automatic refactoring, version control, static analysis, etc.), dif-
ficult if not impossible. Second, the typeset output of CWEB (typically a PDF document pro-
duced by compiling the literate programming input) is likewise difficult to edit. It cannot be di-
rectly edited; instead, the TeX/LaTeX fragment that produced it must be located by hand in the
source literate program, then edited, then recompiled to a PDF document to check that the edits
produced the desired typeset result. Although SyncTeX provides a mapping from a PDF para-
graph to the underlying TeX/LaTeX that generated it23, CWEB does not extend this mapping to

P
age 26.1779.6

the literate programming source. In addition, though several excellent GUIs embed this synchro-
nization in a TeX/LaTeX environment (TeXWorks, for example, supports Windows/Linux/Mac),
none provide this for CWEB, imposing a high cost on editing the typeset output.

Although many other literate programming packages exist as reviewed by Schulte24, Pieterse, V.
et. al.25, most share these same weaknesses: they take a literate program as input and produce
source code as output, creating relatively difficult-to-read code that cannot be directly edited be-
cause it will be overwritten by the next document-to-code transformation. Likewise, these pack-
ages take a literate program as input and produce a typeset document as output, creating beautiful
documents that are time-consuming to edit.26

While literate programming tools have not entered the mainstream, their variants have; docu-
mentation generators, such as Doxygen and Javadoc, boast a huge user base and produce vast
numbers of web pages that document large libraries and applications, such as the Java API and
the KDE window manager. These tools provide an excellent method for documenting the exter-
nals of a program—its application programming interface (API), typically. However, from a lit-
erate programming perspective, these tools lack the ability to explain the inner workings of a
function or method, instead restricting themselves to documenting how to call a function but not
why the function works the way it does. Therefore, these tools likewise lack the ability for stu-
dents to explain in writing what they are doing and why they are doing it.

P
age 26.1779.7

Literate programming techniques have been previously employed in the classroom, with most
activity occurring in the 1990s. Hurst27 primarily investigates the tools needed to grade home-
work submissions, reporting that “the general quality of student submission has risen as a result
of using literate programming” but offering little quantitative data in support of this assertion.
Childs, Dunn, and Lively28 report “significant benefit from the use of literate programming,”
providing detailed analysis that substantiates this finding. However, students reported frustration
using the required literate programming tools (Emacs, TeX, and WEB). Shum and Cook29 em-
ployed a literate programming tool, reporting that students using the system wrote comments that
described the algorithm used by the code; students using a traditional programming methodology
did not write these comments. Unfortunately, students reported that debugging the code pro-
duced by the tool was very difficult. Again, while the literate programming approach demonstra-
bly improves novices’ programming ability, the barriers raised by the current set of tools make
these benefits difficult to realize. These barriers make the ability students most need—the ability

Figure 2. The CodeChat user interface, showing the code view on the left synchro-
nized to the document view on the right.

P
age 26.1779.8

to write before, during, and after they code—difficult if not impossible to learn.

2.3 CodeChat: Improved software to support WTLTP
With the goal of alleviating the weaknesses with current software described in section 2.2, we
have developed a literate programming system named CodeChat. Figures 2–6 illustrate Co-
deChat’s implementation in its present form.

The series of screenshots (except Figure 5) show a WTLTP lab on rational numbers for CSE
1384, Intermediate Programming, which is taught in the Python programming language. Figure 2
can be compared to the current lab shown in Figure 1. The WTLTP lab consists of a series of
unit tests that guide a student through the implementation of a rational numbers class. The Py-
thon source code that the student will edit is presented on the left side of Figure 2, while on the
right side, this source code has been transformed into a document (a web page), providing a vis-
ual reminder to students that a program is a document and should be treated as such. (The current

implementation does not allow editing from the document view). The included GUI synchroniz-

Figure 3. The use of a program as a document which contains both descriptive and prescriptive
portions.

P
age 26.1779.9

es between source code and web output automatically, so that movement or mouse clicks in the
source code editor shows the corresponding HTML text and vice versa. CodeChat interprets the
comments of the source code using reStructuredText (ReST), whose primary goal is to “define
and implement a markup syntax … that is readable and simple, yet powerful enough for non-
trivial use” as described on reStructuredText homepage.

Figure 3 demonstrates the use of a program as document that contains both descriptive and pre-
scriptive (i.e., executable) portions. Here the unit test passes only if a divide-by-zero exception is
raised by student code. This helps focus novice programmers on solving one problem at a time. It
requires them to fill in a portion of the document with the results of their successful test (so that
students will not simply skip this step to their own detriment) and the code they used, while sim-
ultaneously providing an opportunity to reflect.

Figure 4 shows a set of embedded reflection questions requiring student responses. These ques-
tions help a student think about how best to implement rational number simplification before

writing the code and require them to gain a deeper understanding of the library routine (gcd) they
Figure 4. Embedded reflection questions require student responses.

P
age 26.1779.10

will use. This helps students produce code that they understand, rather than code that “just sorta
works” without deep understanding.

The program-as-document approach to literate programming in Figure 5 shows that intermin-
gling images and equations with the code that implements them provides a natural, intuitive ex-
planation of the operation of a quad-copter (a four-bladed rotary-wing aircraft). This approach
allows students to think through the complex mathematics they must implement, or instructors to
better convey the connection between theory and its implementation in a program.

3. Conclusions and future research direction
In this conceptual paper, we introduce a new genre in computer science pedagogy based on in-
termingling writing activities with coding. We have proposed a radical redesign of how writing
and programming can and should interact. We contribute to WTL literature by incorporating
WTL principles into a new domain. We build on Knuth’s initial ideas for literate programming

by proposing the integration of those ideas into technology supporting learning and into class-

Figure 5. Intermingling images and equations with code demonstrates the program-as-document
approach to literate programming.

P
age 26.1779.11

room learning environments. We have established the background and need for the new WTLTP
genre.

This conceptual paper is the precursor to our upcoming research investigation into the use of
technology to facilitate WTLTP in the technology-rich environment of an introductory pro-
gramming course. The purpose of our future research direction is to thoroughly investigate how
WTLTP can help students learn to program. We focus on understanding the impact of WTLTP
instruction on students’ programming development in comparison to students educated by tradi-
tional programming pedagogy. We also plan to investigate how WTLTP may impact students’
development as writers. Finally, we have planned data collection that will offer insight into “best
practices” for effectively integrating WTLTP in classrooms. All of our research is driven by the
overarching research question: How can intermingled writing assignments affect the develop-
ment of a novice’s programming skills? Our research plan will allow us to consider 1) next steps
for how technology can support intermingled WTL, 2) how instructors can support intermingled
WTL, and 3) challenges to effective use of intermingled WTL in classroom contexts.

References

1 Woodyard, C & Johnson, K. (2014, Mar. 20). Toyota to pay $1.2B to settle criminal probe. USA Today, Money
section.
2 Barr, M. (2013, Oct. 26). An update on Toyota and unintended acceleration. [web log]. Retrieved from
http://embeddedgurus.com/barr-code/2013/10/an-update-on-toyota-and-unintended-acceleration/.
3 National Institute of Standards and Technology National Vulnerability Database, Vulnerability Summary for CVE-
2014-6271. (2104, Dec. 2). Retrieved from: https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6271 .
4 National Institute of Standards and Technology National Vulnerability Database, Vulnerability Summary for CVE-
2014-7169. (2014, Dec. 2). Retrieved from: https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-7169.
5 National Institute of Standards and Technology National Vulnerability Database, Vulnerability Summary for CVE-
2014-0160. (2014, Dec. 2). Retrieved from: https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160.
6 McKracken, M. et al. (December 2001) A Multi-national, multi-institutional study of assessment of programming
skills of first-year CS Students, SIGCSE Bulletin, vol. 33, no. 4, pp. 125-180.
7 Russell, D. R. (1991). Writing in the academic disciplines, 1870-1990: A curricular history. Carbondale, IL:
Southern Illinois UP.
8 Emig, J. (1977). Writing as a mode of learning. College Composition and Communication, 28, 122-128.
9 Butler, D. & Winne, P. (1995). Feedback and self-regulated learning: A theoretical synthesis. Review of Educa-
tional Research, 65, 245-281.
10 Paretti, M. C. (2011). Theories of Language and Content Together: The Case for Interdisciplinarity. Across the
Disciplines, 8(3).
11 Paretti, M. C. (2009). When the Teacher is the Audience: Assignment Design and Assessment in the Absence of
“Real” Readers, in Engaging Audience: Writing in an Age of New Literacies, A. Gonzalez, E. Weiser, and B. Feh-
ler, Editors. 2009, NCTE Press: Urbana, IL. p. 165-185.
12 Davies, S. (2008). The effects of emphasizing computational thinking in an introductory programming course.
38th ASEE/IEEE Frontiers in Education Conference, T2C-3—T2C-8.
13 Soloway, E. (1986). Learning to program=learning to construct mechanisms and explanations. Communications
of the ACM, 29(9), 850-8.

P
age 26.1779.12

14 George, S. E. Learning and the reflective journal in computer science. (2001). Proc. 25th Australasian Computer
Science Conference (ACSC2002), Melbourne, Australia, 77-86.
15 Murphy, L., R. McCauley and S. Fitzgerald (March 2012). ‘Explain in Plain English’ Questions: Implications for
Teaching, SIGCSE ‘12, pp. 385-389.
16 Corney, M. et al. (March 2014). ‘Explain in Plain English’ Questions Revisited: Data Structures Problems,
SIGCSE ‘14, pp. 591-596.
17 Soloway, E. (November 1983) Cognitive strategies and looping constructs: An empirical study, Communications
of the ACM, Vol, 26, No 11, pp. 853-860.
18 Perkins, D. & Martin, F. (1985). Fragile knowledge and neglected strategies in novice programmers. National
Institute of Education Report. Cambridge, MA. Retrieved from http://faculty.salisbury.edu/~xswang/ Re-
search/Papers/ debugging/ED295618.pdf.
19 Lahtinen, E., Ala-Mutka, K. & Järvinen, H. M. (2005). A study of the difficulties of novice programmers. ACM
SIGCSE Bulletin, 37(3), 14-18.
20 Knuth, D. (1992). Literate Programming (1984). Literate Programming. CSLI. p. 99.
21 Skaller, M. J. in a Charming Python interview. Retrieved from http://gnosis.cx/publish/programming/ charm-
ing_python_8.html.
22 Thimbleby, H. (1986). Experiences of ‘Literate Programming’ using CWEB (a variant of Knuth's WEB). The
Computer Journal, 29(3), 201-211.
23 Laurens, J. (2008). Direct and reverse synchronization with SyncTEX. TUGboat, 29(3). Retrieved from:
http://www.tug.org/TUGboat/tb29-3/tb93laurens.pdf.
24 Schulte, E. (January 2012). "A Multi-Language Computing Environment for Literate Programming and Repro-
ducible Research" 46(3). Journal of Statistical Software.
25 Pieterse, V., Derrick G. K., & Boake, A. (2004). A case for contemporary literate programming, in SAICSIT, 75,
2-9, Stellenbosch, Western Cape, South Africa.
26 PyLit, available at http://pylit.berlios.de/index.html, represents the only tool known to the authors which also
stores the literate programming source in the source file, lacks a GUI to synchronize between typeset output and
source code.
27 Hurst, A. J. (1996). Literate programming as an aid to marking student assignments. Proceedings of the 1st Aus-
tralasian conference on Computer Science education, 280-286.
28 Childs, B., Dunn, D., & Lively, W. (1995). Teaching CS/1 Courses in a Literate Manner. Proceedings of the TeX
Users Group Conference, St. Petersburg, Florida, July 24-28, Volume 16, No. 3, p. 300-309.
29 Shum, S. & Cook, C. (1994). Using Literate Programming to Teach Good Programming Practices. Proceedings
of the twenty-fifth SIGCSE symposium on Computer Science education, 66-70.

P
age 26.1779.13

